
1

Distributed Computing
Systems

Prof. Nalini Venkatasubramanian
Dept. of Computer Science

Donald Bren School of Information and Computer Sciences
University of California, Irvine

CS230: Distributed Computing Systems
2

Distributed Computing Systems
Winter 2021

Lecture 1 - Introduction to Distributed Computing
CS 230: Mon/Wed 2 - 3:20pm (VRTL)

 CS 230P: Mon/Wed 6:30 - 7:50 pm (VRTL)
Prof. Nalini Venkatasubramanian

nalini@uci.edu

mailto:nalini@uci.edu

3

Course logistics and details
● Course Web page -

● http://www.ics.uci.edu/~cs230

● Lectures
● Mon/Wed 2:00 – 3:20 p.m, Virtual synchronous lecture
● See webpage/canvas for zoom link

● Must Read: Course Reading List
● Collection of Technical papers and reports by topic

● Reference Books (recommended)
● Distributed Systems: Concepts & Design, 5th ed. by Coulouris et al.(preferred)
● Distributed Systems: Principles and Paradigms, 2nd ed. by Tanenbaum &

van Steen.
● Distributed Computing: Principles, Algorithms, and Systems, 1st ed. by

Kshemkalyani & Singhal.

● TA for Course
● Praveen Venkateswaran(praveenv@uci.edu)

3
CS230: Distributed Computing Systems

4

Course logistics and details

● Homeworks
● Written homeworks

● Problem sets
● Includes paper summaries (1-2 papers on the

specific topic from the reading list)

● Course Examination (tentatively Week 9)
● Course Project

● In groups of 3
● Will require use of open source distributed computing

platforms
● Suggested projects will be available on webpage

4
CS230: Distributed Computing Systems

Distributed Systems 5

Prerequisite Knowledge

● Necessary – Operating Systems Concepts and
Principles, basic computer system architecture

● Highly Desirable – Understanding of Computer
Networks, Network Protocols

● Necessary – Basic programming skills in Java,
Python, C++,…

6

CompSci 230 Grading Policy
● Homeworks - 40% of final grade

• 4 homeworks - one for each segment of the course
– Problem sets, paper summaries (2 in each set)

• A homework due approximately every 2 weeks
• Make sure to follow instructions while writing and creating

summary sets.

● Course Exam – 30% of final grade
● Class Project - 30% of final grade

● Part 1: Due Week 6
● Part 2: Due Finals Week

● Final assignment of grades will be based on a curve.

6
CS230: Distributed Computing Systems

Syllabus and Lecture schedule

● Part 0 - Introduction to Distributed Systems
● Part 1: Time and State in Distributed Systems

○ Physical Clocks, Logical Clocks, Clock Synchronization
○ Global Snapshots and State Capture

● Part 2: From Operating Systems to Distributed Systems
○ Architectural Possibilities, Communication Primitives (Distributed Shared

Memory, Remote Procedure Calls)
○ Distributed Coordination (mutual exclusion, leader election, deadlocks)
○ Scheduling and Load Balancing in distributed systems
○ Distributed Storage and FileSystems

● Part 3: Messaging and Communication in Distributed Systems
○ ALM. Mesh/Tree Protocols, Group Communication, Distributed

Publish/Subscribe
● Part 4: Reliability and Fault Tolerance in Distributed Systems

○ Fault Tolerance, Consensus, Failure Detection, Replication, Handling
Byzantine Failures

7
CS230: Distributed Computing Systems

Wk Dates Lecture Topic Deadlines for activities

1 Jan 4, 6 Introduction to distributed systems and
models

Project group formation
(set up AWS accounts)

