Automatic Modeling and Validation of Pipeline Specifications driven by an
Architecture Description Language'

Prabhat Mishra Hiroyuki Tomiyamd Ashok Halambi Peter Gruh Nikil Dutt™ Alex Nicolauf

fCenter for Embedded Computer Systems *Inst. of Systems & Information Tech.

University of California, Irvine, CA 92697 Fukuoka 814-0001, Japan
{pmishra, ahalambi, pgrun, dutt, nicola@cecs.uci.edu tomiyama@isit.or.jp
Abstract controlled token nets from a logic design to perform efficient

Verification is one of the most complex and expensive taslfrrs1odel checking. Our verification technique is complimentary

in the current Systems-on-Chip (SOC) design process. Many these bottom-up approaches. We leverage the system ar-

- . chitect’s knowledge about the behavior of the pipelined ar-
existing approaches employ a bottom-up approach to pipeling, . :

oS . : L -~ Chitecture through ADL constructs, which allows a powerful
validation, where the functionality of an existing pipelined

L . : top-down approach to pipeline verification using behavioral
processor is, in essence, reverse-engineered from its RT-leve o : .
: ; Kknowledge of the pipelined architecture. The ADL descrip-
implementation. Our approach leverages the system archi-
, X L -tion also serves as a golden reference model. Furthermore,
tect's knowledge about the behavior of the pipelined archi- . R . ; .
) - ADL driven verification is a natural choice during rapid de-
tecture, through Architecture Description Language (ADL) . : . .
sign space exploration(DSE) of System-on-Chip(SOC) archi-
constructs, and thus allows a powerful top-down approac
S o . : -tectures.
to pipeline validation. This paper addresses automatic vali-

. L In this paper, we present an automatic validation frame-
dation of processor, memory, and co-processor pipelines de- . ' :
b y b PIp \fvork, driven by an ADL. A novel feature of our approach is

i i ADL. W - i - . .
scribed in an e present a graph-based modeling Ohe ability to model the pipeline structure and behavior for

architectures which captures both structure and behavior o
the architecture. Based on this model, we present formal € processor, co-processor, as well as the memory subsystem

approaches for automatic validation of the architecture desihga graph-based model. Based on this model we present

X . X .. formal approaches for automatic validation of the architecture
scribed in the ADL. We applied our methodology to Ve”fydescriberszin an ADL. We applied our methodology to verify

several realistic architectures from different architectural do-several realistic architectures from different architectural do
mains to demonstrate the usefulness of our approach. : i
PP mains (RISC, DSP, VLIW, and Superscalar) to demonstrate
the usefulness of our approach.
The rest of the paper is organized as follows. Section 2

Verification is one of the most complex and expensive taskBresents related work addressing ADL-driven validation ap-
in the current System-On-Chip design process. In currerRroaches. Section 3 outlines our approach and the overall flow
state-of-the-art verification methodology, the architect pre©f our environment. Section 4 presents a graph-based model-
pares an informal specification in the form of an English docuing of processor, memory, and co-processor pipelines. Sec-
ment. The logic designer implements the modules and verifidon 5 proposes several properties that must be satisfied for
them in an ad-hoc manner using simulation test vectors sind@lid pipeline specification. Section 6 illustrates validation of
there is no golden reference model for validation. A key chalPipeline specifications for several realistic architectures. Fi-
lenge in today’s design verification is to extract the informa-nally, Section 7 concludes the paper.
tion from the RT level description and to perform equivalence

checking with the model extracted from the given specifica-2 Related Work

tion (written in English language). Many existing approaches Reacent work on laguage-driven Design Space Exploration
([5], [8]) employ a bottom-up approach to pipeline validation,(DSE) ([1], [2], [4], [12]), uses Architectural Description Lan-
yvhere the functionality qf an existing pipelined processor isguages (ADL) to capture the processor and memory archi-
in essence, reverse-engineered from its RT-level implementgsciyre, generate automatically a software toolkit (including
tion. Hauke et al. [S] compare extracted ISA level descriptionompiler, simulator, assembler) for that architecture, and pro-
with the given ISA level specification. Ho et al. [3] extract \;ige feedback to the designer on the quality of the architec-

