
Functional Abstraction driven Design Space Exploration of
Heterogeneous Programmable Architectures

Prabhat Mishra
University of California, Irvine

444 Computer Science
Irvine, California, USA

pmishra@cecs.uci.edu

Nikil Dutt
University of California, Irvine

444 Computer Science
Irvine, California, USA
dutt@cecs.uci.edu

Alex Nicolau
University of California, Irvine

444 Computer Science
Irvine, California, USA

nicolau@cecs.uci.edu

ABSTRACT
Rapid Design Space Exploration (DSE) of a programmable
architecture is feasible using an automatic toolkit (compiler,
simulator, assembler) generation methodology driven by an
Architecture Description Language (ADL).While many con-
temporary ADLs can e�ectively capture one class of archi-
tecture, they are typically unable to capture a wide spec-
trum of processor and memory features present in DSP,
VLIW, EPIC and Superscalar processors. The main bot-
tleneck has been the lack of an abstraction underlying the
ADL (covering a diverse set of architectural features) that
permits reuse of the abstraction primitives to compose the
heterogeneous architectures. We present in this paper the
functional abstraction needed to capture such wide variety of
programmable architectures. We illustrate the usefulness of
this approach by specifying two very di�erent architectures
using functional abstraction. Our DSE results demonstrate
the power of reuse in composing heterogeneous architectures
using functional abstraction primitives allowing for a reduc-
tion in the time for speci�cation and exploration by at least
an order of magnitude.

Keywords
Functional Abstraction, ADL, Design Space Exploration,
DSP, VLIW, Superscalar, Programmable Architecture

1. INTRODUCTION
Contemporary processor architectures vary widely in terms

of their architectural features: program address generation
and instruction dispatch features are widely used in DSP
processors; VLIW processors use strong compiler support
to ensure correct execution of long instruction words; super-
scalar processors on the other hand, use hardware schedul-
ing techniques, register renaming etc; and multimedia pro-
cessors support SIMD operations. Furthermore, each ar-
chitecture has a di�erent type of branch prediction mech-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSS’01,October 1-3, 2001, Montr´eal, Québec, Canada.
Copyright 2001 ACM 1-58113-418-5/01/0010 ...$5.00.

anism, di�erent execution style (in-order/out-of-order), dif-
ferent way of detecting hazards, di�erent way of handling
interrupts/exceptions, and last but not least di�erent mem-
ory subsystems[16]. Emerging architectures have combined
features of classical architectures (DSP, VLIW and Super-
scalar). For example, the Intel Itanium combines features
of VLIW and superscalar; the TI C6x family combines fea-
tures of DSP and VLIW. Moreover, during design space ex-
ploration using customized IP cores, designers may want
to add certain architectural features (e.g., some superscalar
features to a VLIW processor core) to see how it impacts
area, power, performance and other important design pa-
rameters. Similarly, to �nd the best match between the ap-
plication characteristics and the memory organization fea-
tures (caches, stream bu�ers, access modes, SRAM, DRAM
etc.), the designer needs to explore di�erent memory con-
�gurations in combination with di�erent processor architec-
tures, and evaluate each such system for a set of metrics
(such as cost, power and performance). To enable this, de-
signers need (i) a way of specifying wide variety of processor-
memory features and (ii) automatic software toolkit gener-
ation to enable rapid design space exploration.
In this paper, we present a functional abstraction based

speci�cation technique, which is capable of capturing a wide
variety of programmable architectures. The key advantage
of this approach is that it allows designers to make fast de-
sign decisions by reusing the abstraction primitives while
composing heterogeneous architectures. The rest of the pa-
per is organized as follows. Section 2 presents related work
addressing functional abstraction as well as ADL-driven DSE
approaches. Section 3 outlines our approach and the over-
all
ow of our environment. Section 4 presents the func-
tional abstraction needed to capture the wide variety of ar-
chitectural features and memory con�gurations. Section 5
illustrates how contemporary example architectures can be
described using this functional abstraction based ADL ap-
proach. Section 6 presents the design space exploration re-
sults using this approach. Section 7 concludes the paper.