2 Jan 11, 13 Time in Distributed Systems
(Physical/Logical Clocks, Clock
Synchronization)

Project proposal: Jan 15
(Lab: Hadoop intro and
setup tutorial)
HW 1 released

3 Jan 18 (holiday), 20 Global State in Distributed Systems Homework 1 due Jan 23

4 Jan 25, 27 Global State (cont),
Distributed Coordination - RPC, DSM,
Distributed Mutual Exclusion, Deadlocks

Hands-on Project Step 1:
due Jan 29
HW 2 released

5 Feb 1, 3 Distributed Resource management
Scheduling,Migration, Load Balancing,

Homework 2 due Feb 6

6 Feb 8,10 Distributed FileSystems
Group Communication,

Hands-on Project Step 2:
due Feb 16

7 Feb 15(holiday), 17 ALM, Publish/Subscribe, Fault Tolerance Project Step 3 meetings
HW 3 released

8 Feb 22, 24
Feb 26 (CS Seminar)

Fault Tolerance, Failure Detection Homework 3 due Feb 27
Project Step 3 meetings

9 Mar 1, 3 Course Exam, Consensus Project update
HW 4 released

10 Mar 8, 10 Replication, Replicated State
Management

Homework 4 due Mar 12

11 Mar 15-19 Project demos, reports, slides due
8

Distributed Systems 9

Lecture Schedule

● Week 1 (Part 0): Distributed Systems Introduction
○ Needs/Paradigms
○ Basic Concepts and Terminology, Concurrency

● Weeks 2,3 (Part 1): Time and State in Distributed Systems
○ Physical and Logical Clocks
○ Distributed Snapshots and State Capture

● Week 4,5,6: Distributed Coordination and Resource Management
● Interprocess Communication

● Remote Procedure Calls, Distributed Shared Memory
● Distributed Process Coordination/Synchronization

● Distributed Mutual Exclusion/Deadlocks, Leader Election
● Distributed Process and Resource Management

● Task Migration, Load Balancing
● Distributed I/O and Storage Subsystems

● Distributed FileSystems

Distributed Systems 10

Lecture Schedule

● Weeks 7,8: Messaging and Communication in
Distributed Systems

● Messaging in Distributed Systems, ALM
● Group Communication and Synchrony
● Publish/Subscribe Based Communication

● Weeks 9,10: Fault Tolerance in Distributed Systems
● Failure Models
● Fault Detection
● Consensus
● Replication, Replicated State Machines

What is not covered

● Security in Distributed Systems (Prof. Tsudik)
● Distributed Database Management and

Transaction Processing (CS 223, Prof. Mehrotra)
● Distributed Objects and Middleware Platforms

(CS237 - Spring Quarter 2020, Prof. Nalini)

Distributed Systems 11

12

Distributed Systems
● Lamport’s Definition

● “ You know you have one when the crash of a computer you have
never heard of stops you from getting any work done.”

● “A number of interconnected autonomous computers that provide
services to meet the information processing needs of modern
enterprises.”

● Andrew Tanenbaum
A distributed system is a collection of independent computers that
appear to the users of the system as a single computer.

● “An interconnected collection of autonomous processes” - Wak
Fokknik (an algorithmic view)

● FOLDOC (Free on-line Dictionary) -??
A collection of (probably heterogeneous) automata whose distribution is transparent to the user
so that the system appears as one local machine. This is in contrast to a network, where the
user is aware that there are several machines, and their location, storage replication, load
balancing and functionality is not transparent. Distributed systems usually use some kind of
“client-server organization” 12

People-to-Computer Ratio Over
Time

From David Culler (Berkeley)

What is a Distributed System?

14

What is a Distributed System?

15

What is a Distributed System?

16

Distributed Computing Systems

17

Globus Grid Computing Toolkit

Cloud Computing OfferingsPlanetLab

Gnutella P2P Network

Principles of Operating Systems -
Lecture 1 18

Parallel Systems

● Multiprocessor systems with more than one CPU
in close communication.

● Improved Throughput, increased speedup,
increased reliability.

● Kinds:
• Vector and pipelined
• Symmetric and asymmetric multiprocessing
• Distributed memory vs. shared memory

● Programming models:
• Tightly coupled vs. loosely coupled ,message-based vs. shared

variable

Parallel Computing Systems

Principles of Operating Systems -
Lecture 1 19

Climate modeling,
earthquake
simulations, genome
analysis, protein
folding, nuclear fusion
research, …..

ILLIAC 2 (UIllinois)

Connection Machine (MIT)

IBM Blue Gene

Tianhe-1(China)

K-computer(Japan)

Peer to Peer Systems

Distributed Systems 20

Use the vast resources of machines at the edge of the Internet to build a network that
allows resource sharing without any central authority .