*This work was partially supported by grants from NSF (MIP-9708067),ture. It 'iS necessary to verify that the ADL description of
DARPA (F33615-00-C-1632), Motorola Inc. and Hitachi Ltd. the architecture is well-formed prior to generating software

1 Introduction

toolkits. The process of any specification is error-prone andDL e.g., EXPRESSION [1]. This graph model can cap-

validation techniques can be used to check for correctness
the specification. Moreover, changes made to the architectu

tifre processor, memory, and co-processor pipelines for wide
wariety of architectures viz., RISC, DSP, VLIW, Superscalar,

during design space exploration may result in incorrect exeand Hybrid architectures. Note that it is important to capture

cution of the system and validation techniques can be used
ensure correctness of the architecture.
The work of Tomiyama et al. [9, 10] is a step in this di-

the memory pipeline along with processor pipeline, since any
memory operation exercises both the processor and memory
pipeline structures [13]. In this section we briefly describe

rection. They defined certain properties that need to be verhow we model the structure, behavior and the mapping func-
fied to ensure that the architecture description is well-formedions between them. The detailed description of the modeling
However, the properties they proposed are applicable to sintan be found in [7].
ple processor models. Moreover, they do not demonstrate hox\/1 Structure
these properties can be applied in SOC verification during de-’
sign space exploration. Mishra et al. [11] presented a graph The structure of an architecture pipeline is modeled as a
based validation of processor cores and is closest to our agraphGs —

. : ; o Gs = (Vs, Es). (1)
proach. Our work extends this technique to validate pipeline _ .
specifications of coprocessors and memory subsystem along denotes a set of components in the architectiiiecon-

with processor cores.

3 Our Approach

Figure 1 shows the flow in our approach. In our ADL
driven design space exploration scenario, the designer sta

by describing the programmable architecture in an ADL. The
graph model of the architecture can be generated automat

sists of four types of components
VS — Vunit U Vstore U Vport U Vconn (2)

where V,,;: is a set ofunits (e.g., ALUS), Vo @ set of

ﬁgorages(e.g., register files, cached),.,; a set ofports, and

Veonn @ Set ofconnectionge.g., buses).Es consists of two
ypes of edges

cally from this ADL description. Several properties are ap- Es = Edata_trans U Epipetine 3)

plied automatically to ensure that the architecture is We"whereEdm irans IS @ set oblata-transfer edgeand

Epipeline

formed. To enable rapid DSE the software toolkit can be gernys 5 set opipeline edges
erated from this golden reference model and the feedback can

be used to modify the ADL description of the architecture.
This golden reference model can also be used to verify th

Edata_trans g Vunit X Vport U Vstore X Vport
€ U Vport X Vconn U Vconn X Vport

implementation by performing equivalence checking with the U Viort X Vanit U Voort X Vitore (4)

reverse-engineered description of the implementation..

e m———— ~
| SPECIFICATION ADL __
,41 English Document) SPECIFICATION
/

|
|
> 1 !
/ Manual g« | & Property !
Verification 3 18 Checking !
\ 51 ' o !
N =3 B \
LN Oy | X 1
f"'_"'----: 1
L]

P ohgh Lovel e Graph Model !
w1 Description + Egivalence - |
< 4 1 Checking AN I
Property - 1 PN g |
Checking _-d- / \ 2!
¢~ Reverse > /) Y g :
\ Engineering / \ R
A / \ |
| / \ |
..... | 1
‘ . SO U
1 RT Design : —ﬂ\CompileE)-._L\Slmulato:)— -

e eecmmana Appl ~==="0bj ~-=--

Figure 1. ADL-driven validation flow

4 Architecture Pipeline Modeling

Epipeline g Vunit X Vunit (5)

A data-transfer edg@ , v2) € Fqara_trans indicates connec-
tivity of the two components. Through data-transfer edges,
data is transfered from components to components. A pipeline
edge specifies the ordering of units comprising the pipeline
stages (or simply pipe-stages). Intuitively, operations flow
from pipe-stages to pipe-stages through pipeline edges. Both
pipeline edges and data-transfer edges are uni-directional. Bi-
directional data-transfers are modeled using two edges of dif-
ferent directions.