2. RELATED WORK
While code reuse is traditionally widespread in software

engineering, the viability of this technique in the �eld of
hardware design has also been demonstrated [10]. In [20]
a database oriented reuse management system is presented.
There has been work on parameterized [5], as well as func-
tions and objects based [9], system design. In [18] a system
design
ow for fast design, prototyping and e�cient IP reuse

is presented. In [12] a complete codesign environment for
embedded systems which combines automatic partitioning
with reuse from a module database is presented. However,
previous work has not addressed functional abstraction tech-
niques for diverse processor-memory architectures, with the
goal of allowing reuse and composability in the context of
architectural design space exploration.
In our approach the viability and advantages of reuse in

the context of software toolkit generation is studied. Recent
approaches on language-driven design space exploration ([1],
[2], [11], [4], [6], [19], [22]), use ADLs to capture the proces-
sor architecture, generate automatically a software toolkit
for that processor, and provide feedback to the designer on
the quality of the architecture.
nML [4] has been used by the retargetable code generation

environment CHESS [1] to describe DSP and ASIP proces-
sors. In ISDL [2], constraints on parallelism are explicitly
speci�ed through illegal operation groupings. This could
be tedious for complex architectures like DSPs which per-
mit operation parallelism (e.g. Motorola 56K) and VLIW
machines with distributed register �les (e.g. TI C6X). MI-
MOLA [11] descriptions are structure-based, and generally
very low-level, and laborious to write. MDes [22] allows only
a restricted retargetability of the simulator to the HPL-PD
processor family. MDes permits the description of the mem-
ory system, but is limited to the traditional cache hierarchy.
LISA [3] and RADL [21] capture VLIW DSP processors.
The approach of [8] uses LISA and SystemC based frame-
work for fast hardware-software co-simulation. These previ-
ous ADL-based approaches have, in general, been targeted
towards a speci�c class of architectures, with limited de-
scriptive facilities for complex memory organizations.
EXPRESSION [6], on the other hand, is an ADL designed

to capture a wide range of programmable architectures, in-
cluding DSP, VLIW, and Superscalar, together with their
distinct architectural features. This is possible due to the
functional abstractions we have developed to support such
an ADL-driven approach. Indeed, an ADL such as EX-
PRESSION critically needs the power of reuse in compos-
ing heterogeneous architectures using functional abstraction
primitives; this facilitates rapid generation of software toolk-
its for a wide range of architectures, thus allowing e�ective
design space exploration of heterogeneous processor-memory
architectures.

3. BACKGROUND
In order to understand and characterize the diversity of

contemporary architectures, we surveyed each major archi-
tectural domain viz., RISC, DSP, VLIW, Superscalar, and
EPIC [13]. We studied the similarities and di�erences of
each architectural feature in di�erent architectural domains.
Broadly speaking, the structure of a processor consists of
functional units, connected using ports, connections and
pipeline latches. Similarly, the structure of a memory sub-
system consists of SRAM, DRAM, cache hierarchy etc. Al-
though a broad classi�cation makes the architecture look
similar, each architecture di�ers in terms of the algorithm
it employs in branch prediction, the way it detect hazards,
the way it handle exceptions etc. Moreover, each unit has
di�erent parameters for di�erent architectures (e.g., num-
ber of fetches per cycle, levels of cache, cache line size etc.).
Depending on the architecture a functional unit may per-
form the same operation at di�erent points in time. For

