Distributed Computing
Systems

Prof. Nalini Venkatasubramanian

Dept. of Computer Science
Donald Bren School of Information and Computer Sciences

University of California, Irvine

Distributed Computing Systems
Winter 2021

Lecture 1 - Introduction to Distributed Computing
CS 230: Mon/Wed 2 - 3:20pm (VRTL)
CS 230P: Mon/Wed 6:30 - 7:50 pm (VRTL)
Prof. Nalini Venkatasubramanian

nhalini@uci.edu

mailto:nalini@uci.edu

DISTRIBUTED SYSTEMS

Course logistics and details
e Course Web page -

e Lectures
e Mon/Wed 2:00 — 3:20 p.m, Virtual synchronous lecture
e See webpage/canvas for zoom link

® Must Read: Course Reading List
e Collection of Technical papers and reports by topic e

e Reference Books (recommended)
e Distributed Systems: Concepts & Design, 5th ed. by Coulouris et al.(preferred)

e Distributed Systems: Principles and Paradigms, 2nd ed. by Tanenbaum &
van Steen.

e Distributed Computing: Principles, Algorithms, and Systems, 1st ed. by
Kshemkalyani & Singhal. =

e TA for Course

Course logistics and details

e Homeworks
o
[

e Course Examination (tentatively Week 9)
e Course Project

Prerequisite Knowledge

e Necessary — Operating Systems Concepts and
Principles, basic computer system architecture

e Highly Desirable — Understanding of Computer
Networks, Network Protocols

e Necessary — Basic programming skills in Java,
Python, C++,...

CompSci 230 Grading Policy

e Homeworks - 40% of final grade

e 4 homeworks - one for each segment of the course
— Problem sets, paper summaries (2 in each set)
e A homework due approximately every 2 weeks

e Make sure to follow instructions while writing and creating
summary sets.

e Course Exam — 30% of final grade
e Class Project - 30% of final grade

e Final assignment of grades will be based on a curve.

Syllabus and Lecture schedule

Part O - Introduction to Distributed Systems
Part 1: Time and State in Distributed Systems

@)
©)

Part 2: From Operating Systems to Distributed Systems

©)

©)
@)
@)

Part 3: Messaging and Communication in Distributed Systems
O

Part 4: Reliability and Fault Tolerance in Distributed Systems

O

1 Jan 4, 6

2 Jan 11, 13

3 Jan 18 (holiday), 20

Jan 25, 27
5 Feb1,3
6 Feb 8,10

7 Feb 15(holiday), 17
8 Feb 22, 24

Feb 26 (CS Seminar)
9 Mar1l, 3
10 Mar38, 10

11 Mar15-19

Lecture Topic

Introduction to distributed systems and
models

Time in Distributed Systems
(Physical/Logical Clocks, Clock
Synchronization)

Global State in Distributed Systems

Global State (cont),
Distributed Coordination - RPC, DSM,
Distributed Mutual Exclusion, Deadlocks

Distributed Resource management
Scheduling,Migration, Load Balancing,

Distributed FileSystems

Group Communication,

ALM, Publish/Subscribe, Fault Tolerance
Fault Tolerance, Failure Detection

Course Exam, Consensus

Replication, Replicated State
Management

Deadlines for activities

Project group formation
(set up AWS accounts)

Project proposal: Jan 15
(Lab: Hadoop intro and
setup tutorial)
HW 1 released

Homework 1 due Jan 23
Hands-on Project Step 1:

due Jan 29
HW 2 released

Homework 2 due Feb 6

Hands-on Project Step 2:
due Feb 16

Project Step 3 meetings
HW 3 released

Homework 3 due Feb 27
Project Step 3 meetings

Project update
HW 4 released

Homework 4 due Mar 12

Project demos, reports, slides due

Lecture Schedule

e Week 1 (Part 0): Distributed Systems Introduction
o Needs/Paradigms
o Basic Concepts and Terminology, Concurrency
o Weeks 2,3 (Part 1): Time and State in Distributed Systems
o Physical and Logical Clocks
o Distributed Snapshots and State Capture
e Week 4,5,6: Distributed Coordination and Resource Management
e Interprocess Communication
e Remote Procedure Calls, Distributed Shared Memory
e Distributed Process Coordination/Synchronization
e Distributed Mutual Exclusion/Deadlocks, Leader Election
e Distributed Process and Resource Management
e Task Migration, Load Balancing
e Distributed I/O and Storage Subsystems
e Distributed FileSystems