P2P File Sharing
Napster, Gnutella, Kazaa, eDonkey,
BitTorrent
Chord, CAN, Pastry/Tapestry,
Kademlia

P2P Communications
MSN, Skype, Social Networking Apps

P2P Distributed Computing
Seti@home

P2P: Napster to BitCoin

21

Principles of Operating Systems -
Lecture 1 22

Real-time distributed systems

● Correct system function depends on timeliness
● Feedback/control loops
● Sensors and actuators
● Hard real-time systems -

● Failure if response time too long.
● Secondary storage is limited

● Soft real-time systems -
● Less accurate if response time is too long.
● Useful in applications such as multimedia, virtual reality.

Key solution space challenges
•Enormous accidental & inherent
complexities

•Continuous evolution & change
•Highly heterogeneous platform,
language, & tool environments

Key problem space challenges
•Highly dynamic behavior
•Transient overloads
•Time-critical tasks
•Context-specific requirements
•Resource conflicts
•Interdependence of (sub)systems
•Integration with legacy (sub)systems

Mapping problem space requirements to solution space artifacts is very hard!

New application domains

Distributed Systems 24

Mobile & ubiquitous
distributed systems

Sample SmartSpaces Built - UCI Responsphere - A Campus-wide
infrastructure to instrument, monitor,
disaster drills & technology validation

SAFIRE – Situational
awareness for fire
incident command

SCALE – A smart
community
awareness and
alerting testbed @
Montgomery County,
MD. A
NIST/Whitehouse
SmartAmerica Project
extended to Global

Cities Challenge.

» Alerts

» Conversation
 Monitoring

 and
playback

» Image and
Video
 Tagging

» Spatial
Messaging

ACOUSTI
C

CAPTUR
E

ACOUSTI
C

ANALYSI
S

SA
APPLICATION

S

Real-Tim
e
Processi
ng

Speech

Voice

Ambien

t Noise

OpsTalk– Speech based
awareness & alerting system
for soldiers on the field

25

Today’s Platforms Landscape - examples

26

System Goal

BitTorrent swarm-style (unstructured peer-oriented) downloads
- used in Twitter datacenter

Memcached A massive key-value store

Hadoop (+ HDFS) Reliable, scalable, high-performance distirbuted
computing platform for data reduction

MapReduce Programming massively parallel/distributed
applications

Spark Programming massively parallel/distributed real-time
applications

Zookeeper Support for coordination in distributed clusters

Spanner Globally distributed database solution/storage service

Storm Dealing with Stream Data processing

Dynamo Amazon’s massively replicated key-value store

Spread Group communication and replicated data

Principles of Operating Systems -
Lecture 1 27

Distributed Systems

Hardware – very cheap ; Human – very expensive

Distributed Systems 28

Characterizing Distributed Systems

● Multiple Autonomous Computers
● each consisting of CPU’s, local memory, stable storage, I/O paths

connecting to the environment
● Multiple architectural possibilities

● client/server, peer-oriented, cloud computing, edge-cloud
continuum

● Distribute computation among many processors.
● Geographically Distributed

● Interconnections
● some I/O paths interconnect computers that talk to each other
● Various communication possibilities

● Shared State
● No shared physical memory - loosely coupled
● Systems cooperate to maintain shared state
● Maintaining global invariants requires correct and coordinated operation

of multiple computers.

29

Why Distributed Computing?

● Inherent distribution
● Bridge customers, suppliers, and companies at

different sites.
● remote data access - e.g. web

● Support for interaction - email/messaging/social media
● Computation Speedup - improved performance
● Fault tolerance and Reliability
● Resource Sharing

● Exploitation of special hardware
● Scalability
● Flexibility

29

30

Why are Distributed Systems
Hard?

● Scale
● numeric, geographic, administrative

● Loss of control over parts of the system
● Unreliability of message passing

● unreliable communication, insecure communication,
costly communication

● Failure
● Parts of the system are down or inaccessible
● Independent failure is desirable

30

31
An entertaining talk: https://www.youtube.com/watch?v=JG2ESDGwHHY

https://www.youtube.com/watch?v=JG2ESDGwHHY

Intro to Distributed Systems
Middleware 32

Design goals of a distributed
system

● Sharing
● HW, SW, services, applications

● Openness(extensibility)
● use of standard interfaces, advertise services,

microkernels
● Concurrency

● compete vs. cooperate
● Scalability

● avoids centralization
● Fault tolerance/availability
● Transparency

● location, migration, replication, failure, concurrency

32

 Modeling Distributed
Systems

Key Questions
● What are the main entities in the system?
● How do they interact?
● How does the system operate?
● What are the characteristics that affect their

individual and collective behavior?