For illustration, we use a simple multi-issue architecture
containing one co-processor and a memory subsystem. Fig-
ure 2 shows the graph-based model of this architecture that
can issue up to three operations (an ALU operation, a mem-
ory access operation and one coprocessor operation) per cy-
cle. In the figure, normal boxes denote units, dotted boxes
are storages, small circles are ports, shaded boxes are con-
nections, bold edges are pipeline edges, and dotted edges are
data-transfer edges. For ease of illustration, we have shown

We develop a graph-based modeling of architectur@nly few ports and connections. Each component has several
pipelines which captures both the structure and the behawattributes. The figure shows only two of them vieapac-
ior. The graph model presented here can be derived fronty andtiming for some of the nodes. The capacity denotes
a pipeline specification of the architecture described in amhe maximum number of operations which the component can

—> Operation edge
---> Execution edge

Figure 3. A fragment of the behavior graph

' [EmiFa | W
i i1 —
|
b 410 oo]
H Register ! |- -

Register) . oA are of two types,,. is a set of opcode nodes that represent
o vl cr2 the opcode (i.e. mnemonic), and,, is a set of argument
wCamrz nodes that represent argument fields (i.e., source and destina-
‘MA v ‘ Memcm:lg::1;:}0{,}{,‘:: f\‘i“U?L—rffdﬂ‘:{“y;ﬁ tion argum'ents). Each operation graph must have one opcode
118 st o, AL R node. In Figure 3, the ADD and LD nodes are opcode nodes,
§ o while the others are argument nodes.
g R Vis = Vope U Varg ™
2JI- 777777777 ?Pl ‘O”’ Port I Connection EB - Eoper U Eexec (8)

Figure 2. A structure graph of a simple architecture Edges between the nodes are also of two types. Both types

of edges are uni-directionak,,., is a set of operation edges
atlink the fields of the operation and also specify the syntac-
a root node (e.g., fetch unit) to an final node (e.g, WriteBac#!Cal ordering between them. For each operation graph, oper-
ation edges must construct a path containing an opcode node.

unit) consisting of units and pipeline edges is callgyseline : .
path Intuitively, a pipeline path denotes an execution flow in,On the other handf..... is a set of execution edges that spec-

the pipeline taken by an operation. For example, one of thily the execution ordering between the argument nodes.
pipeline path is{Fetch, Decode, ALU1, ALU2, WriteBack Legee © Varg X Varg)

A path from an unit to main memory or register file consisting-l-here must be no cycles consisting of execution edges. In Fig-
of storages and data-transfer edges is callet@-transfer ;¢ 3 the solid edges represent operation edges while the dot-
path For example{MemCntrl, L1, L2, MainMemollyis & o edges represent execution edges. For the ADD operation,
data-transfer path. A memory operation traverses differentq oneration edges specify that the syntactical ordering is op-
data-transfer paths depending on where it gets the data in thg e tollowed by ADDSRC1, ADDSRC2 and ADDDST

memory. For example, a load operation which is hitin L2 will 5 4\ ments (in that order) and the execution edges specify that

traverse the path (includes pipeline and data-transfer path§la App_ SRC1 and ADDSRC?2 arguments are executed (i.e.,
{Fetch, Decode, AddrCalc, MemCntrl, L1, L2(hit), L1, Mem'read) before the ADIDST argument is written.

