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�Process/Thread Management 

�Scheduling

�Communication

�Synchronization

�Memory Management

�Storage Management

�FileSystems Management

�Protection and Security

�Networking 

What does an OS do?



Distributed Operating System

�Manages a collection of independent computers 
and makes them appear to the users of the 
system as if it were a single computer.



Hardware Architectures

�Multiprocessors 

�Tightly coupled

�Shared memory
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Hardware Architectures

�Multicomputers

�Loosely coupled

�Private memory

�Autonomous

Memory

CPU

Memory

CPU

Memory

CPU

Distributed  Architecture



Workstation Model: Issues

� How to find an idle 
workstation?

� How is a process transferred 
from one workstation to 
another?

�What happens to a remote 
process if a user logs onto a 
workstation that was idle, but 
is no longer idle now?

� Other models - processor 
pool, workstation server...
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Distributed Operating System 

(DOS)

� Distributed Computing Systems commonly use two 
types of Operating Systems.

�Network Operating Systems

�Distributed Operating System

� Differences between the two types

�System Image

�Autonomy

�Fault Tolerance Capability



Operating System Types

�Multiprocessor OS

⌧Looks like a virtual uniprocessor, contains only 
one copy of the OS, communicates via shared 
memory, single run queue

�Network OS 

⌧Does not look like a virtual uniprocessor, contains 
n copies of the OS, communicates via shared files, 
n run queues

�Distributed OS 

⌧Looks like a virtual uniprocessor (more or less), 
contains n copies of the OS, communicates via 
messages, n run queues



Design Issues

�Transparency

�Performance

�Scalability

�Reliability

�Flexibility (Micro-kernel architecture)

�IPC mechanisms, memory management, Process 
management/scheduling, low level I/O

� Heterogeneity

� Security



Transparency

�Location transparency

�processes, cpu’s and other devices, files

�Replication transparency (of files)

�Concurrency transparency

� (user unaware of the existence of others)

�Parallelism

�User writes serial program, compiler and OS 
do the rest



Performance

�Throughput - response time

�Load Balancing (static, dynamic)

�Communication is slow compared to 
computation speed

�fine grain, coarse grain parallelism



Design Elements

�Process Management

�Task Partitioning, allocation, load balancing, 
migration

�Communication 
�Two basic IPC paradigms used in DOS

⌧Message Passing (RPC)  and Shared Memory

�synchronous, asynchronous

�FileSystems

�Naming of files/directories

�File sharing semantics

�Caching/update/replication



Remote Procedure Call

A convenient way to construct a client-server connection 

without explicitly writing send/ receive type programs 

(helps maintain transparency).



Remote Procedure Calls (RPC)

� General message passing model. Provides 
programmers with a familiar mechanism for building 
distributed applications/systems

� Familiar semantics (similar to LPC)

�Simple syntax, well defined interface, ease of use, generality 
and IPC between processes on same/different machines.

� It is generally synchronous

� Can be made asynchronous by using multi-threading 



A typical model for RPC

Caller 
Process Server

Process

Call procedure 
and wait for reply Request Message

(contains Remote Procedure’s parameters

Receive request and start
Procedure execution

Procedure Executes

Send reply and wait 
For next message

Resume 
Execution

Reply Message
( contains result of procedure

execution)



RPC continued…

� Transparency of RPC
� Syntactic Transparency

� Semantic Transparency

� Unfortunately achieving exactly the same semantics for RPCs and LPCs is 
close to impossible

� Disjoint address spaces

� More vulnerable to failure

� Consume more time (mostly due to communication delays)



Implementing RPC Mechanism

� Uses the concept of stubs; A perfectly normal LPC 
abstraction by concealing from programs the interface 
to the underlying RPC

� Involves the following elements

�The client

�The client stub

�The RPC runtime

�The server stub

�The server



Remote Procedure Call (cont.)