33

Intro to Distributed Systems
Middleware 34

Classifying Distributed
Systems

● Based on Architectural Models
● Client-Server, Peer-to-peer, Proxy based,…

● Based on computation/communication - degree
of synchrony
● Synchronous, Asynchronous

● Based on communication style
● Message Passing, Shared Memory

● Based on Fault model
● Crash failures, Omission failures, Byzantine failures
● how to handle failure of processes/channels

34

Architectural Models: Client-server

35

● Client/server computing allocates application processing between the client
and server processes.

● Request-response paradigm
● A typical application has three basic components:

● Presentation logic, Application logic, Data management logic

Intro to Distributed Systems
Middleware 36

Client/Server Models

● There are at least three different models for
distributing these functions:
● Presentation logic module running on the client

system and the other two modules running on one or
more servers.

● Presentation logic and application logic modules
running on the client system and the data
management logic module running on one or more
servers.

● Presentation logic and a part of application logic
module running on the client system and the other
part(s) of the application logic module and data
management module running on one or more servers

36

Architectural Models: Peer-to-peer

• No single node
server as a
server

• All nodes act as
client (and
server) at a time

37

More Architectural Models

Multiple servers, proxy servers and caches, mobile code, …

Proxy

Multiple
servers

Mobile code

38

Intro to Distributed Systems
Middleware 39

Computation in distributed systems

Two variants based on bound on timing of events

● Asynchronous system
● no assumptions about process execution speeds and message

delivery delays

● Synchronous system
● make assumptions about relative speeds of processes and delays

associated with communication channels
● constrains implementation of processes and communication

● Concurrent Programming Models
● Communicating processes, Functions, Logical clauses, Passive

Objects, Active objects, Agents

39

40

Concurrency issues

● Concurrency and correctness - general
properties
● Safety
● Liveness

● Consider the requirements of transaction based
systems
● Atomicity - either all effects take place or none
● Consistency - correctness of data
● Isolated - as if there were one serial database
● Durable - effects are not lost

40

Parallel Computing Systems
● Special case of a distributed system

● often to run a special application(s)
● Designed to run a single program faster

● Supercomputer - high-end parallel machine

41

Barcelona - BSC MareNostrum 4
(165,888 cores, 24 cores/processor)
The world’s most elegant supercomputer Intel -Cray Theta @Argonne

281,888 core, 64 cores per
processors
11.69 Peta-flops

Aurora: USA’s First ExaSCALE computer

Imagine …
- A computer so powerful that it

can predict future climate
patterns, saving millions of
people from drought, flood, and
devastation.

- A computer so powerful that it
can simulate every activity of a
cancer cell, at the sub-atomic
level, with such accuracy that
we can effectively cure it, or
create a personalized treatment,
just for you.

cf: Argonne National Labs
42https://youtu.be/dYUEFvqQso8

http://www.youtube.com/watch?v=dYUEFvqQso8
https://youtu.be/dYUEFvqQso8

Flynn’s Taxonomy for Parallel
Computing

Instructions

Single (SI) Multiple (MI)

D
at

a

M
ul

tip
le

 (M
D

)
SISD

Single-threaded
process

MISD
Pipeline architecture

SIMD
Vector Processing

MIMD
Multi-threaded
Programming

S
in

gl
e

(S
D

)

Parallelism – A Practical Realization of Concurrency
43

SISD (Single Instruction Single Data)

D D D D D D D

Processor

Instructions

A sequential computer which exploits no parallelism in either the
instruction or data streams.