Cntrl, WriteBack. Similarly, a co-processor operation will] _

traverse the patfFetch, Decode, CR, EMIF_1, CoProc, 4.3 Mapping Between Structure and Behavior

CP_2, EMIF_2}. However, in this path we have not shown dif- Another component of our graph model is a set of functions

ferent data transfers. For example, EMIfsends read request that correlate the abstract, high-level behavioral model of the

to DMA and DMA writes data in coprocessor local memory processor to the structural model. Below, we define a set of

which coprocessor uses during computation and writes the rerseful mapping functions that map nodes in the structure to

sult back and finally EMIE2 requests DMA to write the result nodes in the behavior (or vice-versa).

back to main memory. The units-to-opcodes (opcodes-to-units@pping is a bi-

4.2 Behavior directional function that maps unit nodes in the structure to
opcode nodes in the behavior. It defines, dach functional

The behavior of an architecture is a set of operations thajnit, the set of operations supported by that unit (and vice
can be executed on it. Each operation in turn consists of a sggrsa).

of fields (e.g. opcode, arguments) that specify, at an abstract Junit—opeode * Vunie = Vope (10)
level, the execution semantics of the operation. We model the fopeode—unit * Vope = Vaunit (11)
behavior as a grapt¥s, consisting of node¥s and edges

handle in a cycle, while the timing denotes the number of cy
cles taken by the component to execute them. A path fro

En. For the example processor in Figure 2, €;:— opcode Map-

P Gs = (VB, EB) (6) pings include mappings from Fetch to ADD, Fetch to LD,
The nodes represent the fields edch operation, while the ALU to ADD, AddrCalcto LD, etc.
edges represent orderings between the fields. The behavior Thearguments-to-storages (storages-to-argumemsp-
graphGg is a set of disjointed sub-graphs, and each sub-graphing is a bi-directional function that maps argument nodes in
is called aroperation graphor simply an operation). Figure 3 the behavior to storage nodes in the structure. It defines, for
describes a portion of the behavior (consisting of two operaeach argument of an operation, the storage location that the
tion graphs) for the example processor in Figure 2. Nodeargument resides in.

Jarg—storage * Varg = Vitore (12) there are units-to-opcodes mappings between eadhFaf,
Fetorage—arg : Vstore = Varg (13) RD1, RD2, WB apd ALUS, and each oﬁ!FD., RD1, RD2,
WB} and MAC. This processor has four pipeline patfi§D,
The farg—storage Mappings for the LD operation are map- RD1, ALU, RD2, SFT, WB {IFD, RD1, MUL, RD2, ACC,
pings from LD SRC1 to RegisterFile, from LISRCMEM WB!, {IFD, RD1, ALU, RD2, ACC, WR and{IFD, RD1,
to L1(Data Memory), and from LIDST to RegisterFile. MUL, RD2, SFT, WB. However, the last two pipeline paths
We can generate a graph-model of the architecture frordannot be activated by any operation. Therefore, they are false
an ADL description that has information regarding arChitec-pipe"ne paths_ Since these false pipe”ne paths may become
ture’s structure, behavior, and the mapping between thenfg|se paths depending on the detailed structure of RD2, they
We have chosen the EXPRESSION ADL [1] since it captureshould be detected at a higher level of abstraction to ease the
all the necessary information. We generate automatically thgyter design phases. From the view point of SOC architec-
graph model of the architecture pipeline consisting of structyre DSE, we can view the false pipeline paths as indicating
ture graph, behavior graph and mapping between them usifgbtential behaviors which are not explicitly defined in the be-
the modeling techniques described above. For details on hoMavior part of the ADL description. This means that further
the graph-model is generated automatically from the ADL decost/performance/power optimization may be possible if we
scription of the wide variety of architectures, referto [7]. add new instructions that activate the false pipeline paths.

5 Architecture Pipeline Verification

Based on the graph model presented in the previous sec-
tion, specification of architecture pipelines written in an ADL
can be validated. In this section, we describe some of the
properties used in our framework for validating pipeline spec- 1‘1‘
ification of the architecture. We also briefly describe the algo- 1
rithms for verifying some of the properties used in our frame- - s
work. The detailed algorithm for verifying each of these prop- O"ltfu\fiﬁfi?
erties can be found in [7]. i

11
ALU MuUL

11
SFT ACC

5.1 Connectedness Property 3

1,1‘

Each component must be connected to other component(s). 2 . - -I ,,,,,, 1
As pipeline and data-transfer paths are connected regions of
the architecture, this property holds if each @ument be-
longs to at least one pipeline or data-transfer path. Formally speaking, a pipeline patipp (Vpp, Epp) IS

Yoeomp € Vs, (3Gpp € Gpp, 5.t. Veomp € Gpp) false if intersection of opcodes supported by the units in the

V(3Gpp € Gpp, 5. veomp € Gpp) (14) pipeline path is empty.
ﬂ funit—opcode(vunit) = ¢ (15)

Vunit€EVpPpP

Figure 4. An example processor with false pipeline paths

where Gpp is a set of pipeline paths am@pp is a set of
data-transfer paths.

