Architecture Description Language Driven Design Space Exploration
in the Presence of Coprocessors

Prabhat Mishra T

T Center for Embedded Computer Systems

University of California, Irvine
California 92697 USA

{pmishra, dutt, nicolau}@cecs.uci.edu

Abstract— Embedded systems present a tremen-
dous opportunity to customize designs by exploit-
ing the application behavior. Shrinking time-to-
market, coupled with short product lifetimes cre-
ate a critical need for rapid exploration and eval-
uation of candidate System-on-Chip(SOC) architec-
tures. Recent work on language driven Design Space
Exploration (DSE) uses Architecture Description
Languages (ADL) to capture the processor-memory
architecture and automatically generate a software
toolkit from the ADL description. We propose in
this paper an ADL-based approach to explicitly cap-
ture the coprocessor configuration, and perform ex-
ploration of the coprocessor architecture along with
processor and memory subsystem. We present a
set of experiments using the TI C6x architecture to
demonstrate the usefulness of our approach.

I. INTRODUCTION

Programmable embedded systems are composed of
processor, memory subsystem and coprocessors. The
coprocessor 1s used to compute specific functionalities,
which the processor is not capable of doing or cannot
perform efficiently. During HW/SW co-design of embed-
ded systems, designers need to decide which parts of the
functionality is to be implemented using coprocessors.
However, to justify the use of a coprocessor the design-
ers need to perform design space exploration. Designers
have multiple choices: using a coprocessor to perform
a functionality, implement the function in software, add
a functional unit in the processor itself to perform the
task, modify the existing functional unit(s) to support
new operation(s). However, the latter two options are
feasible only when modification in the processor core is
possible without violating area, timing and power con-
straints. The first one is the only alternative when pro-
cessor does not support certain operations e.g, division
in TT C6x [12]. In certain architectures e.g., ARM [7],
the same operation passes through both processor and

. +
Frederic Rousseau *

Nikil Dutt 1 Alex Nicolau T

t System Level Synthesis Group
Laboratoire TIMA
38031 Grenoble cedex, FRANCE

frederic.rousseau@imag.fr

coprocessor pipeline; the coprocessor performs the in-
tended task whereas the processor treats the operation
as NOP. However, if the operation for the coprocessor is
scheduled properly, the processor can execute indepen-
dent operations while coprocessor is active. Sometimes
the processor reads the operands for the coprocessor op-
eration and sends the data to the coprocessor. In this
case, the coprocessor behaves as a functional unit in the
processor. Usually, coprocessor reads its operands from
the memory subsystem. Sometimes it has its own local
memory which it uses during computation. The data
transfer between coprocessor local memory and main
memory is done using DMA controller.

The effect of using coprocessors can be evaluated by
performing design space exploration. However, to enable
rapid design space exploration there is a need for (i)
describing the embedded system (processor, coprocessor,
memory subsystem) in higher level of abstraction, and
(ii) generating software toolkit (e.g, compiler, simulator,
assembler) automatically from the description.

Our approach allows explicit description of coproces-
sor along with processor and memory subsystem in EX-
PRESSION ADL [2], permitting co-exploration of the
processor, coprocessor and the memory architecture. We
generate coprocessor-aware software toolkit that allows
rapid design space exploration.

This paper is organized as follows. Section Il presents
related work addressing ADL-driven DSE approaches.
Section IIT outlines our approach and the overall flow
of our environment. Section IV presents the coproces-
sor description in EXPRESSION ADL [2]. Section V
describes how we generate coprocessor-aware software
toolkit. Section VI presents design space exploration
experiments using the software toolkit. Section VII con-
cludes the paper.

II. RELATED WORK

Recent approaches on language-driven design space
exploration ([2], [3], [5], [13], [14]), use ADLs to cap-

ture the processor architecture, automatically generate
a software toolkit for that processor, and provide feed-
back to the designer on the quality of the architecture.

nML [3] has been used by the retargetable code gen-
eration environment to describe DSP and ASIP proces-
sors. In ISDL [5], constraints on parallelism are explic-
itly specified through illegal operation groupings. This
could be tedious for complex architectures like DSPs
which permit operation parallelism (e.g. Motorola 56K)
and VLIW machines with distributed register files (e.g.
TI C6X). MDes [13] allows only a restricted retargetabil-
ity of the simulator to the HPL-PD processor family.
MDes permits the description of the memory system, but
is limited to the traditional cache hierarchy. LISA [14]
captures VLIW DSP and RISC architectures. An ADL-
based approach for processor-memory co-exploration is
presented in [1].