Examples of SISD architecture are the traditional uniprocessor machines
(currently manufactured PCs have multiple processors) or old mainframes.

http://en.wikipedia.org/wiki/Uniprocessor
http://en.wikipedia.org/wiki/Mainframe_computer

SIMD (Single Instruction Multiple Data)

D0

Processor

Instructions

D0D0 D0 D0 D0

D1

D2

D3

D4

…

Dn

D1

D2

D3

D4

…

Dn

D1

D2

D3

D4

…

Dn

D1

D2

D3

D4

…

Dn

D1

D2

D3

D4

…

Dn

D1

D2

D3

D4

…

Dn

D1

D2

D3

D4

…

Dn

D0

A computer which exploits multiple data streams against a single instruction
stream to perform operations which may be naturally parallelized.
For example, an array processorFor example, an array processor or GPU.

http://en.wikipedia.org/wiki/Array_processor
http://en.wikipedia.org/wiki/GPU

MISD (Multiple Instruction Single Data)

46

Multiple instructions operate on a single data stream.
Uncommon architecture which is generally used for fault tolerance.
Heterogeneous systems operate on the same data stream and
aim to agree on the result.
Examples include the Space Shuttle flight control computer.

D

Instructions

D

Instructions

http://en.wikipedia.org/wiki/Space_Shuttle

MIMD(Multiple Instruction Multiple Data)

D D D D D D D

Processor

Instructions

D D D D D D D

Processor

Instructions
Multiple autonomous processors simultaneously executing different instructions on
different data.
Distributed systems are generally recognized to be MIMD architectures;
either exploiting a single shared memory space or a distributed memory space.

http://en.wikipedia.org/wiki/Distributed_system

48

Communication in Distributed
Systems

● Provide support for entities to communicate
among themselves
● Centralized (traditional) OS’s - local communication

support
● Distributed systems - communication across machine

boundaries (WAN, LAN).
● 2 paradigms

● Message Passing
● Processes communicate by sharing messages

● Distributed Shared Memory (DSM)
● Communication through a virtual shared memory.

48

Message Passing

State State

Message

● Basic primitives
● Send message, Receive message

Properties of communication channel
Latency, bandwidth and jitter

49

50

Messaging issues

● Unreliable communication
● Best effort, No ACK’s or

retransmissions
● Application programmer designs

own reliability mechanism

● Reliable communication
● Different degrees of reliability
● Processes have some guarantee

that messages will be delivered.
● Reliability mechanisms - ACKs,

NACKs.

Synchronous
● atomic action requiring the

participation of the sender and
receiver.

● Blocking send: blocks until
message is transmitted out of the
system send queue

● Blocking receive: blocks until
message arrives in receive queue

Asynchronous
● Non-blocking send:sending process

continues after message is sent
● Blocking or non-blocking receive:

Blocking receive implemented by
timeout or threads. Non-blocking
receive proceeds while waiting for
message. Message is
queued(BUFFERED) upon arrival.

Synchronous vs. Asynchronous

Communication Type (sync/async)
Personal greetings Sync
Email Async
Voice call Sync
Online messenger/chat Sync ?

Letter correspondence Async

Skype call Sync
Voice mail/voice SMS Async

Text messages Async 51

Intro to Distributed Systems
Middleware 52

Remote Procedure Call

● Builds on message passing
● extend traditional procedure call to perform transfer of control

and data across network
● Easy to use - fits well with the client/server model.
● Helps programmer focus on the application instead of the

communication protocol.
● Server is a collection of exported procedures on some shared

resource
● Variety of RPC semantics

● “maybe call”
● “at least once call”
● “at most once call”

52

53

Distributed Shared Memory

● Abstraction used for processes on machines that
do not share memory
● Motivated by shared memory multiprocessors that do

share memory

● Processes read and write from virtual shared
memory.
● Primitives - read and write
● OS ensures that all processes see all updates

● Caching on local node for efficiency
● Issue - cache consistency

53

54

Fault Models in Distributed
Systems

● Crash failures
● A processor experiences a crash failure when it ceases

to operate at some point without any warning. Failure
may not be detectable by other processors.

● Failstop - processor fails by halting; detectable by
other processors.

● Byzantine failures
● completely unconstrained failures
● conservative, worst-case assumption for behavior of

hardware and software
● covers the possibility of intelligent (human) intrusion.

54

Intro to Distributed Systems
Middleware 55

Other Fault Models in
Distributed Systems

● Dealing with message loss
● Crash + Link

● Processor fails by halting. Link fails by losing
messages but does not delay, duplicate or corrupt
messages.

● Receive Omission
● processor receives only a subset of messages sent to

it.
● Send Omission

● processor fails by transmitting only a subset of the
messages it actually attempts to send.