The algorithm for applying this property on the graph To verify this property on the graph-model, the algorithm
model is simple. Prepare the list, L (say), of units, storaged)eeds two operations viz., union and intersection of two sets
ports, connections etc. from the ADL description. Traversecontaining opcodes. Each unit in the graph model has a list
the graph, starting at the root node (e.g., Fetch), using pipelir@f supported opcodes (derived using unit-to-opcode mapping
and data-transfer paths. When a node (unit, port, storage, cofgnction). An outline of the algorithm follows. The root node
nection) is visited during graph traversal mark it in the list L. (€.9, Fetch) sends a copy of its list of supported opcodes to all
Finally, traverse the list L to determine the components thaits children units (units connected to it via one pipeline edge).
violate connectedness property (not marked). Each unit node performs the union of all the incoming lists
and generatencomingList Each unit node performs intersec-
tion betweenncomingListand its supported opcode list, and

According to the definition of pipeline paths, there maysends the resulbutgoingLisfsay), to its children units. If the
exist pipeline paths that are never activated by any operatiofesult of the intersection becomes NULL then that particular
Such pipeline paths are said to fadse For example, let us pipeline path is said to be false.
use another example architecture shown in Figure 4 whic
executes two operations: ALU-shift (ALUS) and multiply-
accumulate (MAC). This processor has units-to-opcodes map- All operations must be executable. A operatignis ex-
pings between ALU and ALUS, between SFT and ALUS, be-ecutable if there exists a pipeline pathrp (Vpp, Epp) On
tween MUL and MAC, and between ACC and MAC. Also, which op is executable. A operatiosp is executable on a

5.2 False Pipeline Paths

Q.S Completeness Property

pipeline pathpp (Vep, Epp) if both conditions (a) and (b) must be a path from load/store unit (e.g., MemCntrl) to main
below hold. memory via storage components (eaa¢hes), v) the address
space used by the processor must be equal to the union of ad-
dress spaces covered by memory subsystem (SRAM, cache
hierarchies etc.).

(&) All units in Vpp support the opcode afp. More for-
mally, the following condition holds where,,. is the
opcode of the operatiorp.

Vvunit € VPP, Vope € funit—opcode(vunit)~ (16) 5.5 Finiteness Property

Termination of the pipeline must be guaranteed. The termi-
(b) There is no conflicting partial ordering of operation argu-nation is guaranteed if all pipeline paths except false pipeline
ments and unit ports. Lét be a set of argument nodes of paths have finite length and all units on the pipeline paths have
op. There is no conflicting partial ordering of operation finite timing. The length of a pipeline path is defined as the
arguments and unit ports if, for any two nodesv. € V' number of stages required to reach the finatles from the
such thafv,, v2) € Fesec, all conditions below hold: root node of the graph.

* There exists a data-transfer path from a storage 3K, s.t.YGpp € Gpp,num_stages(Gpp) < K (17)
farg—storage(v1) 10 @ UNitwv,y in Vpp through a port

Farg—port (V1). numstagesis a function that, given a pipeline path, returns
the number of stages (i.e. clock cycles) required to execute
. it. In the presence of cycles in the pipeline path, this function
i Vpp 10 & St0ragefarg-storage (v2) through a port .0 o4 e Getermined from the structural graph model alone.
Jarg=port (v2). However, if there are no cycles in the pipeline paths, the ter-
* vy1 andv,; are the same unit or there is a path consistmination property is satisfied if the number of node/inis

ing of pipeline edges from,,; t0 vy». finite, and each niti-cycle component has finite timing.