� Client procedure calls the client stub in a normal way 

� Client stub builds a message and traps to the kernel 

� Kernel sends the message to remote kernel 

� Remote kernel gives the message to server stub 

� Server stub unpacks parameters and calls the server 

� Server computes results and returns it to server stub 

� Server stub packs results in a message and traps to kernel 

� Remote kernel sends message to client kernel 

� Client kernel gives message to client stub 

� Client stub unpacks results and returns to client



RPC servers and protocols…

� RPC Messages (call and reply messages)

� Server Implementation

�Stateful servers

�Stateless servers 

� Communication Protocols

�Request(R)Protocol

�Request/Reply(RR) Protocol

�Request/Reply/Ack(RRA) Protocol



RPC NG: DCOM & CORBA

� Object models allow services and functionality to be 
called from distinct processes

� DCOM/COM+(Win2000) and CORBA IIOP extend this to 
allow calling services and objects on different machines 

� More OS features (authentication,resource 
management,process creation,…) are being moved to 
distributed objects.



Distributed Shared Memory (DSM)

� Two basic IPC paradigms used in DOS

�Message Passing (RPC)

�Shared Memory

� Use of shared memory for IPC is natural for tightly 
coupled systems

� DSM is a middleware solution, which provides a shared-
memory abstraction in the loosely coupled distributed-
memory processors.



General Architecture of DSM
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Issues in designing DSM

� Granularity of the block size

� Synchronization

� Memory Coherence (Consistency models)

� Data Location and Access

� Replacement Strategies

� Thrashing

� Heterogeneity



Synchronization

� Inevitable in Distributed Systems where distinct 
processes are running concurrently and sharing 
resources.

� Synchronization related issues

�Clock synchronization/Event Ordering (recall happened before 
relation)

�Mutual exclusion

�Deadlocks

�Election Algorithms



Distributed Mutual 

Exclusion

�Mutual exclusion 
⌧ensures that concurrent processes have serialized access to 
shared resources  - the critical section problem.

⌧At any point in time, only one process can be executing in 
its critical section.

�Shared variables (semaphores) cannot be used in a 
distributed system

• Mutual exclusion must be based on message passing, in the 
context of unpredictable delays and incomplete knowledge

⌧In some applications (e.g. transaction processing) the 
resource is managed by a server which implements its own 
lock along with mechanisms to synchronize access to the 
resource.



Approaches to Distributed 

Mutual Exclusion

� Central coordinator based approach
� A centralized coordinator determines who enters the CS

� Distributed approaches to mutual exclusion
� Token based approach

⌧A unique token is shared among the sites. A site is allowed to enter its CS if 
it possesses the token.

⌧Mutual exclusion is ensured because the token is unique.

�Non-token based approach
⌧Two or more successive rounds of messages are exchanged among the 

sites to determine which site will enter the CS next.

�Quorum based approach
⌧Each site requests permission to execute the CS from a subset of sites 

(called a quorum).
⌧Any two quorums contain a common site. This common site is responsible 

to make sure that only one request executes the CS at any time.



System Model for Distributed 

Mutual Exclusion Algorithms

� The system consists of N sites, S1, S2, ..., SN.
� We assume that a single process is running on each site. The 

process at site Si is denoted by pi .
� A site can be in one of the following three states: requesting the 

CS, executing the CS, or neither requesting nor executing the CS
(i.e., idle).
� In the ‘requesting the CS’ state, the site is blocked and can not make 

further requests for the CS. In the ‘idle’ state, the site is executing 
outside the CS.

� In token-based algorithms, a site can also be in a state where a site 
holding the token is executing outside the CS (called the idle token 
state).

� At any instant, a site may have several pending requests for CS. A 
site queues up these requests and serves them one at a time.



Requirements/Conditions

�Safety Property (Mutual Exclusion)
�At any instant, only one process can execute the 
critical section.

�Liveness Property (Progress)
�This property states the absence of deadlock and 
starvation. Two or more sites should not endlessly 
wait for messages which will never arrive.