● General Omission
● Receive and/or send omission

55

Failure Models

Class of failure Affects Description
Fail-stop Process Process halts and remains halted. Other processes may

detect this state.
Crash Process Process halts and remains halted. Other processes may

not be able to detect this state.
Omission Channel A message inserted in an outgoing message buffer never

arrives at the other end’s incoming message buffer.
Send-omission

Process

A process completes a send, but the message is not put
in its outgoing message buffer.

Receive-omission Process A message is put in a process’s incoming message
buffer, but that process does not receive it.

Arbitrary
(Byzantine)

Process or
channel

Process/channel exhibits arbitrary behaviour: it may
send/transmit arbitrary messages at arbitrary times,
commit omissions; a process may stop or take an
incorrect step.

Omission and arbitrary failures

56

Channel

Failure Models

Class of Failure Affects Description

Clock Process Process’s local clock exceeds the bounds on its
rate of drift from real time.

Performance Process Process exceeds the bounds on the interval
between two steps.

Performance Channel A message’s transmission takes longer than the
stated bound.

Timing failures

57

Intro to Distributed Systems
Middleware 58

Other distributed system
issues

● Concurrency and Synchronization
● Distributed Deadlocks
● Time in distributed systems
● Naming
● Replication

● improve availability and performance
● Migration

● of processes and data
● Security

● eavesdropping, masquerading, message tampering,
replaying

58

EXTRA MATERIAL

59

60

Middleware for distributed systems
● Middleware is the software between the application programs and

the Operating System/base networking.
● An Integration Fabric that knits together applications, devices, systems

software, data
● Distributed Middleware

● Provides a comprehensive set of higher-level distributed computing
capabilities and a set of interfaces to access the capabilities of the
system.

● Provides Higher-level programming abstraction for developing
distributed applications

● Higher than “lower” level abstractions, such as sockets, monitors
provided by the OS operating system

● Includes software technologies to help manage complexity and
heterogeneity inherent to the development of distributed
systems/applications/information systems. Enables modular
interconnection of distributed “services”.

Useful Management Services: Naming and Directory Service, State Capture Service. Event Service,
Transaction Service, Fault Detection Service, Discovery/trading Service, Replication Service, Migration
Services

cf: Arno Jacobsen lectures, Univ. of Toronto
60

61

Types of Middleware
● Integrated Sets of Services

● DCE from OSF - provides key distributed
technologies, including RPC, a distributed
naming service, time synchronization service,
a distributed file system, a network security
service, and a threads package.

● Domain Specific Integration frameworks
● Transaction processing, workflows,

network management
● Distributed Object Frameworks
● Component services and frameworks
● Web-Service Based Frameworks
● Enterprise Service Buses
● Cloud Based Frameworks

61

Operating System Transport Services

DCE Threads Services

DCE Remote Procedure Calls

DCE
Distributed

Time Service

DCE
Directory
Service

Other Basic
Services

DCE Distributed File Service

Applications

DCE
Securit

y
Service M

an
ag

em
e

nt

WebNMS Network Management Framework

Intro to Distributed Systems
Middleware 62

Distributed Computing Environment (DCE)

● DCE - from the Open Software Foundation (OSF), offers an environment
that spans multiple architectures, protocols, and operating systems
(supported by major software vendors)
● It provides key distributed technologies, including RPC, a distributed naming service, time

synchronization service, a distributed file system, a network security service, and a threads
package.

Operating System Transport Services

DCE Threads Services

DCE Remote Procedure Calls

DCE
Distributed

Time Service

DCE
Directory
Service

Other Basic
Services

DCE Distributed File Service

Applications

DCE
Security
Service

M
an

ag
em

en
t

62

Distributed Object Models

● Goal: Merge distributed computing/parallelism with an object model
● Object Oriented Programming

● Encapsulation, modularity, abstraction
● Separation of concerns

● Concurrency/Parallelism
● Increased efficiency of algorithms
● Use objects as the basis (lends itself well to natural design of

algorithms)
● Distribution

● Build network-enabled applications
● Objects on different machines/platforms communicate
● The use of a broker like entity or bus that keeps track of

processes, provides messaging between processes and other
higher level services

● CORBA, COM, DCOM, JINI, EJB, J2EE, Agent and actor-based models

Intro to Distributed Systems
Middleware 64

The Object Management
Architecture (OMA)

Application objects: document
handling objects.