For example, let us consider the ADD operation for the pro :
cessor described in Figure 2 and Figure 3. To satisfy the cor-16- Experiments
dition (a), Fetch, Decode, ALU1, ALU2, and WriteBack units In order to demonstrate the applicability and usefulness of
must have mappings to the ADD opcode. On the other handur validation approach, we described a wide range of ar-
the condition (b) is satisfieddzause the structure has data-chitectures using the EXPRESSION ADL: MIPS R10K, TI
transfer paths from RegisterFile to Decode and from WriteC6x, PowerPC, DLX [6], and ARM that represent RISC, DSP,
Back to RegisterFile, and there is a pipeline path from Decod¥LIW, and Superscalar architectures. We generated the graph
to WriteBack. model of each of the architecture pipeline automatically from
This algorithm has two parts. We can use tlhwtgoingList the ADL description. We implemented each property as a
for the final nodes (e.g., WriteBack, EMIFetc.) computed function which operates on this graph. Finally, we applied
for false pipeline path property for the first part viz., to deter-these properties on the graph model to verify that the speci-
mine which opcodes are not supported by any pipeline pathied architecture is well-formed. The complete validation of
We can perform union of all theutgoingLiss for the final each architecture specification took less than a second on a
nodes of the graph. These are the opcodes supported by285 MHz Sun Ultra 60 with 1024M RAM.
least one of the pipeline paths. Now the opcodes which are As expected, we encountered two kinds of errors viz., in-
not present in the resulting list violates the completeness progomplete specification errors and incorrect specification er-
erty. To verify the second part of the property, the list ofrors. An example of incomplete specification error we un-
supported opcodes faach pipeline path is determined. This covered is that the opcode assignment is not done for the 5th
pipeline path should have read and write ports to specific stostage of the multiplier pipeline in DLX. Similarly, an exam-
ages (matching the number and type the operands for eagle of the incorrect specification error we found is that only
opcode supported in that pipeline path) to makeh of these load/store opcodes were mapped for the memory stage of the
operations executable. DLX architecture. Since all the opcodes pass through memory
stage in DLX, it is necessary to map all the opcodes here.
During design space exploration (DSE) of the architec-
The architecture must be well formed. To verify the va-tures we detected many incorrect specification errors. Here
lidity of this property we need to verify several architecturalwe briefly mention some of the errors captured using our ap-
properties, e.g., i) the number of operations processed per cproach.
cle by an unit can not be smaller than the total number of oper- We modified the MIPS R10K ADL description to include
ations sent by its parents if the unit does not have any reservanother load/store unit that supports only store operations.
tion station, ii) there should be a path from an execution unitVell-formedness property was violated since there was a write
supporting branch opcodes to PC/Fetch unit, iii) instructiorconnection from load/store unit to floating-point register file
template should match available pipeline bandwidth, iv) thergvhich will never be used.

* There exists a data-transfer path from a unijt

5.4 Well-formedness Property

We modified the PowerPC ADL description to have sepa-

. . . . - Table1.S f ty violati
rate L2 cache for instruction and data. Validation determined abe ummary of property violations

that there are no paths from L2 instruction cache to main A(Ri')\" D(;;(<(3§)X R(lggK PO\Evze)fPC
memory. The connection between L2 instruction cache and Connectedness |0 0 1 > 1
unified L3 cache is missing. Fa(lzse Pi;laetline Patf| i g g ;1 ;
. . ompleteness
We modified the C6x data memory by adding two SRAM ol oo 7 5 1 =
modules with the existingache hierarchy. The property val- Finiteness 0 0 0 1 1

idation fails due to the fact that the address ranges specified

in the SRAMSs and cache hierarchy are not disjoint, moreovef,re and behavior are described in the ADL. During architec-

union of these address ranges does not cover the physical 4ff;5| design space exploration, each instance of the architec-

dress space specified by the processor description. _ ture must be validated to ensure that it is well-formed. More-
We added a coprocessor pipeline in the MIPS R10K whichy e, validation of the specification is essential to ensure that

supports vector integer multiplication. This path is reportedye reference model is golden so that it can be used to uncover
as false pipeline path since this opcode was not added in aé'ugs in the design.