(EXPRESSION ADL)
Architecture Specification

Specification

Design Space Exploration

Compiler SimulatorObj

Generic
Simulation

Models

Functional Abstraction

A
p

p
li

ca
ti

on

Feedback

Figure 1: The Flow in our approach

example, read-after-write(RAW) hazard detection followed
by operand read occurs in the decode unit for some archi-
tectures (e.g., DLX [7]), whereas in some others these oper-
ations are performed in the issue unit (e.g., MIPS R10K).
Some architectures even allow operand read in the execution
unit (e.g., ARM7). On the other hand, some architectures
do not issue operations if RAW hazard is detected while
others issue the operation in spite of RAW hazard (use
snooping to read the data at execution stage using feedback
paths). In other words, the same functionality is used at
di�erent points in the pipeline for di�erent architectures.
We can observe some fundamental di�erences from the

study above; the architecture may use: (i) the same func-
tional or memory unit with di�erent parameters, (ii) the
same functionality in di�erent functional or memory unit,
(iii) new architectural features. The �rst di�erence can be
eliminated by de�ning generic functions with appropriate
parameters. The second di�erence can be eliminated by
de�ning generic sub-functions, which can be used by di�er-
ent architectures at di�erent points in time. The last one
is di�cult to alleviate since it is new, unless this new func-
tionality can be composed of existing sub-functions.
Based on our observations we have de�ned the necessary

generic functions, sub-functions and computational environ-
ment needed to capture a wide variety of processor and
memory features. Section 4 presents the functional abstrac-
tion needed to capture the wide variety of programmable
architectures. We have developed the associated generic
simulation models, which is a one-time activity and inde-
pendent of the architecture; these can be stored in a library
and reused in an ADL to compose and evaluate new archi-
tectures.
Figure 1 shows the
ow in our approach. In our IP li-

brary based design space exploration scenario, the designer
starts by specifying the design using functional abstractions
using the EXPRESSION ADL. The software toolkit includ-
ing compiler, simulator, and assembler can be automatically
generated from the functional abstraction. The input appli-
cation program is compiled and simulated and the feedback
is used to modify the speci�cation.

4. FUNCTIONAL ABSTRACTION
Functional abstraction allows the system designer to de-

scribe a wide variety of architectures in a hierarchical fash-
ion. In this section we present functional abstraction by way
of illustrative examples. We �rst explain the functional ab-

straction needed to capture the structure and behavior of
the processor and memory subsystem, then we discuss the
issues related to de�ning generic controller functionality, and
�nally we discuss the issues related to handling interrupts
and exceptions.

4.1 Structure of a Generic Processor
We capture the structure of each functional unit using pa-

rameterized functions. In the following speci�c example, the
fetch unit functionality contains several parameters, such
as the number of operations read per cycle, number of op-
erations written per cycle, reservation station size, branch
prediction scheme, number of read ports, number of write
ports etc. These ports are used to connect di�erent units.
The fetch unit is described using sub-functions. Each sub-
function is de�ned using appropriate parameters. For exam-
ple, ReadInstMemory reads n operations from the instruc-
tion cache using current PC address (returned by ReadPC)
and writes them to the reservation station. The fetch unit
reads m operations from the reservation station and writes
them to the output latch (fetch to decode latch) and uses a
BTB based branch prediction mechanism.

FetchUnit(# read per cycle, res-Station size,)

{

address = ReadPC()

Instructions = ReadInstMemory(address, n)

WriteToReservationStation(Instructions, n)

outInst = ReadFromReservationStation(m);

WriteLatch(decode_latch, outInst)

pred = QueryPredictor(address)

IF pred

{

nextPC = QueryBTB(address)

SetPC (next_PC)

} ELSE

IncrementPC(x)

}

We have de�ned parameterized functions for all functional
units present in contemporary programmable architectures,
such as the fetch unit, branch prediction unit, decode unit,
issue unit, execute unit, completion unit, interrupt handler
unit, PC Unit, Latch, Port, Connection etc. We have de�ned
sub-functions for all the common activities e.g., ReadLatch,
WriteLatch, ReadOperand, RenameRegister etc. We have
also de�ned a few sub-functions e.g., RenameRegister, Grad-
uateOperation using sub-functions to allow a �ner granu-
larity of architectural exploration. The notion of generic
sub-function allows the
exibility of specifying the system
in �ner detail. It also allows reuse of the components. Fur-
thermore, these components can be pre-veri�ed. Thus the
task of veri�cation will reduce mainly to performing inter-
face veri�cation at all levels.