�Fairness (Bounded Waiting)
�Each process gets a fair chance to execute the CS. 
Fairness property generally means the CS execution 
requests are executed in the order of their arrival 
(time is determined by a logical clock) in the system.



Performance Metrics for 

Mutual Exclusion Algorithms

� Message complexity
�The number of messages required per CS execution by a site.

� Synchronization delay
�After a site leaves the CS, it is the time required and before the 

next site enters the CS

� Response time
�The time interval a request waits for its CS execution to be over 

after its request messages have been sent out

� System throughput
�The rate at which the system executes requests for the CS.

System throughput=1/(SD+E)
where SD is the synchronization delay and E is the average 
critical section execution time





Mutual Exclusion Techniques 

Covered

�Central Coordinator Algorithm

�Non-token based

�Lamport’s Algorithm

�Ricart-Agrawala Algorithm

�Token Based 

�Ricart-Agrawala Second Algorithm

�Token Ring Algorithm







Distributed Algorithms for 

Mutual Exclusion

� In a distributed environment it seems more natural to 
implement mutual exclusion, based upon distributed 
agreement - not on a central coordinator.
�Shared variables (semaphores) cannot be used in a distributed 

system

�Mutual exclusion must be based on message passing, in the 
context of unpredictable delays and incomplete knowledge

�In some applications (e.g. transaction processing) the resource 
is managed by a server which implements its own lock along 
with mechanisms to synchronize access to the resource.



Lamport’s Algorithm

�Basic Idea
�Requests for CS are executed in the 
increasing order of timestamps and time is 
determined by logical clocks.

�Every site S_i keeps a queue, request 
queue_i , which contains mutual exclusion 
requests ordered by their timestamps.

�This algorithm requires communication 
channels to deliver messages the FIFO order.



Lamport’s Algorithm

� Requesting the critical section
� When a site Si wants to enter the CS, it broadcasts a REQUEST(ts_i , i ) 

message to all other sites and places the request on request queuei . ((ts_i , i ) 
denotes the timestamp of the request.)

� When a site Sj receives the REQUEST(ts_i , i ) message from site Si ,places site 
Si ’s request on request queuej and it returns a timestamped REPLY message to 
Si 

� Executing the critical section
� Site Si enters the CS when the following two conditions hold:

⌧ L1: Si has received a message with timestamp larger than (ts_i , i ) from all other 
sites.

⌧ L2: Si ’s request is at the top of request queue_i .

� Releasing the critical section
� Site Si , upon exiting the CS, removes its request from the top of its request 

queue and broadcasts a timestamped RELEASE message to all other sites.
� When a site Sj receives a RELEASE message from site Si , it removes Si ’s 

request from its request queue.
� When a site removes a request from its request queue, its own request may 

come at the top of the queue, enabling it to enter the CS.



Performance – Lamport’s

Algorithm

� For each CS execution Lamport’s algorithm requires 
� (N − 1) REQUEST messages, (N − 1) REPLY messages, and (N − 1) 

RELEASE messages.
� Thus, Lamport’s algorithm requires 3(N − 1) messages per CS 

invocation.

� Optimization
� In Lamport’s algorithm, REPLY messages can be omitted in certain 

situations.
� For example, if site Sj receives a REQUEST message from site Si after it 

has sent its own REQUEST message with timestamp higher than the 
timestamp of site Si ’s request, then site Sj need not send a REPLY 
message to site Si .

� This is because when site Si receives site Sj ’s request with timestamp 
higher than its own, it can conclude that site Sj does not have any 
smaller timestamp request which is still pending.

�With this optimization, Lamport’s algorithm requires between 3(N − 1) 
and 2(N − 1) messages per CS execution.



Ricart-Agrawala Algorithm

� It is assumed that all processes keep a (Lamport’s) logical clock 
which is updated according to the clock rules.
� The algorithm requires a total ordering of requests. Requests are 

ordered according to their global logical timestamps; if timestamps are 
equal, process identifiers are compared to order them.