While these approaches explicitly capture the pro-
cessor and memory features to varying degrees, to our
knowledge, no previous approach allows explicit capture
of a coprocessor along with processor and memory speci-
fication, and the attendant tasks of generating a software
toolkit that fully exploits the coprocessor features.

III. OUR APPROACH

Figure 1 shows the flow in our approach. In our IP
library based Design Space Exploration (DSE) scenario,
the designer starts by selecting a set of components from
a processor IP library, memory IP library, and coproces-
sor IP library. The ADL description (containing a mix of
such TP components and custom blocks) is then used to
generate the information necessary to target both com-
piler and simulator to the specific architecture.

- e __ __——
Processor Memory Coprocessor
IP Library IP Library IP Library

| | |
| -) |
| hpi o 7‘ hMi T 7‘ |
L rocessor emory
_"1‘ Core ‘ } Subsystem | Coprocessors g |
,,,,, Qe

Feedback 7

EXPRESSION ADL

EXPRESS SIMPRESS
Compiler Simulator

Figure 1: Flow in our approach

App

We capture coprocessor description in EXPRESSION
ADL [2] along with processor and memory description.
We generate from this ADL description the EXPRESS
compiler [6] and SIMPRESS simulator [8] that can ex-
ploit the features available in the coprocessor, allowing
for detailed feedback on the coprocessor architecture and
its match to the target applications.

IV. CoPROCESSOR DESCRIPTION IN EXPRESSION

In order to explicitly describe any coprocessor in ADL,
we need to capture both the structure and behavior of
the coprocessor. In this section we present how to de-
scribe coprocessors in EXPRESSION ADL by way of
illustrative examples. Figure 2 shows a simplified model
of the example TI C6x architecture with a sample copro-
cessor. The pipeline paths are shown using solid lines
whereas the data transfer paths are shown using dotted
lines. The TI C6211 is an 8-way VLIW DSP processor,
composed of 4 fetch stages (PG, PS, PR, PW), 2 decode
stages (DP, DC), followed by 8 functional units (L1, S1,
M1, D1, L2, S2, M2, D2).

Register Filss RFA & RFE -

-
=

R

DP

1 Wiy Vi
FEINEEIREEE

R

Figure 2: TI C62x Architecture with Coprocessor

To describe the structure of the coprocessor we spec-
ify each pipeline stage of the coprocessor along with
their characteristics (e.g, timing, parallelism etc.). The
pipeline paths are described in a hierarchical manner.
Figure 2 has seven pipeline stages: four fetch stages (PG,
PS, PR, and PW), followed by two decode stages (DP
and DC), and finally an execute stage (Execute). The
ADL description of the pipeline path is shown below.

(PIPELINE PG PS PW PR DP DC Execute)

The execute stage has nine parallel (ALTERNATE)
pipeline paths: one coprocessor pipeline, two L pipelines
(L1, L.2), two M pipelines(M1, M2), two S pipelines (S1,
S2), and two D pipelines (D1, D2). The ADL description
of the Erecute stage is shown below.

(Execute (ALTERNATE COPRO L1 Si M1 D1 D2 M2 S2 L2))

Each of these pipelines again has its own pipeline de-
scription. For example, coprocessor pipeline (COPRO)
has five pipeline stages: CP_1, EMIF_1, CoProc, CP_2,
and EMIF_2.