4.2 Behavior of a Generic Processor
The behavior of a generic processor is captured through

the de�nition of opcodes. Each opcode is de�ned as a func-
tion, with a generic set of parameters, which performs the
intended functionality. The parameter list includes source
and destination operands, necessary control and data type
information. We have de�ned a set of common sub-functions
e.g., ADD, SUB, SHIFT etc. The opcode functions may use
one or more sub-functions. For example, the MAC (multi-
ply and accumulate) uses two sub-functions. These opcode
functions are used as a parameter for the generic function
of the execution unit.

opcode src1 src2 dest

 Execution Unit

Figure 2: Example of distributed control

4.3 Structure of a Generic Memory Subsys-
tem

The memory represents a major bottleneck in modern em-
bedded systems. Each type of memory module, such as the
SRAM, cache, DRAM, SDRAM, stream bu�er, victim cache
etc., is modeled using a function with appropriate parame-
ters. For example, the cache function has parameters: cache
size, line size, associativity, word size, replacement policy,
write policy, read/write access times etc. These functions
also have parameters for specifying pipelining, parallelism,
access modes (e.g., normal read, page mode read, burst read)
etc. Again, each function is composed of sub-functions.

4.4 Generic Controller
Amajor challenge for functional abstraction of programmable

architectures, is the modeling of control for a wide range of
architectural styles. We de�ne control in both a distributed
and centralized manner. The distributed control is trans-
fered through pipeline latches. While an instruction gets
decoded the control information needed to select the opera-
tion, the source and the destination operands are placed in
the output latch as shown in Figure 2. These decoded con-
trol signals pass through the latches between two pipeline
stages unless they become redundant. For example, when
the value for src1 is read that particular control is not needed
any more; instead the read value will be in the latch. We
have shown here only the control information of the latch.
The latch contains data values and predicate registers (if
applicable) as well.
The centralized control is maintained by using a generic

control table. The number of rows in the table is equal to
the number of pipeline stages in the architecture. The num-
ber of columns is equal to the maximum number of parallel
units present in any pipeline stage. Each entry in the control
table corresponds to one particular unit in the architecture.
It also contains information speci�c to that unit e.g., busy
bit (BB), stall bit (SB), list of children, list of parents, op-
codes supported etc. The control table captures all the nec-
essary details to perform selective or complete stalling of the
pipelines. Stalling happens due to three kinds of hazards:
structural hazards, data hazards and control hazards.

4.5 Interrupts and Exceptions
Another major challenge for functional abstraction is the

modeling of interrupts and exceptions. We now brie
y de-
scribe the abstraction needed to capture the wide variety
of exceptions and interrupts possible in programmable ar-
chitectures. Each exception is captured using an appropri-
ate sub-function. Opcode related exceptions (e.g., divide by
zero) are captured in the opcode functionality. Functional
unit related exceptions (e.g., illegal slot exception) are cap-
tured in functional units. External interrupts (e.g., reset,
debug exceptions) are captured in the control unit function-
ality.

We model an interrupt handler unit that services these
exceptions. It has information regarding the priority of in-
terrupts and which exceptions generate what interrupt. The
generic interrupt handler has a parameterized priority ta-
ble. The interrupt handler unit generates one particular
interrupt based on the priority. Before execution of that
particular interrupt service routine, context saving and com-
plete/partial
ushing occurs. The speci�c type of
ushing is
decided by the semantics of that interrupt: complete
ush-
ing clears the entire pipeline; partial
ushing means
ush-
ing only the instructions behind the interrupted instruction
and allowing the previous instructions to continue using the
program order information available in completion queue.
Again, these actions are part of parametric sub-functions
that allow a �ner grain of microarchitectural exploration.
We have also de�ned the functional abstraction needed for

the DMA, co-processor and external interface. The detailed
description of generic abstractions for all of the microarchi-
tectural components are too long to describe in this paper,
and can be found in [13].