� The process that requires entry to a CS multicasts the request 
message to all other processes competing for the same resource.
� Process is allowed to enter the CS when all processes have replied to 

this message. 
� The request message consists of the requesting process’ timestamp 

(logical clock) and its identifier.

� Each process keeps its state with respect to the CS: released, 
requested, or held.









• Ricart-Agrawala Second Algorithm

• Token Ring Algorithm

Token-Based Mutual Exclusion



Ricart-Agrawala Second 

Algorithm
� A process is allowed to enter the critical section when it gets the token. 

� Initially the token is assigned arbitrarily to one of the processes.

� In order to get the token it sends a request to all other processes 
competing for the same resource. 
� The request message consists of the requesting process’ timestamp (logical 

clock) and its identifier. 

� When a process Pi leaves a critical section 
� it passes the token to one of the processes which are waiting for it; this will be 

the first process Pj, where j is searched in order [ i+1, i+2, ..., n, 1, 2, ..., i-2, i-
1] for which there is a pending request.

� If no process is waiting, Pi retains the token (and is allowed to enter the CS if it 
needs); it will pass over the token as result of an incoming request.

� How does Pi find out if there is a pending request? 
� Each process Pi records the timestamp corresponding to the last request it got 

from process Pj, in requestPi[ j]. In the token itself, token[ j] records the 
timestamp (logical clock) of Pj’s last holding of the token. If requestPi[ j] > 
token[ j] then Pj has a pending request.



















Election Algorithms

�Many distributed algorithms require one process 
to act as a coordinator or, in general, perform 
some special role.

�Examples with mutual exclusion
�Central coordinator algorithm 

⌧At initialization or whenever the coordinator crashes, a new 
coordinator has to be elected.

�Token ring algorithm
⌧When the process holding the token fails, a new process has 
to be elected which generates the new token.



Election Algorithms

� It doesn’t matter which process is elected.
� What is important is that one and only one process is chosen (we call this 

process the coordinator) and all processes agree on this decision.

� Assume that each process has a unique number (identifier).
� In general, election algorithms attempt to locate the process with the highest 

number, among those which currently are up.

� Election is typically started after a failure occurs. 
� The detection of a failure (e.g. the crash of the current coordinator) is normally 

based on time-out � a process that gets no response for a period of time 
suspects a failure and initiates an election process.

� An election process is typically performed in two phases:
� Select a leader with the highest priority.
� Inform all processes about the winner.



The Bully Algorithm

� A process has to know the identifier of all other processes 
� (it doesn’t know, however, which one is still up); the process with the highest identifier, 

among those which are up, is selected.

� Any process could fail during the election procedure.
� When a process Pi detects a failure and a coordinator has to be elected

� it sends an election message to all the processes with a higher identifier and then waits for 
an answer message:

� If no response arrives within a time limit
⌧ Pi becomes the coordinator (all processes with higher identifier are down)
⌧ it broadcasts a coordinator message to all processes to let them know.

� If an answer message arrives, 
⌧ Pi knows that another process has to become the coordinator � it waits in order to receive the 

coordinator message. 
⌧ If this message fails to arrive within a time limit (which means that a potential coordinator crashed 

after sending the answer message) Pi resends the election message.

� When receiving an election message from Pi
� a process Pj replies with an answer message to Pi and
� then starts an election procedure itself( unless it has already started one) it sends an 

election message to all processes with higher identifier. 

� Finally all processes get an answer message, except the one which becomes the 
coordinator.









The Ring-based Algorithm

� We assume that the processes are arranged in a logical ring
⌧Each process knows the address of one other process, which is its neighbor 

in the clockwise direction.

� The algorithm elects a single coordinator, which is the process with 
the highest identifier. 

� Election is started by a process which has noticed that the current 
coordinator has failed. 
� The process places its identifier in an election message that is passed 

to the following process.
�When a process receives an election message

⌧It compares the identifier in the message with its own.
⌧If the arrived identifier is greater, it forwards the received election message 

to its neighbor
⌧If the arrived identifier is smaller it substitutes its own identifier in the 

election message before forwarding it. 
⌧If the received identifier is that of the receiver itself � this will be the 

coordinator. 