 ORB: the communication hub for
all objects in the system

Object Services: object events, persistent
objects, etc.

Common facilities: accessing databases,
printing files, etc.

64

Objects and Threads

● C++ Model
● Objects and threads are tangentially related
● Non-threaded program has one main thread of control

● Pthreads (POSIX threads)
• Invoke by giving a function pointer to any function in the system
• Threads mostly lack awareness of OOP ideas and environment
• Partially due to the hybrid nature of C++?

● Java Model
● Objects and threads are separate entities

● Threads are objects in themselves
● Can be joined together (complex object implements

java.lang.Runnable)
• BUT: Properties of connection between object and thread are not

well-defined or understood

65

Java and Concurrency

● Java has a passive object model
● Objects, threads separate entities

● Primitive control over interactions

● Synchronization capabilities also primitive
● “Synchronized keyword” guarantees safety but not

liveness
● Deadlock is easy to create
● Fair scheduling is not an option

66

Actors:
A Model of Distributed Objects

Thread
Stat
e

Procedur
e

Thread Stat
e

Procedur
e

Thread
Stat
e

Procedur
e

Interface

Interfac
e

Interfac
e

Messag
es

Actor system - collection of
independent agents interacting via
message passing

An actor can do one of three things:
1.Create a new actor and initialize its behavior
2.Send a message to an existing actor
3.Change its local state or behavior

Features
• Acquaintances

•initial, created, acquired
•History Sensitive
•Asynchronous
communication

Distributed Objects

● Issues with Distributed Objects
● Abstraction
● Performance
● Latency
● Partial failure
● Synchronization
● Complexity
● …..

● Techniques
● Message Passing

● Object knows about network;
● Network data is minimum

● Argument/Return Passing
● Like RPC.
● Network data = args + return

result + names
● Serializing and Sending Object

● Actual object code is sent. Might
require synchronization.

● Network data = object code +
object state + sync info

● Shared Memory
● based on DSM implementation
● Network Data = Data touched +

synchronization info

Intro to Distributed Systems
Middleware 68

Cloud Computing

● An example: Netflix
● Offers Online streaming video service (17,000+ titles in

2010)
● Netflix website with support for video search
● Recommendation engines
● Instant playback on 100s of devices including xbox,

game consoles, roku, mobile devices, etc.
● Transcoding service
● …

● Cloud - Large multi-tenant data centers hosting storage,
computing, analytics, applications as services.
● Amazon, Salesforce, Google, Microsoft

 Netflix App: version 0 (how
it started)

● Plays movies on demand on a mobile device

Server

Netflix.com

Simple Design
• Web Services standards
• Netflix owns the data center
• Uses a fairly standard server

Challenges with Version 0

● Incredible growth in customers and devices
led to
● Need for horizontal scaling of every layer of

software stack.
● Needed to support high availability, low latency,

synchronization, fault-tolerance, …
● Had a decision to make:

● Build their own data centers to do all the above
OR

● Write a check to someone else to do all that
instead 71

Netflix migrated to Amazon
AWS

● John Ciancutti, VP engg. Netflix 2010 [Technical Blog]

● Letting Amazon focus on data center infrastructure allows our engineers
to focus on building and improving our business.

● Amazon calls their web services “undifferentiated heavy lifting” and
that’s what it is. The problems they are trying to solve are incredibly
difficult ones, but they aren’t specific to our business. Every successful
company has to figure out great storage, hardware failover, network
infrastructure, etc.

● We’re not very good at predicting customer growth or device engagement.
● Netflix has revised our public guidance for the number of customers we

will end 2010 with three times over the course of the year. We are
operating in a fast-changing and emerging market. How may
subscribers would you guess used our Wii application the week it was
launched? How many would you guess will use it next month? We have
to ask ourselves these questions for each device we launch because our
software systems need to scale to the size of the business, every time.

● Cloud environments are ideal for horizontally scaling architecture. We
don‘t have to guess months ahead what our hardware, storage, and
networking needs are going to be. We can programmatically access
more off these resources from shared pools within AWS almost
instantly.