5. CONTEMPORARY EXAMPLE ARCHI-
TECTURES

Using the functional abstraction approach outlined above,
we have been able to describe the DLX [7], TI C6x, MIPS
R4000, MIPS R10K, Intel Itanium and PowerPC architec-
tures representing a diverse set of processor-memory styles.
In this section, we demonstrate the ability to describe two
architectures with radically di�erent processor and memory
styles using functional abstraction: MIPS R10K is a super-
scalar processor with two level of cache; TI C6x is a hybrid
processor containing both DSP and VLIW features with a
novel memory organization (partitioned register �le, cache
hierarchy and con�gurable scratch pad SRAM etc.).

5.1 MIPS R10K Architecture
The MIPS R10000 is a dynamic, superscalar micropro-

cessor that implements the 64-bit Mips-4 instruction set ar-
chitecture. It fetches and decodes four instructions per cy-
cle and dynamically issues them to �ve fully-pipelined, low-
latency execution units. Instructions can be fetched and
executed speculatively beyond branches. Instructions grad-
uate in order upon completion. Although execution is out of
order, the processor still provides sequential memory consis-
tency and precise exception handling. With speculative ex-
ecution, it calculates memory addresses and initiates cache
re�lls early. In this section, we outline how we specify com-
ponents of the MIPS R10K using the functional abstraction
and the generic parameters described in Section 4.
The fetch unit function is invoked with the appropriate pa-

rameter values. Both the number of instructions fetched per
cycle and the number of instructions sent to decode stage per
cycle are set to four. The number of entries in reservation
station is set to zero. The number of entries in completion
queue (Active List in R10K terminology) is set to 32.
The decode functionality is instantiated with read connec-

tion from fetch latch and write connections to MemIssue,
IntIssue and FloatIssue units. It uses the register renam-
ing sub-function while decoding instructions. It inserts the
decoded instruction in the completion queue (ActiveList)
which maintains the program order. The decode logic de-
cides where to dispatch (MemIssue, IntIssue or FloatIssue) a

particular instruction based on the supported opcodes infor-
mation available in the control unit. Table 1 shows the sim-
pli�ed control table for the MIPS R10K architecture, where
the rows indicate the pipeline stages and columns represent
parallel functional units. For illustration, we do not show
all the details, such as the opcodes supported by each unit,
list of children, list of parents etc., although we model them.
The IntIssue, FloatIssue and MemIssue functions are in-

stantiated with a reservation station size of 16 entries. Each
issue unit performs operand read and RAW hazard detection
(using appropriate sub-functions) before performing out-of-
order issue.
Execution units are instantiated using appropriate opcode

functionalities. The Address Queue (MemIssue unit) reads
data and tag using virtual address while the physical address
is computed. It checks whether the load is a hit or miss once
the physical address is available. This is di�erent than the
conventional way of hit or miss detection. In conventional
architectures the load request is done using physical address
and hit or miss detection is done inside the memory sub-
system. This illustrates our ability to reuse the hit or miss
detection sub-functions in the processor side (although con-
ventionally it remains on the memory side).