� The new coordinator sends an elected message through the ring.



The Ring-based Algorithm- An 

Optimization

� Several elections can be active at the same time. 
⌧Messages generated by later elections should be killed as soon as possible. 

� Processes can be in one of two states
� Participant or Non-participant. 

⌧Initially, a process is non-participant. 

� The process initiating an election marks itself participant. 
� Rules

� For a participant process, if the identifier in the election message is 
smaller than the own, does not forward any message (it has already 
forwarded it, or a larger one, as part of another simultaneously
ongoing election). 

�When forwarding an election message, a process marks itself 
participant. 

�When sending (forwarding) an elected message, a process marks itself 
non-participant.









Summary (Distributed Mutual 

Exclusion)
� In a distributed environment no shared variables (semaphores) and local kernels can 

be used to enforce mutual exclusion. Mutual exclusion has to be based only on 
message passing. 

� There are two basic approaches to mutual exclusion: non-token-based and token-
based. 

� The central coordinator algorithm is based on the availability of a coordinator 
process which handles all the requests and provides exclusive access to the 
resource. The coordinator is a performance bottleneck and a critical point of failure. 
However, the number of messages exchanged per use of a CS is small. 

� The Ricart-Agrawala algorithm is based on fully distributed agreement for mutual 
exclusion. A request is multicast to all processes competing for a resource and 
access is provided when all processes have replied to the request. The algorithm is 
expensive in terms of message traffic, and failure of any process prevents progress. 

� Ricart-Agrawala’s second algorithm is token-based. Requests are sent to all 
processes competing for a resource but a reply is expected only from the process 
holding the token. The complexity in terms of message traffic is reduced compared 
to the first algorithm. Failure of a process (except the one holding the token) does 
not prevent progress.



Summary (Distributed Mutual 

Exclusion)
� The token-ring algorithm very simply solves mutual exclusion. It is 

requested that processes are logically arranged in a ring. The token is 
permanently passed from one process to the other and the process
currently holding the token has exclusive right to the resource. The 
algorithm is efficient in heavily loaded situations.

� For many distributed applications it is needed that one process acts as a 
coordinator. An election algorithm has to choose one and only one process 
from a group, to become the coordinator. All group members have to 
agree on the decision.

� The bully algorithm requires the processes to know the identifier of all 
other processes; the process with the highest identifier, among those which 
are up, is selected. Processes are allowed to fail during the election 
procedure.

� The ring-based algorithm requires processes to be arranged in a logical 
ring. The process with the highest identifier is selected. On average, the 
ring based algorithm is more efficient then the bully algorithm.



Deadlocks

� Mutual exclusion, hold-and-wait, No-preemption and 
circular wait.

� Deadlocks can be modeled using resource allocation 
graphs

� Handling Deadlocks

�Avoidance (requires advance knowledge of processes and their 
resource requirements)

�Prevention (collective/ordered requests, preemption)

�Detection and recovery (local/global WFGs, local/centralized 
deadlock detectors; Recovery by operator intervention, 
termination and rollback)



Resource Management Policies

� Load Estimation Policy

�How to estimate the workload of a node

� Process Transfer Policy

�Whether to execute a process locally or remotely

� Location Policy

�Which node to run the remote process on

� Priority Assignment Policy

�Which processes have more priority (local or remote)

� Migration Limiting policy

�Number of times a process can migrate



Process Management

� Process migration

�Freeze the process on the source node and restart it at the 
destination node

�Transfer of the process address space

�Forwarding messages meant for the migrant process

�Handling communication between cooperating processes 
separated as a result of migration

�Handling child processes

� Process migration in heterogeneous systems



Process Migration

� Load Balancing

�Static load balancing - CPU is determined at process 
creation.

�Dynamic load balancing - processes dynamically 
migrate to other computers to balance the CPU (or 
memory) load.