the units in the path correctly. It also violated completeness |, this paper we presented a graph-based modeling of ar-

property since the read/write connections to integer regist&hitectures that captures both the structure and the behavior
file was missing from the coprocessor pipeline. of the processor, memory and co-processor pipelines. Based
In the R10K architecture we decided to use a coprocessp the model, we proposed several properties that need to be
sor local memory instead of integer register file for readinGatisfied to ensure that the architecture is well-formed. We ap-
operands. We removed the read connections to the integsned these properties on the graph model of the MIPS R10K,
register file and added local memory, DMA controller andT| cex, ARM, DLX, and PowerPC architectures to demon-
connections to main memory. The connectedness properyrate the usefulness of our approach. Our ongoing work tar-

is violated for two ports in integer register file. These portsgetS the use of this ADL description as a golden reference
were used by the coprocessor earlier whose connections Wegg, el in architecture validation flow.

deleted but not the ports.
We modified the PowerPC ADL description by reducingR f
. - . . ren
the instruction buffer size from 16 to 4. This generated the eterences

violation of well-formedness. The fetch unit fetches 8 mstruc-[l] A. Halambi et al. EXPRESSION: A language for architecture

tions per cycle and decode unit decodes 3 instructions per cy- exploration through compiler/simulator retargéligp DATE,
cle, hence there is a potential for instruction loss. 1999.

Table 1 Summarizes the errors captured during desig] G. Hadjiyiannis et al. ISDL: An instruction set description lan-
space exploration of architectures. Each column represents guage for retargetability. IRroc. DAG 1997.
one architecture and each row represents one property.
entry in the table presents the number of violations of tha
property for the corresponding architectur@he number in 4] M. Freericks. The nML machine description formalism. Tech-
brackets next to each architecture represents the number of Je- nical Report SM-IMP/DIST/08, TU Berlin., 1993.
sign space .exploratlon done for that architecture. Each Claig'] J. Hauke and J. Hayes. Microprocessor design verification using
of problem is counted only once. For example, the DLX erro

. . . e reverse engineering. HLDVT, 1999.
mentioned above where one of the unit has incorrect specifica-) .
tion of the supported opcodes that led to false pipeline path fdf) > Hennessy and D. Pattersddomputer Architecture: A guan-
titative approach Morgan Kaufmann Publishers Inc, CA, 1990.

most of the opcodes, we count that error once instead of u 5 b Mishra et al. Architecture descrintion | ari |
ing the number of opcodes which violated the property. Ou] idaticlnsn g’; eroiéss:; r'neecmuc:e aerslgr::po'_o?osggsuoe:gﬁ erl'i\:g's Ve'lr_R
experiments have demonstrated the utility of our validation P ‘ v P PP '

UCI-ICS 01-52.
ide ran f realistic archi res. . o
approach across a wide range of realistic architectures [8] R. Ho etal. Architecture validation for processoiSCA 1995.

[9] H. Tomiyama et al. Modeling and verification of processor
pipelines in soc design exploratioHLDVT, 1999.

ADL-based codesign that supports automatic softwarél0] H.Tor_niygma}, T._Yoshino, and N. Dutt. Verification of in-order
toolkit generation is a promising approach to efficient de- €xecutionin pipelined processors.Hit. DVT, 2000.
sign space exploration (DSE) of SOC architectures. The prd11] P. Mishra, N. Dutt, and A. Nicolau. Automatic Validation of
grammable portion of SOCs often includes pipelined proces- Pipeline Specifications. IHLDVT, 2001.
sor, memory, and co-processor cores, whose pipeline struf:2] http://www.trimaran.orgThe MDES User Manuall997.

)) [f13] P. Mishra et al. Processor-memory co-exploration driven by an
I'Note that the error numbers will change depending on the number o architectural description languagéL Sl Design 2001
design space exploration and type of modifications done each time.

P. Ho et al. Formal verification of pipeline control using con-
trolled token nets and abstract interpretationlGCAD, 1998.

7 Summary