(COPRO (PIPELINE CP_1 EMIF_1 CoProc CP_2 EMIF_2))

The coprocessor instruction is decoded in CP_1 stage
to determine the size of input data and starting address
in the main memory. The EMIF_1 stage requests the
DMA to transfer the data from the main memory to
the coprocessor memory, using efficient access modes if
needed. The CoProc stage performs the intended com-
putation (e.g., vector multiply, FFT etc.) using the co-
processor memory for accessing input operands. Results
are stored back in the coprocessor memory. The CP_2
stage examines the size of the result and starting ad-
dress in the main memory to store the results. Finally,
EMIF_2 requests the DMA to transfer the data from
coprocessor memory to main memory. The example be-
low shows the characteristics viz., timing, opcodes sup-
ported, parallelism (CAPACITY) etc. for the CoProc
unit.

(CoproUnit CoProc
(CAPACITY 1)
(TIMING (all 4))
(OPCODES COPRO_instr)
(LATCHES)
(PORTS)

The complete description of the coprocessor that in-
cludes five coprocessor stages, DMA controller, copro-
cessor memory (in STORAGE section), pipeline latches,
ports, connections etc. can be found in [10].

Behavior of the coprocessor i1s captured in terms of
the operations it supports. For example, the EXPRES-
SION description for the vector multiplication operation
is shown below.

(OP_GROUP COPRO_instr
(OPCODE VectMul
(OPERANDS (_SOURCE_1_ mem) (_SOURCE_2_ mem)
(_DEST_ mem) (_LENGTH_ immediate)

Unlike normal instructions whose source and desti-
nation operands are register type (except load/store),
here source and destination operands are memory type.
The SOURCE_1_ and SOURCE_2_ fields refer to the
starting addresses of two source operands for the mul-
tiplication. Similarly _DEST_ refers to the starting ad-
dress of destination operand for the multiplication. The
LENGTH. field refers to the vector length of the oper-
ation that has immediate data type.

The explicit representation of the coprocessor struc-
ture and behavior allows the compiler to exploit the or-
ganization of the coprocessor during operation schedul-
ing, and the simulator to provide detailed feedback on
the internal coprocessor traffic.

The pipelining and parallelism between the coproces-
sor operations are described in EXPRESSION through
pipeline and data-transfer paths. Pipeline paths rep-
resent the ordering between pipeline stages in the ar-
chitecture (represented as solid lines in Figure 2). For
example, a coprocessor operation traverses first 4 fetch

stages of the processor, followed by the 2 decode stages,
and then it goes through 5 coprocessor stages. It also
traverses the data transfer paths for reading operands
and writing results (represented as dotted lines in in Fig-
ure 2). For example, a coprocessor read operation tra-
verses CoProc followed by CoProc-Memory which gets
the data from main memory using DMA. Thus the
pipeline path traversed by the example coprocessor op-
eration is:

(PIPELINE PG, PS, PR, PW, DP, DC, CP_1,
EMIF_1, CoProc, CP_2, EMIF_2)

In this manner EXPRESSION can model a variety
of coprocessor modules and their characteristics. The
EXPRESSION description can be used to drive the gen-
eration of both coprocessor-aware compiler and cycle-
accurate structural coprocessor simulator, as described
in Section V.

V. SOFTWARE TOOLKIT (FENERATION

In this section we briefly outline how we generate re-
targetable compiler and simulator which exploit the fea-
tures of the coprocessor.

We are able to generate co-processor aware retar-
getable simulator due to the use of functional abstraction
based primitives. We define each stage of the coproces-
sor unit using parameterized functions. Each function is
further composed of generic sub-functions which allows
a finer granularity of architectural exploration. For ex-
ample, the generic C'oProc unit uses three sub-functions
(e.g., ReadOperand, ComputeResult, and WriteOperand)
as shown below. The parameters for the generic func-
tions (e.g., srclAddr, length etc.) are obtained from
the EXPRESSION description of the coprocessor as pre-
sented in Section IV. The ComputeResult sub-function
uses pointer to the operation to be performed (funcPtr)
as a parameter. For example, the funcPtr may point to
a function that performs vector multiplication.

CoProc

{

(srciAddr, src2Addr, destAddr, length, funcPtr)

// ReadSrci, the start address of Srcl vector and length
// of the vector are needed to retrieve the values.