Lecture Schedule

o

e Messaging in Distributed Systems, ALM

e Group Communication and Synchrony

e Publish/Subscribe Based Communication
o

Failure Models

Fault Detection

Consensus

Replication, Replicated State Machines

What is not covered

e Security in Distributed Systems (Prof. Tsudik)

e Distributed Database Management and
Transaction Processing (CS 223, Prof. Mehrotra)

e Distributed Objects and Middleware Platforms
(CS237 - Spring Quarter 2020, Prof. Nalini)

Distributed Systems

® Lamport’s Definition

® “You know you have one when the crash of a computer you have
never heard of stops you from getting any work done.”

® “A number of interconnected autonomous computers that provide

services to meet the information processing needs of modern
enterprises.”

® Andrew Tanenbaum

® FOLDOC (Free on-line Dictionary) -??

appears as one local machine.

“client-server organization”

log (people per computer)

People-to-Computer Ratio Over

year

time

From David Culler (Berkeley)

streaming
information
to/from physical
world

What is a Distributed System?

Google ﬂ =
YaHoO! @ G

- Baléb upr S zo0m

What is a Distributed System?

[i:p'g’

flickr You)

@‘co
Bal @ l I App Store onom t‘z
a7

Google

YAaHOoO!

What is a Distributed System?

1] Tube

A0 o=
Bal @ r@’ App Store

Distributed Computing Systems

Globus Grid Computing Toolkit

Gnutella P2P Network

L

PlanetLab Cloud Computing Offerings

Parallel Systems

e Multiprocessor systems with more than one CPU
in close communication.

e Improved Throughput, increased speedup,
increased reliability.

e Kinds:

e Vector and pipelined
e Symmetric and asymmetric multiprocessing
e Distributed memory vs. shared memory

e Programming models:

e Tightly coupled vs. loosely coupled ,message-based vs. shared
variable

Parallel Computing Systems

ILLIAC 2 (Ulllinois)

Vihide2

Climate modeling,

| earthquake

. simulations, genome

_ analysis, protein

' folding, nuclear fusion
research,

il
|l HRSid i 8
P o | i b1 BE
™ -'x"'.--r-ﬂ - gl [11
i A - "-‘\ !
AL J
» gk} e
| S : ,
| i {1 1
|

Tian

i

he-1(China)

IBM Blue Gene

Connection Machine (MIT)

Peer to Peer Systems

P2P File Sharing

\ p R Napster, Gnutella, Kazaa, eDonkey,

22" e\ P BitTorrent

o ot NN L)~ Chord, CAN, Pastry/Tapestry,

AN M Kademlia

P s J y” (, N ¢ P2P Communications
PR e, S0 \NVE S MSN, Skype, Social Networking Apps

/8 O -4 | P2P Distributed Computing

5 IS R Seti@home

Use the vast resources of machines at the edge of the Internet to build a network that
allows resource sharing without any central authority .

P2P: Napster to BitCoin

1973 1979

PUBLIC KEY CRYPTOGRAPHY MERKLE TREES
What would later spawn the RSA Ralph Merkle invents what would become
encryption algorithm is first implemented

1981

O O

the basis of git - and other versioning systems.

UNTRACEABLE
ELECTRONIC MAIL
RETURN ADDRESSES,
AND DIGITAL
PSEUDONYMS
David Chaum proposes
“mix networks® for
ancnymous
communication

A
E-CASH
David Chaum
v/

1995

DIGICASH
David Chaum founds the first known
“eletronic money corporation”

1992

PRICING VIA PROCESSING
OR COMBATTING JUNK MAIL
Cynthia Dwork and Moni Naor present
an early iteration’ of the Hashcash concept

1969 1979
ARPANET USENET

The early internet was
a peer to peer network

Jurassic forums.