Table 1: Control table for R10K architecture

Fetch

BB:0 SB:0

Decode

BB:0 SB:0

MemIssue IntIssue FloatIssue

BB:0 SB:0 BB:0 SB:0 BB:0 SB:0

AddrCalc ALU1 ALU2 FADD1 FMPY1

BB:0 SB:0 BB:0 SB:0 BB:0 SB:0 BB:0 SB:0 BB:0 SB:0

TLB FADD2 FMPY2 SQRT FDIV

BB:0 SB:0 BB:0 SB:0 BB:0 SB:0 BB:0 SB:0 BB:0 SB:0

FADD3 FMPY3

BB:0 SB:0 BB:0 SB:0

The memory hierarchy consists of two levels of cache. The
parameters for the primary cache are: associativity - 2, cache
size - 2K double-words, line size - 4 , word size - 64 bits, re-
placement - LRU, write policy - write back, number of lines
- 512, access time - 1 cycle. Similarly secondary cache func-
tionality is instantiated with the appropriate parameters:
associativity - 2, cache size - 512K double-words, line size
- 16, word size - 64 bits, replacement - LRU, write policy -
write back, number of lines - 32K, access time - 2 cycles.
Each functional unit invokes the appropriate sub-functions

to capture exception conditions. The interrupt handler func-
tion captures the priority table of 19 interrupts. In this
manner we are able to concisely capture a state-of-the-art
dynamic superscalar architecture using the functional ab-
straction approach. Furthermore, we now have the ability
to quickly change its architectural parameters and view their
e�ects on performance, code size etc.

5.2 TI C6x Architecture
We now demonstrate the ability to capture components

of a hybrid VLIW DSP architecture using our functional
abstraction technique. TI C6x is an 8-way VLIW DSP pro-
cessor with a novel memory subsystem (cache hierarchy, con-
�gurable SRAM, partitioned register �le). TI C6x processor
has a deep pipeline, composed of 4 fetch stages (PG, PS, PR,
PW), 2 decode stages (DP, DC), followed by the 8 functional
units.
The fetch functionality consists of four stages viz., pro-

gram address generation, address send, wait, and receive.
Each of the four stages is modeled using respective sub-

functions with appropriate parameters. The architecture
fetches one VLIW instruction (eight parallel operations) per
cycle.
The decode function decodes the VLIW word and dis-

patches upto eight operations per cycle to eight execution
units. Each execution unit performs operand read and haz-
ard checks (using sub-functions). At the end of computation
each execution unit writes back (using sub-function) the re-
sult to register �le.
The TI C6x architecture has a novel memory organization,

comprised of a 2-level cache hierarchy and a programmable
SRAM space. The L1 program cache is 4K bytes, direct
mapped with line size 64 bytes. The L1 data cache is 4K
bytes, associativity 2 and line size 32 (bytes). The L2 cache
is 64K bytes and depending on the mode of con�guration,
the memory space is divided between SRAM and associative
cache. Memory modules are instantiated with appropriate
parameters for capturing the memory subsystem.
Each functional unit invokes the appropriate sub-functions

to capture exception conditions. The interrupt handler func-
tion captures the priority table of 14 interrupts. Reset and
NMI has higher priority than INT4 to INT15 interrupts. In
this manner, we are able to capture a hybrid DSP/VLIW
architecture using our functional abstraction. Furthermore,
we again have the ability to tweak architectural parameters
(and compose new features) using the functional abstraction
approach.

6. EXPERIMENTS
We performed extensive architectural design space explo-

ration by varying di�erent architectural features, achieved
by reusing the abstraction primitives with appropriate pa-
rameters. In this section we illustrate the usefulness of our
approach in three architecture exploration dimensions.

6.1 Exploration varying Processor Features
Contemporary superscalar processors use in-order com-

pletion/graduation to ensure sequential execution behavior
in the presence of out-of-order execution. Here, we explore
the MIPS R10K processor in the presence of out-of-order
graduation without violating functional correctness. We de-
scribed the MIPS R10K architecture (with in-order gradua-
tion and 8 entry Active List) using the functional abstraction
approach and generated the software toolkit. We modi�ed
the description to perform out-of-order graduation and gen-
erated the software toolkit rapidly. We used a set of bench-
marks from the multimedia and DSP domains. Figure 3
presents a subset of the experiments we ran to study the
performance improvement due to out-of-order graduation.
The light bar presents the number of execution cycles when
in-order graduation is used whereas the dark bar presents
the number of execution cycles when out-of-order gradua-
tion is used. We observe an average performance improve-
ment of 10%. During in-order graduation certain instruc-
tions (independent of the instructions above in the Active
List) complete execution but are not allowed to graduate
since some long latency operations are on top of the Active
List and are yet to complete. As a result, the Active List
becomes full soon and the decode stalls. This situation be-
comes more prominent when the top instruction is a load
and the load misses. We modi�ed the memory subsystem
to study the impact of cache misses along with out-of-order
graduation and observed upto 27% performance improve-