51 = ReadOperand(srclAddr, length);

// ReadSrc2
52 = ReadOperand(src2Addr, length);

// Perform the operation
DO = ComputeResult(S1, S2, funcPtr);

// Write the result back.
WriteOperand(destAddr, length);

Similarly, we use the generic model of coprocessor
memory and DMA controller. The detailed description
of all the generic abstractions used to retarget the sim-
ulator are too long to describe in this paper, and can be

found in [9].

The coprocessor related information available in the
EXPRESSION description are used to retarget the com-
piler as well. For example, to schedule the operation,
the instruction description, and the pipeline and tim-
ing information of the coprocessor are used to generate
reservation tables [4]. Considering the fact that DMA
can take a long time to access (exact timing is known)
the main memory, the compiler can schedule operations
using reservation tables such that when the coprocessor
is busy, the functional units of the processor can exe-
cute independent operations. To obtain optimized code
of the application the trailblazing percolation scheduling
[11] is used.

In this manner we can generate both coprocessor-
aware compiler and cycle-accurate structural coproces-
sor simulator, and thus enable design space explo-
ration and co-design of the coprocessor and processor-
memory architecture. For more details on the copro-
cessor description in EXPRESSION and automatic soft-
ware toolkit generation, please refer to [10].

VI. EXPERIMENTS

We present here a set of experiments to show the use-
fulness of our approach. Our goal is to study the per-
formance impact of using coprocessor to support vector
multiplication.

A. Experimental Setup

We used a set of benchmarks from DSPStone fixed
point benchmarks that uses vector multiplication. We
have chosen TI C62x architecture for the exploration.
The M unit of the TT C62x can be used for vector mul-
tiplication. The M unit executes the multiplication op-
eration (MUL) iteratively as shown below.

// Vector Multiplication code in Application Program

for (i=0; i < n; i++)
z[i] = al[il * b[il;

// Translated pseudo assembly that can run on TI C62x
MoV i, O

L5: LOAD x, mem_address(alil)
LOAD y, mem_address (b[il)
MUL ¢, x, ¥y
STORE t, mem_address(z[il)
INC i
LT $cc i n)
IF $cc LS

// Equivalent instruction for the coprocessor
VectMul(a, b, z, n);

However, the same vector multiplication can be per-
formed using a coprocessor. The equivalent coprocessor
instruction is shown above. Naturally, the architectural
configuration that uses coprocessor is costlier. In both
cases (with or without coprocessor) we described the ar-
chitecture using EXPRESSION description and gener-
ated EXPRESS compiler and SIMPRESS simulator.

B. Results

Figure 3 presents a subset of experiments we ran,
showing the total cycle counts for the set of bench-
marks for two different architectural configurations, viz.,
with coprocessor and without coprocessor. The light bar
presents the number of execution cycles when the func-
tional unit is used for the multiplication whereas the
dark bar presents the number of execution cycles when
the co-processor is used. The configuration with copro-
cessor shows 29% improvement for dotproduct, vector
multiplication dominated DSP kernel whereas it shows
only 5% improvement for fir2dim since vector multipli-
cation 1s only a minor part of the program. The perfor-
mance improvement 1s due to the fact that coprocessor
uses its local memory and rely on efficient DMA trans-
fer. Moreover, functional units (e.g., M1) operate in
register-to-register mode whereas co-processor operates
on its memory-memory mode. As a result the register
pressure, and therefore spilling, is reduced in the pres-
ence of coprocessors.

8000
Functional Unit

B CO0-processor

7000

6000

5000

4000

Cycle count

3000 —

2000

1000

04
Fir2dim

Convolution

Dot_product IMatrix_multiply n_real_updates

Figure 3: Performance with or without co-processor

We ran another set of experiments for the benchmark
convolution with vector multiplication of different vector
lengths. Table I presents the results of this experiment.
The first column represents the length of vectors in vec-
tor multiplication operation in the convolution bench-
mark. The second column represents the number of
cycles needed to execute the program when functional
unit is used for vector multiplication. The third col-
umn presents the number of cycles needed to execute
the program when co-processor is used for performing
vector multiplication instead of the functional unit. The
last column shows performance improvement for using
the coprocessor. For smaller vector lengths, functional
unit performs better since co-processor needs set up cy-
cles. As expected, the coprocessor performs better when
vector length is large. The use of coprocessor can deliver
upto 29% performance improvement for the convolution
benchmark.