ABRIERHISIO R
OF P2P CONTENT
BHISIER BN G N

A
1984
SONY X UNIVERSAL
The Betamax case, and
jurisprudence in favour of P2P

A
1993

RAR INDEPENDENCE! DMCA clients
The popular compression A Declaration of the
Independence of

format is invented

1997
HASCASH
Adam Back reproposes
the Hashcash
1998

BITGOLD
Nick Szabo

B-MONEY 2001
Wei Dai BITTORRENT
Bram Cohen designs BitTorrent,
which soon becorne:
popular w
files over the internet
v
FREENET
2000
Darknets
are born
v

1997 1999
HOTLINE | NAPSTER

A
2000
GNUTELLA
Flooding query
gets used in
scale

A
MP3.COM 4

A
2001
KAZAA

A
2000

A A
1996 1998 2002

begin to spra

Cyberspace is published A
by John Perry Barlow

1999
MP3>SEX
*Mp3" becomes more popular

insearches than"sex’

2001
NAPSTER
SHUTDOWN
Napster is legally forced by
the music industry to shutdown
and pay a hefty settlernent sum

A
2004

PIRATE BAY
PTB is built as an
easy gateway

to torrents

A
2005

MECAUPLOAD
mostly around ad-
ba:

RAPIDSHARE
File sharing se

rvices
.

sed business

models

A
2006

PIRATEBAY
1ST RAID

Servers are seized in Sweden -
the pressure would only increase

NAMECOIN

20

The first bitcoin fork

v
2013-14
DSNs
Decentralised
Storage Networks

2009
N

the first transaction

i as its file sharing
pillar
2012 v
DIASPORA ‘
The first mainstream
“"decentralised social A
network™?
IPFS

Juan Benet

designs a trustless
network upon
generalized Merkie DAG
Y

A

STORI

A decentralised.
end-to-end encrypted
Dropbox

v

[|

MASTER MAID
COIN SAFE
A file sharing
earliest 1COs, project fundraised
later turned and built on
into Omini Omni

One of the

Real-time distributed systems

Correct system function depends on timeliness
Feedback/control loops |
Sensors and actuators

Hard real-time systems -

e Failure if response time too long.
e Secondary storage is limited

e Soft real-time systems -
e Less accurate if response time is too |ofH-
e Useful in applications such as multimedia, virtual reality.

New application domains

\na"_‘"d.C'l"i'i'lf..tS A U
N ‘uu
1 o
"
e |z W\ DP
17 C
U l“‘-i J
. o ti I Leg Theater
m ication Commands
0N TTP/ :
= L = Autonomous
essage ||DO . % Teams
NS ueue loa
: F file
OoWnNT Crypt rypto
. COR Tr ack g
' a ile ckel PC Fi RM
-m N "\ - S
(ans- :s sue eV Track g
'e" ile fMessage
A ! atewa iy ueue
Logistic: Browser = XML/
Endd o HTTP
n
load
Developmen % Messags file s
Coalition
Support g Partners
Systems -

Mapping problem space requirements to solution space artifacts is very hard!

SufceFloding Atera -]

Mobile & ubiquitous
distributed systems

Virtual

-

W_} “‘”‘”‘ - TatTonarawarcnesSTor Hretighte ACOUSTI

— - - Sensing -> Sensemaking for the Fire Practice c APPLICATION
> - SAFIREStreams
ANALYSI » Alert
Sensor
ot et Sensor Stream Decision Support Services S - |
i Processing (Alerts, Queries, Replay, Triggers) .
S » Conversation
Firefighter B :
B o Monitdring
Mesh [and
el):oulers Temperature i
Backbone humidity, Localization » Image E nd
Video
displ Tagging
» Spatia

Sensor/Incident

Storages Archival Ebox External Data Accgés

Mobile'
cameras

oal: Reliable Timely SA over Unpredictable Infrastructure

the internet of Things to County Facility Equipped with Antenna

Extending

Everyone: Residents of an affordable
housing complex who cannot otherwise
afford broadband are given smart

com munity sensors. A resident, possibly
elderly, is in distress and the sensor sends
a signal to the nearest base station.

Cloud-based
public safety
awareness and
alert system

MONTGOMERY HOUSING
PARTNERSHIP

m obile devlce, alert is sent to
= the dispatch centerand a
- within minutes first respondersarrive without firstresponse unitis sent to
any need for nranual action by the person in theresident in distress.
distress

SIRELESS
o ase oo Electric University of California, Irvine

Q‘ SicFox S%‘I}‘Ieldel" UCIerne

Today’s Platforms Landscape - examples

BitTorrent

Memcached

Hadoop (+ HDFS)

MapReduce

Spark

Zookeeper
Spanner
Storm
Dynamo

Spread

Goal

swarm-style (unstructured peer-oriented) downloads
- used in Twitter datacenter

A massive key-value store

Reliable, scalable, high-performance distirbuted
computing platform for data reduction