72

Netflix “outsourcing”
components

● Think of Netflix in terms of main components
● The API you see that runs on your client system
● The routing policy used to connect you to a data

center
● The Netflix “home page” service in that data

center
● The movie you end up downloading

● Netflix cloud-based design
● breaks the solution into parts
● Builds each of these aspects itself
● But then pays a hosting company to run each

part, and not necessarily just one company!
73

Netflix Version 1

74

Netflix
Home

Amazon.com

Movies:
Master
copies

Features of new version

● Netflix.com is actually a “pseudonym” for
Amazon.com
● An IP address domain within Amazon.com
● Amazon’s control over the DNS allows it to vector

your request to a nearby Amazon.com data
center, then on arrival, Amazon gateway routes
request to a Netflix cloud service component

● The number of these varies elastically based on
load Netflix is experiencing

● Amazon AWS used to host the master copies
of Netflix movies

75

Akamai

● Akamai is an example of a “content
distribution service”
● A company that plays an intermediary role
● Content is delivered to the service by Netflix.com

(from its Amazon.com platform)
● Akamai makes copies “as needed” and distributes

them to end users who present Akamai with
appropriate URLs

● Netflix.com (within Amazon.com) returns a
web page with “redirection” URLs to tell your
browser app what to fetch from Akamai

76

Multi-tier View of Cloud
Computing

● Good to view cloud applications running
in a data center in a tiered way

● Outer tier near the edge of the cloud
hosts applications & web-sites
● Clients typically use web browsers or

web services interface to talk to the
outer tier

● focus is on vast numbers of clients &
rapid response.

● Inside the cloud (next tier) we find high
volume services that operate in a
pipelined manner, asynchronously
● Caching to support nimble outer tier

services
● Deep inside the cloud is a world of

virtual computer clusters that are
scheduled to share resources and on
which applications like MapReduce
(Hadoop) are very popular

77

1
11

1

1
1

1

1

1 Index
DB

2
2

Shards

2
2

2

2

2

2

http://images.google.com/imgres?imgurl=http://www.permissionresearch.com/Images/PR/pr2_woman_computer.gif&imgrefurl=http://www.blogher.com/be-one-first-see-microsoft-crm-live-attend-free-webinar&usg=__lMjW4razDQKsX45Ah8y3J0kSVdQ=&h=216&w=235&sz=31&hl=en&start=7&um=1&tbnid=bxfIJACxZKDCIM:&tbnh=100&tbnw=109&prev=/images?q=woman+computer&hl=en&rls=com.microsoft:en-us:IE-SearchBox&rlz=1I7GGLD&um=1
http://images.google.com/imgres?imgurl=http://www.getleadsmakesales.com/images/happy-man-computer.jpg&imgrefurl=http://www.getleadsmakesales.com/&usg=__KOaA2n5l-Fn0ND7N2fVf64b8uG4=&h=330&w=240&sz=19&hl=en&start=5&um=1&tbnid=KASAO1zw1pAjXM:&tbnh=119&tbnw=87&prev=/images?q=man+computer&hl=en&rls=com.microsoft:en-us:IE-SearchBox&rlz=1I7GGLD&um=1

In the outer tiers replication
is key

● We need to replicate
● Processing: each client has what seems to be a

private, dedicated server (for a little while)

● Data: as much as possible, that server has copies of
the data it needs to respond to client requests without
any delay at all

● Control information: the entire structure is managed
in an agreed-upon way by a decentralized cloud
management infrastructure

But, In a more general setting - with updates and
faults, consistency becomes hard to maintain
across the replicas (more later)

78

Tradeoffs in Distributed Systems

Some interesting experiences

79

HOPELESSNESS
AND CONFIDENCE
IN DISTRIBUTED
SYSTEMS DESIGN

https://youtu.be/TlU1opuCXB0

http://www.youtube.com/watch?v=TlU1opuCXB0
https://youtu.be/TlU1opuCXB0

Tradeoffs: The CAP Conjecture
(Eric Brewer: PODC 2000 Keynote)

It is impossible for a networked shared-data system to

provide following three guarantees at the same time:

● Consistency

● Availability

● Partition-tolerance

Proved in 2002 by Gilbert and Lynch (CAP Theorem)

Will revisit later…

80