Figure 3: Cycle counts for di�erent graduation

styles

ment (in benchmark StateExcerpt when hit ratio is zero).
The complete study of the out-of-order graduation for the
MIPS R10K processor can be found in [14].
Due to the high modeling e�ciency of functional abstrac-

tion the original description and toolkit generation took less
than a week; the graduation style modi�cation and toolkit
generation took less than a day; the experiments and anal-
ysis took few hours; the complete exploration experiment
took approximately one week.

6.2 Co-processor based Exploration
In the context of co-processor codesign for programmable

architectures we have explored the performance impact us-
ing a co-processor for the TI C62x environment. First,
we described the TI C62x architecture in the EXPRES-
SION ADL (where multiplication is done in the functional
unit) using functional abstraction and generated the soft-
ware toolkit. Next, we modi�ed the description by adding a
co-processor (with DMA controller and local memory) that
supports multiplication and generated the software toolkit
rapidly. This co-processor has its own local memory and
uses DMA to transfer data from main memory. We then
used a set of DSPStone �xed point benchmarks to explore
and evaluate the e�ects of adding a coprocessor. Figure 4
presents a subset of the experiments we ran to study the per-
formance improvement due to the co-processor. The light
bar presents the number of execution cycles when the func-
tional unit is used for the multiplication whereas the dark
bar presents the number of execution cycles when the co-
processor is used. We observe an average performance im-
provement of 22%. The performance improvement is due
to the fact that the co-processor is able to exploit the vec-
tor multiplications available in these benchmarks using its
local memory. Moreover, the functional units operate in
register-to-register mode whereas the co-processor operates
on its memory-memory mode. As a result the register pres-
sure and thereby spilling gets reduced in the presence of the
co-processor. However, the functional unit performs better
when there are mostly scalar multiplications. The complete
study of the co-processor based design space exploration can
be found in [17].

6.3 Memory Subsystem Exploration
Another important dimension for architectural exploration

is the investigation of di�erent memory con�gurations for a
programmable architecture. We explored di�erent memory

Figure 4: Functional unit vs. Co-processor

con�gurations for the TI C6x architecture with the goal of
studying the trade-o� between cost and performance. De-
tailed experiments can be found in [15].

7. SUMMARY
This paper proposed a functional abstraction based design

space exploration methodology which is capable of capturing
a wide variety of programmable architectures. A key advan-
tage of the generic function based design space exploration is
that it allows designers to rapidly compose new architectures
(by reusing the generic abstractions within an ADL such as
EXPRESSION), generate automatically a customized soft-
ware toolkit and quickly perform a compiler-in-the-loop ex-
ploration exercise that allows comparative evaluation of dif-
ferent architectural features. The notion of generic sub-
functions allows the
exibility of specifying the system in
�ner detail. Furthermore, since these components can be
pre-veri�ed, the task of veri�cation will reduce mainly to
performing interface veri�cation at all levels of the design
hierarchy.
We demonstrated the power of our approach in the con-