Programming massively parallel/distributed
applications

Programming massively parallel/distributed real-time
applications

Support for coordination in distributed clusters
Globally distributed database solution/storage service
Dealing with Stream Data processing

Amazon’s massively replicated key-value store

Group communication and replicated data

Distributed Systems

Hardware — very cheap ; Human — very expensive

Characterizing Distributed Systems

e Multiple Autonomous Computers
e each consisting of CPU’s, local memory, stable storage, I/O paths
connecting to the environment
e Multiple architectural possibilities

e client/server, peer-oriented, cloud computing, edge-cloud
continuum

e Distribute computation among many processors.
e Geographically Distributed
e Interconnections
e some I/O paths interconnect computers that talk to each other
e \arious communication possibilities
e Shared State
e No shared physical memory - loosely coupled
e Systems cooperate to maintain shared state

e Maintaining global invariants requires correct and coordinated operation
of multiple computers.

Why Distributed Computing?

e Inherent distribution

e Support for interaction - email/messaging/social media
e Computation Speedup - improved performance
e Fault tolerance and Reliability
e Resource Sharing
o
e Scalability
e Flexibility

Why are Distributed Systems
Hard?

e Scale

e Loss of control over parts of the system
e Unreliability of message passing

e Failure
[

The Eight Fallacies of
Distributed Computing

Peter Deutsch

Essentially everyone, when they first build a distributed application, makes the following eight assumptions. All prove to be false
in the long run and all cause big trouble and painful learning experiences.

1. The network is reliable
2. Latency is zero
3. Bandwidth is infinite
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is zero
8. The network is homogeneous
For more details, read the article by Arnon Rotem-Gal-Oz

An entertaining talk: https://www.youtube.com/watch?v=JG2ESDGwWHHY

https://www.youtube.com/watch?v=JG2ESDGwHHY

Design goals of a distributed
system

e Sharing

e Openness(extensibility)

e Concurrency
o
e Scalability
o
Fault tolerance/availability
e Transparency

Modeling Distributed
Systems

Classifying Distributed
Systems

e Based on Architectural Models
® (Client-Server, Peer-to-peer, Proxy based,...

e Based on computation/communication - degree
of synchrony

e Based on communication style

e Based on Fault model
o
[

Architectural Models: Client-server

invocation @
@ result

Key:
Process: O Computer:

e Client/server computing allocates application processing between the client
and server processes.
e Request-response paradigm

e A typical application has three basic components:

invocation

result

Client/Server Models

e There are at least three different models for
distributing these functions:

Architectural Models: Peer-to-peer

Peer 2

* No single node
server as a
server

* All nodes act as
client (and
server) at a time

More Architectural Models

Multiple servers, proxy servers and caches, mobile code, ...

Service
r—=— - = = 1 a) client request results in the downloading of applet code
=G |
— — | @K @
I I Applet code kY
I < I
| @ |) client interacts with the applet
| | Mobile code
O Ny ="
server
Coome) |
| |
Multiple _ 3
servers

/ server
Proxy

server

Web

Computation in distributed systems

Two variants based on bound on timing of events

e Asynchronous system

e Synchronous system

o Concurrent Programming Models

Concurrency issues

e Concurrency and correctness - general
properties
o
o
e Consider the requirements of transaction based
systems

Parallel Computing Systems

Special case of a distributed system

often to run a special application(s)
Designed to run a single program faster

Supercomputer - high-end parallel machine

Barcelona - BSC MareNostrum 4
(165,888 cores, 24 cores/processor)

The world’s most elegant supercomputer

Intel -Cray Theta @Argonne
281,888 core, 64 cores per
processors

11.69 Peta-flops

Aurora: USA’s First ExaSCALE computer

Imagine ...

- A computer so powerful that it
can predict future climate
patterns, saving millions of
people from drought, flood, and
devastation.

Aurora

- A computer so powerful that it
can simulate every activity of a
cancer cell, at the sub-atomic
level, with such accuracy that
we can effectively cure it, or
create a personalized treatment,
just for you.