�Migration architecture

�One image system 

�Point of entrance dependent system (the deputy 
concept)



A Mosix Cluster

� Mosix (from Hebrew U): Kernel level enhancement to 
Linux that provides dynamic load balancing in a network 
of workstations.

� Dozens of PC computers connected by local area 
network (Fast-Ethernet or Myrinet). 

� Any process can migrate anywhere anytime.



An Architecture for Migration

Architecture that fits one system image.

Needs location transparent file system.

(Mosix previous versions)



Architecture for Migration (cont.)

Architecture that fits entrance dependant systems.

Easier to implement based on current Unix.

(Mosix current versions)



Mosix: File Access

Each file access must go back to deputy…

= = Very Slow for I/O apps.

Solution: Allow processes to access a distributed file 

system through the current kernel.



Mosix: File Access

� DFSA

� Requirements (cache coherent, monotonic timestamps, files not 
deleted until all nodes finished) 

� Bring the process to the files.

� MFS

� Single cache (on server)

� /mfs/1405/var/tmp/myfiles



Other Considerations for Migration

�Not only CPU load!!!

�Memory.

�I/O - where is the physical device?

�Communication - which processes communicate 

with which other processes?



Resource Management of DOS

� A new online job assignment policy based on economic 
principles, competitive analysis.

� Guarantees near-optimal global lower-bound 
performance.

� Converts usage of heterogeneous resources (CPU, 
memory, IO) into a single, homogeneous cost using a 
specific cost function.

� Assigns/migrates a job to the machine on which it incurs 
the lowest cost.



Distributed File Systems (DFS)

� DFS is a distributed implementation of the classical file system
model

� Issues - File and directory naming, semantics of file sharing

� Important features of DFS

� Transparency, Fault Tolerance

� Implementation considerations

� caching, replication, update protocols

� The general principle of designing DFS: know the clients have 
cycles to burn, cache whenever possible, exploit usage 
properties, minimize system wide change, trust the fewest 
possible entries and batch if possible.



File and Directory Naming

�Machine + path  /machine/path
⌧one namespace but not transparent

�Mounting remote filesystems onto the 
local file hierarchy

⌧view of the filesystem may be different at each 
computer

�Full naming transparency 
⌧A single namespace that looks the same on all 
machines



File Sharing Semantics

�One-copy semantics
⌧Updates are written to the single copy and are 
available immediately

�Serializability
⌧Transaction semantics (file locking protocols 
implemented - share for read, exclusive for write).

�Session semantics
⌧Copy file on open, work on local copy and copy 
back on close



Example: Sun-NFS

⌧Supports heterogeneous systems

⌧Architecture

• Server exports one or more directory trees for access by 
remote clients

• Clients access exported directory trees by mounting 
them to the client local tree

• Diskless clients mount exported directory to the root 
directory

⌧Protocols

• Mounting protocol

• Directory and file access protocol - stateless, no open-
close messages, full access path on read/write

⌧Semantics - no way to lock files



Example: Andrew File 

System

�Supports information sharing on a large scale

�Uses a session semantics

�Entire file is copied to the local machine (Venus) 
from the server (Vice) when open.  If file is changed, 
it is copied to server when closed.

⌧Works because in practice, most files are changed by one 
person



AFS File Validation

�Older AFS Versions

�On open: Venus accesses Vice to see if its copy of 
the file is still valid. Causes a substantial delay even if 
the copy is valid.

�Vice is stateless

�Newer AFS Versions



The Coda File System

� Descendant of AFS that is substantially more resilient to 
server and network failures.

� Support for “mobile” users.

� Directories are replicated in several servers (Vice)

�When the Venus is disconnected, it uses local versions 
of files. When Venus reconnects, it reintegrates using 
optimistic update scheme.



Naming and Security

� Naming

�Important for achieving location transparency

�Facilitates Object Sharing 

�Mapping is performed using directories. Therefore name service 
is also known as Directory Service

� Security

�Client-Server model makes security difficult

�Cryptography is the solution