text of three very di�erent architectural exploration scenar-
ios. We are able to rapidly generate a software toolkit for
each instance of a con�gured architecture and perform de-
tailed simulations of the compiled application to evaluate
the e�ects of di�erent processor and memory con�gurations.
It took less than a week to complete the speci�cation and
derive an optimized toolkit for each class of explored archi-
tectures, and another week to perform detailed exploration
experiments by tuning the architecture. Feedback from our
industrial sponsors indicate that each such exploration ex-
periment typically takes on the order of 6 months to 1 year
for a compiler-in-the-loop exploration even for a fairly "stan-
dard" architectural family. Thus we are able to reduce the
exploration time by at least an order of magnitude. There-
fore, we believe this functional abstraction approach solves
a critical bottleneck for rapid architectural exploration; the
ability to reuse parameterized functions and sub-functions
enables true heterogeneous processor-memory architectural
exploration particularly in the context of IP-based System-
on-Chip(SOC) design.
Our ongoing work targets the use of this functional ab-

straction based design space exploration for generating syn-
thesized hardware automatically. Furthermore, we plan to
extend this speci�cation technique to generate FSM auto-
matically and perform property checking during rapid design
space exploration.

8. ACKNOWLEDGMENTS
This work was partially supported by grants from NSF

(MIP-9708067), DARPA (F33615-00-C-1632) and Motorola
Corporation. We would like to gratefully acknowledge Jonas
Astrom for his contribution to the functional abstraction
work.

9. REFERENCES
[1] G. Goosens et al. CHESS: Retargetable code

generation for embedded DSP processors. In Code

Generation for Embedded Processors. Kluwer, 1997.
[2] G. Hadjiyiannis et al. ISDL: An instruction set

description language for retargetability. DAC, 1997.

[3] V. Zivojnovic et al. LISA - machine description
language and generic machine model for HW/SW
co-design. In VLSI Signal Processing, 1996.

[4] M. Freericks. The nML machine description
formalism. TR SM-IMP/DIST/08, TU Berlin, 1993.

[5] T. Givargis and F. Vahid. Parameterized system
design. In CODES Workshop, 2000.

[6] A. Halambi et al. EXPRESSION: A language for
architecture exploration through compiler/simulator
retargetability. In Proc. DATE, Mar. 1999.

[7] J. Hennessy and D. Patterson. Computer Architecture:
A quantitative approach. Morgan Kaufmann
Publishers Inc, San Mateo, CA, 1990.

[8] A. Ho�mann et al. A framework for fast hardware
software co-simulation. DATE, 2001.

[9] A. Jantsch and I. Sander. On the roles of functions
and objects in system speci�cation. CODES, 2000.

[10] M. Koegst et al. A systematic analysis of reuse
strategies for design of electronic circuits. DATE, 1998.

[11] R. Leupers and P. Marwedel. Retargetable code
generation based on structural processor descriptions.
Design Automation for Embedded Systems, 3(1), 1998.

[12] M. Meerwein et al. Linking codesign and reuse in
embedded systems design. In CODES Workshop, 2000.

[13] P. Mishra et al. Functional abstraction of programm-
able embedded systems. TR UCI-ICS 01-04, 2001.

[14] P. Mishra et al. A study of out-of-order completion for
the MIPS R10K superscalar processor. TR UCI-ICS
01-06, University of California, Irvine, 2001.

[15] P. Mishra et al. Memory subsystem description in
EXPRESSION. TR UCI-ICS 00-31, 2000.

[16] P. Mishra et al. Processor-memory co-exploration
driven by an architectural description language. VLSI
Design 2001.

[17] P. Mishra et al. Coprocessor codesign for
programmable architectures. TR UCI-ICS 01-13, 2001.

[18] F. Pogodalla et al. Fast prototyping: a system design

ow for fast design, prototyping and e�cient ip reuse.
CODES, 1999.

[19] V. Rajesh et al. Processor modeling for hardware
software codesign. In VLSI Design 1999

[20] A. Reutter and W. Rosenstiel. An e�cient reuse
system for digital circuit design. In Proc. DATE, 1999.

[21] C. Siska. A processor description language supporting
retargetable multi-pipeline dsp program development
tools. In Proc. ISSS, Dec. 1998.

[22] The MDES User Manual, 1997. www.trimaran.org