Argonne @ENERGY (inte) cmas Uhioms

o Argonne,,.

cf: Argonne National Labs

https://voutu.be/dYUEFvgQso8

http://www.youtube.com/watch?v=dYUEFvqQso8
https://youtu.be/dYUEFvqQso8

Flynn’s Taxonomy for Parallel
Computing

Instructions
Single (SI) Multiple (M)
SISD MISD
Single-threaded |Pipeline architecture
process
8
A SIMD MIMD

Vector Processing Multi-threaded
Programming

Multiple (MD) Single (SD)

Parallelism — A Practical Realization of Concurrency

SISD (Single Instruction Single Data)

Processor

Instructions

A sequential computer which exploits no parallelism in either the
instruction or data streams.

Examples of SISD architecture are the traditional uniprocessor machines
(currently manufactured PCs have multiple processors) or old mainframes.

http://en.wikipedia.org/wiki/Uniprocessor
http://en.wikipedia.org/wiki/Mainframe_computer

SIMD (Single Instruction Multiple Data)

Processor

|

Instructions

A computer which exploits multiple data streams against a single instruction
stream to perform operations which may be naturally parallelized.
For example, an array processorFor example, an array processor or GPU.

http://en.wikipedia.org/wiki/Array_processor
http://en.wikipedia.org/wiki/GPU

MISD (Multiple Instruction Single Data)

I Instructions

I Instructions

Multiple instructions operate on a single data stream.

Uncommon architecture which is generally used for fault tolerance.
Heterogeneous systems operate on the same data stream and
aim to agree on the resuilt.

Examples include the Space Shuttle flight control computer.

http://en.wikipedia.org/wiki/Space_Shuttle

MIMD(Multiple Instruction Multiple Data)

Processor

Instructions
Processor

Instructions
Multiple autonomous processors simultaneously executing different instructions on

different data.
Distributed systems are generally recognized to be MIMD architectures;

either exploiting a single shared memory space or a distributed memory space.

http://en.wikipedia.org/wiki/Distributed_system

Communication in Distributed
Systems

e Provide support for entities to communicate
among themselves

e 2 paradigms
o
e Processes communicate by sharing messages
o
e Communication through a virtual shared memory.

Message Passing

process P process q
State State
send i receive
——
\ Communication channel /
Outgoing message buffer Incoming message buffer

® Basic primitives
o

Properties of communication channel
Latency, bandwidth and jitter

Messaging issues

Synchronous
(

Asynchronous
{

e Unreliable communication

e Reliable communication

Synchronous vs. Asynchronous

Communication
Personal greetings
Email

Voice call

Online messenger/chat

Letter correspondence

Skype call
Voice mail/voice SMS

Text messages

Type (sync/async)
Sync

Async

Sync

Sync ?

Async

Sync
Async

Async

Remote Procedure Call

Builds on message passing

e "maybe call”
e “at least once call”
e “at most once call”

Distributed Shared Memory

e Abstraction used for processes on machines that
do not share memory

e Processes read and write from virtual shared
memory.

e Caching on local node for efficiency

Fault Models in Distributed
Systems

e Crash failures

e Failstop - processor fails by halting; detectable by
other processors.

e Byzantine failures
o
o

Other Fault Models in
Distributed Systems

e Dealing with message loss

o
e Processor fails by halting. Link fails by losing
messages but does not delay, duplicate or corrupt
messages.
o
e processor receives only a subset of messages sent to
it
o
e processor fails by transmitting only a subset of the
messages it actually attempts to send.
o

e Receive and/or send omission

Process

Failure Models

Omission and arbitrary failures

Class of failure Affects Description

Fail-stop Process Process halts and remains halted. Other processes may
detect this state.

Crash Process Process halts and remains halted. Other processes may
not be able to detect this state.

Omission Channel A message inserted in an outgoing message buffer never
arrives at the other end’s incoming message buffer.

Send-omission Channel A process completes a send, but the message is not put

Receive-omission Process

Arbitrary
(Byzantine)

Process or
channel

in its outgoing message buffer.

A message is put in a process’s incoming message
buffer, but that process does not receive it.
Process/channel exhibits arbitrary behaviour: it may
send/transmit arbitrary messages at arbitrary times,
commit omissions; a process may stop or take an
incorrect step.

Failure Models

Timing failures

Class of Failure Affects Description

Clock Process Process’s local clock exceeds the bounds on its
rate of drift from real time.

Performance Process Process exceeds the bounds on the interval
between two steps.

Performance Channel A message’s transmission takes longer than the

stated bound.