Thus, using our coprocessor-aware ADL-based design
space exploration approach, we obtained design points
with varying cost and performance. Note that this
cannot be determined through analysis alone; the cus-

Table I: Performance Analysis for convolution bench-
mark with co-processor for varied vector size

Vector | Functional Unit Coprocessor | % improve
length (cycle count) (cycle count)
1 45 47 -4.26
2 82 74 10.81
4 162 135 20.00
8 322 257 25.29
16 642 504 27.38
32 1282 1000 28.20
64 2562 1992 28.61
128 5122 3976 28.82
256 10242 7944 28.93
512 20482 15880 28.98
1024 40962 31752 29.01

tomized coprocessor must be explicitly captured, and
the applications have to be executed on the configured
architecture, as we demonstrated in this section.

VII. SUMMARY

This paper proposed an ADL driven design space ex-
ploration methodology in the presence of coprocessors.
We capture the coprocessor description in EXPRES-
SION along with processor and memory description and
generate software toolkit that exploits the coprocessor
features. We demonstrated the power of our approach
by performing co-exploration of TT C62x processor, co-
processor, and memory architecture.

Our ongoing work targets the study of cost measures
for the local memory, DMA and coprocessor to decide
the best cost/performance figure. We plan to perform
exploration using larger examples, to study the impact of
applications on the coprocessor and overall performance,
as well as on system power.

ACKNOWLEDGMENTS

This work was partially supported by grants from
NSF (MIP-9708067), DARPA (F33615-00-C-1632) and
Motorola Corporation. We would like to acknowledge
Ashok Halambi and Peter Grun for their contribution
to the coprocessor modeling work.

REFERENCES

[1] P. Mishra, P. Grun, N. Dutt, and A. Nicolau. Processor-
memory co-exploration driven by an architectural description
language. In Intl. Conf. on VLSI Design 2001, Bangalore,

India, 2001.

[2] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and
A. Nicolau. EXPRESSION: A language for architecture ex-
ploration through compiler/simulator retargetability. In Proc.

DATE, Mar. 1999.

[3] M. Freericks. The nML machine description formalism. Tech-
nical Report TR SM-IMP/DIST/08, TU Berlin CS Dept.,
1993.

[4] P. Grun, A. Halambi, N. Dutt, and A. Nicolau. RTGEN: An
algorithm for automatic generation of reservation tables from
architectural descriptions. In 1S5S, San Jose, CA, 1999.

[5] G. Hadjiyiannis, S. Hanono, and S. Devadas. ISDL: An in-
struction set description language for retargetability. DAC,
1997.

[6] A. Halambi, N. Dutt, and A. Nicolau. Customizing software
toolkits for embedded systems-on-chip. In DIPES 2000, 2000.

[7] http://www.arm.com/. ARM7TDMI-S.

[8] A. Khare, N. Savoiu, A. Halambi, P. Grun, N. Dutt, and
A. Nicolau. V-SAT: A visual specification and analysis tool
for system-on-chip exploration. In Proc. EUROMICRO, 1999.

[9] P. Mishra, J. Astrom, N. Dutt, and A. Nicolau. Functional
abstraction of programmable embedded systems. Technical
Report UCI-ICS 01-04, University of California, Irvine, 2001.

[10] P. Mishra, F. Rousseau, N. Dutt, and A. Nicolau. Coprocessor
codesign for programmable architectures. Technical Report
UCI-ICS 01-13, University of California, Irvine, 2001.

[11] A. Nicolau and S. Novack. Trailblazing: A hierarchical ap-
proach to percolation scheduling. ICPP, 1993.

[12] Texas Instruments. TMS320C6201 CPU and Instruction Set
Reference Guide, 1998.

[13] http://www.trimaran.org. The MDES User Manual, 1997.

[14] V. Zivojnovic, S. Pees, and H. Meyr. LISA - machine de-
scription language and generic machine model for HW/SW
co-design. In IEEE Workshop on VLSI Signal Processing,
1996.