Other distributed system
issues

Concurrency and Synchronization
Distributed Deadlocks

Time in distributed systems
Naming

Replication

o
Migration
o

e Security

EXTRA MATERIAL

Middleware for distributed systems

e Middleware is the software between the application programs and
the Operating System/base networking.

e Distributed Middleware

o
(]
e Higher than “lower” level abstractions, such as sockets, monitors
provided by the OS operating system
o

Useful Management Services: Naming and Directory Service, State Capture Service. Event Service,
Transaction Service, Fault Detection Service, Discovery/trading Service, Replication Service, Migration
Services

cf: Arno Jacobsen lectures, Univ. of Toronto

Types of Middleware

e Integrated Sets of Services

e DCE from OSF -

Domain Specific Integration frameworks

Distributed Object Frameworks
Component services and frameworks
Web-Service Based Frameworks
Enterprise Service Buses

Cloud Based Frameworks

Applications

DCE DCE Distributed File Service E

Securit ~s — g,;

Yy e . Other Basic g
SRt Distributed Directory Services S =

Time Service Service
DCE Remote Procedure Calls
DCE Threads Services
Operating System Transport Services
Northbound

SNMP L1 CORB, P XML J Interfaces
Functional

pcoey (il il SRR Module:

B T —————

& & A

Framework Services Custom Extensions Integrations

WebNMS Network Management Framework
Workflow Management and Business Activity Monitoring
&y ActivityEvents
5 Al % "-F civiyEvents
© Monitor
\\ Business Process
Communicatio
Events
Publish/Subscribe Point-to-Point Request/Reply Orchestration -
Content-based Routing) Business Process
4 Execution Events

Modeler

Visualize

Workflow and Business Process Execution

WPS (BPEL) WCS (ESB)

WID

Communication Abstractions

Event Management
Framework

Computing, Storage, Instruments and Networking Resources

Distributed Computing Environment (DCE)

e DCE - from the Open Software Foundation (OSF), offers an environment

that spans multiple architectures, protocols, and operating systems
(supported by major software vendors)

Applications
=
DCE DCE Distributed File Service %
Security DCE DCE . =
Service Distributed Directory Other B aste g
. . . Services =
Time Service Service
DCE Remote Procedure Calls

DCE Threads Services

Operating System Transport Services

Distributed Object Models

e Goal: Merge distributed computing/parallelism with an object model

e Encapsulation, modularity, abstraction
e Separation of concerns

e Increased efficiency of algorithms

e Use objects as the basis (lends itself well to natural design of
algorithms)

e Build network-enabled applications

e Objects on different machines/platforms communicate

CORBA, COM, DCOM, JINI, EJB, J2EE, Agent and actor-based models

The Object Management
Architecture (OMA)

Application objects: document Common facilities: accessing databases,
handling objects. printing files, etc.
Application Common

Objects facilities
_ Object Request A/OI;B: the communication hub for

Broker all objects in the system

|

Object Services

Object Services: object events, persistent
objects, etc.

Objects and Threads

e C++ Model
o

e Pthreads (POSIX threads)
e Invoke by giving a function pointer to any function in the system
e Threads mostly lack awareness of OOP ideas and environment
e Partially due to the hybrid nature of C++?

e Java Model

e Threads are objects in themselves
e Can be joined together (complex object implements
java.lang.Runnable)

e BUT: Properties of connection between object and thread are not
well-defined or understood

Java and Concurrency

e Java has a passive object model

o
e Primitive control over interactions

¢ “"Synchronized keyword” guarantees safety but not
liveness

e Deadlock is easy to create
e Fair scheduling is not an option

Actors:
A Model of Distributed Objects

Interfac
o d Stat

Interface Procedu .
© Actor system - collection of

independent agents interacting via
message passing

Features
« Acquaintances

sinitial, created, acquired
*History Sensitive
*Asynchronous
communication

An actor can do one of three things:
1.Create a new actor and initialize its behavior
2.Send a message to an existing actor
3.Change its local state or behavior

Distributed Objects

e Techniques

Object knows about network;
Network data is minimum

Like RPC.

Network data = args + return
result + names

Actual object code is sent. Might
require synchronization.

Network data = object code +
object state + sync info

based on DSM implementation

Network Data = Data touched +
synchronization info

e Issues with Distributed Objects

Cloud Computing

e An example: Netflix
o

Netflix App: version 0 (how
it started)

e Plays movies on demand on a mobile device

|||||||||
2 Days in Paris
-
N
Two Days in Z
e
*hwd

Server
Simple Design

~
Netflix.com
e Web Services standards

* Netflix owns the data center
e Uses a fairly standard server

Challenges with Version 0

e Incredible growth in customers and devices
led to

e Had a decision to make:

Netflix migrated to Amazon
AWS

e John Ciancutti, VP engg. Netflix 2010 [Technical Blog]

o
e Amazon calls their web services “undifferentiated heavy lifting” and
that’s what it is. The problems they are trying to solve are incredibly
difficult ones, but they aren’t specific to our business. Every successful
company has to figure out great storage, hardware failover, network
infrastructure, etc.
[

e Netflix has revised our public guidance for the number of customers we
will end 2010 with three times over the course of the year. We are
operating in a fast-changing and emerging market. How may
subscribers would you guess used our Wii application the week it was
launched? How many would you guess will use it next month? We have
to ask ourselves these questions for each device we launch because our
software systems need to scale to the size of the business, every time.

e Cloud environments are ideal for horizontally scaling architecture. We
don't have to guess months ahead what our hardware, storage, and
networking needs are going to be. We can programmatically access
more olff these resources from shared pools within AWS almost
instantly.

Netflix “outsourcing”
components

e Think of Netflix in terms of main components
o
o

e Netflix cloud-based design
o
o
o

Netflix Version 1

How It Works

Akamai's globally-distributed network of
servers pulls and caches content at the edge of
the Internet for superior whole site delivery Web server maintained by Akamai
customer for publishing content

The edge server pulls fresh
content as needed via an
optimized connection

Amazon.com

Features of new version

e Netflix.com is actually a “pseudonym” for
Amazon.com

e Amazon AWS used to host the master copies
of Netflix movies

Akamai

e Akamai is an example of a “content
distribution service”
o
o

e Netflix.com (within Amazon.com) returns a
web page with “redirection” URLs to tell your
browser app what to fetch from Akamai

Multi-tier View of Cloud
Computmg

Good to view cloud applications running { kz;&

in a data center in a tiered way D
Outer tier near the edge of the cloud *“ ' \
hosts applications & web-sites

Inside the cloud (next tier) we find high
volume services that operate in a
pipelined manner, asynchronously

Deep inside the cloud is a world of
virtual computer clusters that are
scheduled to share resources and on
which applications like MapReduce
(Hadoop) are very popular

http://images.google.com/imgres?imgurl=http://www.permissionresearch.com/Images/PR/pr2_woman_computer.gif&imgrefurl=http://www.blogher.com/be-one-first-see-microsoft-crm-live-attend-free-webinar&usg=__lMjW4razDQKsX45Ah8y3J0kSVdQ=&h=216&w=235&sz=31&hl=en&start=7&um=1&tbnid=bxfIJACxZKDCIM:&tbnh=100&tbnw=109&prev=/images?q=woman+computer&hl=en&rls=com.microsoft:en-us:IE-SearchBox&rlz=1I7GGLD&um=1
http://images.google.com/imgres?imgurl=http://www.getleadsmakesales.com/images/happy-man-computer.jpg&imgrefurl=http://www.getleadsmakesales.com/&usg=__KOaA2n5l-Fn0ND7N2fVf64b8uG4=&h=330&w=240&sz=19&hl=en&start=5&um=1&tbnid=KASAO1zw1pAjXM:&tbnh=119&tbnw=87&prev=/images?q=man+computer&hl=en&rls=com.microsoft:en-us:IE-SearchBox&rlz=1I7GGLD&um=1

In the outer tiers replication
is key

e \We need to replicate

But, In a more general setting - with updates and
faults, consistency becomes hard to maintain
across the replicas (more later)

Tradeoffs in Distributed Systems

Some interesting experiences

HOPELESSNESS
AND CONFIDENCE
IN DISTRIBUTED

SYSTEMS DESIGN

https://voutu.be/TIU1opuCXB0

http://www.youtube.com/watch?v=TlU1opuCXB0
https://youtu.be/TlU1opuCXB0

Tradeoffs: The CAP Conjecture
(Eric Brewer: PODC 2000 Keynote)

It is impossible for a networked shared-data system to

provide following three guarantees at the same time:
e Consistency

e Availability
e Partition-tolerance
Proved in 2002 by Gilbert and Lynch (CAP Theorem)

Will revisit later...

