
Time in Distributed Systems
Prof. Nalini Venkatasubramanian

Distributed Computing Systems - Week 2
-includes slides/examples from

Indy Gupta (UIUC) and Kshemkalyani&Singhal (book slides)

The Concept of Time

●  The Concept of Time
●  A standard time is a set of instants with a temporal precedence

order < satisfying certain conditions [Van Benthem 83]:
●  Transitivity
●  Irreflexivity
●  Linearity
●  Eternity (∀x∃y: x<y)
●  Density (∀x,y: x<y → ∃z: x<z<y)

●  Transitivity and Irreflexivity imply asymmetry
●  A linearly ordered structure may be insufficient to represent

time in distributed systems..

Time and clocks
(A real world example)

Cloud airline reservation system (with multiple servers A, B, C,...)

●  Server A receives a client request to purchase last ticket on flight ABC 123.
●  Server A timestamps purchase using local clock 9h:15m:32.45s, and logs it. Replies

ok to client.
●  That was the last seat. Server A sends message to Server B saying “flight full.”

●  B enters “Flight ABC 123 full” + its own local clock value (which reads 9h:10m:

10.11s) into its log.

●  Server C queries A’s and B’s logs. Is confused that a client purchased a ticket at A

after the flight became full at B.
●  This may lead to further incorrect actions at C. cf: Indy Gupta, CS 425, UIUC

Time

Global Time & Global States of
Distributed Systems

●  Asynchronous distributed systems consist of several
processes
●  no common shared memory or global clock,
●  unpredictable processing delays
●  communicate (solely) via messages with unpredictable transmission

delays

●  Global time & global state are hard to realize
●  Rate of event occurrence may be very high
●  Event execution times may be very small

●  We can only approximate the global view
●  Simulate a synchronous distributed system on an asynchronous system
●  Simulate a global time – Clocks (Physical and Logical)
●  Simulate a global state – Global Snapshots

Simulate Synchronous
Distributed Systems

●  Synchronizers [Awerbuch 85]
●  Simulate clock pulses in such a way that a message is only

generated at a clock pulse and will be received before the next
pulse

●  Drawback
●  Very high message overhead

Global time in distributed systems

●  An accurate notion of global time is difficult to achieve in
distributed systems.
●  Uniform notion of time is necessary for correct operation
●  Apps: Mission critical distributed control, online games/

entertainment, financial apps, smart environments
●  We often derive “causality” from loosely synchronized clocks

●  Class Activity!!

●  Check wall clock, laptop clock (with sec setting), and mobile device
clock (use timer)

●  Check half way ;
●  Repeat with network/GPS turned off...

Simulating global time

●  Clocks in a distributed system drift
●  Relative to each other
●  Relative to a real world clock

●  Determination of this real world clock itself may be an issue

●  Clock Skew versus Drift
•  Clock Skew = Relative Difference in clock values of two processes

•  Like distance between two vehicles on a road

•  Clock Drift = Relative Difference in clock frequencies (rates) of two
processes

•  Like difference in speeds between 2 vehicles on a road

.

Clock Synchronization
●  Needed to simulate global time.

●  A non-zero clock drift will cause skew to continuously increase
●  If faster device is ahead, it will drift away

●  If faster device is behind, it will catch up and then drift away

●  Maximum Drift Rate (MDR) of a clock
●  Absolute MDR is defined relative to a Coordinated Universal Time (UTC)

●  MDR of a process depends on the environment.

●  Max drift rate between two clocks with similar MDR is 2 * MDR

●  Given a maximum acceptable skew M between any pair of clocks, need to
synchronize at least once every: M / (2 * MDR) time units

●  Since time = distance/speed

Clock Synchronization

●  Physical Clocks vs. Logical clocks

Physical Clock Synchronization

Physical Clocks

How do we measure real time?
● Early – Stonehenge, sundials
● 13th -17th century

●  Mechanical clocks based on
astronomical measurements

● Solar Day - Transit of the sun
● Solar Seconds - Solar Day/(3600*24)

Date Duration in mean solar
time

February 11 24 hours

March 26 24 hours − 18.1 sec

May 14 24 hours
June 19 24 hours + 13.1 sec
July 26 24 hours
September 16 24 hours − 21.3 sec
November 3 24 hours

December 22 24 hours + 29.9 sec

Length of apparent solar day (1998)
 – (cf: wikipedia)

Problem (1940): Rotation of earth varies!

Mean solar second = average over many days

Atomic Clocks

●  1948 - Counting transitions of a crystal
(Cesium 133, quartz) used as atomic
clock
●  crystal oscillates at a well known

frequency

●  2014 – NIST-F2 Atomic clock
●  Accuracy: ± 1 sec in 300 mil years
●  NIST-F2 measures particular transitions in

Cesium atom (9,192,631,770 vibrations
per second), in much colder environment,
minus 316F, than NIST-F1

●  TAI - International Atomic Time

●  9,192,631,779 transitions = 1 mean
solar second in 1948

UTC (Universal Coordinated Time)
From time to time, UTC skips a solar
second to stay in phase with the sun
(30+ times since 1958)

UTC is broadcast by several sources
(satellites…)

Next Generation Atomic Clocks
-- NIST F2

From Distributed Systems (cs.nju.edu.cn/distribute-systems/lecture-notes/ 15

How Clocks Work in Computers

Quartz
crystal

 Counter

Holding
register

Each crystal oscillation
decrements the counter by 1

When counter gets 0, its
value reloaded from the

holding register

CPU

When counter is 0, an
interrupt is generated, which

is call a clock tick

At each clock tick, an interrupt
service procedure add 1 to time

stored in memory Memory

Oscillation at a well-
defined frequency

Accuracy of Computer Clocks

● Modern timer chips (RTCs) have a relative
error of 1/100,000 – (~1 - 8 sec a day)

● To maintain synchronized clocks
● External Synchronization
● Can use UTC source (time server) to obtain

current notion of time

● Internal Synchronization
● Use solutions without UTC.

Cristian’s (Time Server) Algorithm
(external synchronization)
●  Uses a time server (S) to synchronize clocks

●  Time server keeps the reference time (say UTC)
●  A client asks the time server for time, the server responds with

its current time, and the client uses the received value to set its
clock.

P

S

Time

What’s the time?

Here’s the time t!

Check local clock to find time t

Set clock to t

What’s Wrong

18

●  But network round-trip time introduces errors…
●  By the time response message is received at P, time has moved on

●  Let RTT = response-received-time – request-sent-time
(measurable at client),

●  If we know (a) min = minimum client-server one-way transmission
time and (b) that the server timestamped the message at the last
possible instant before sending it back

●  Then, the actual time could be between [T+min,T+RTT— min]

P

S

Time

What’s the
time?

Here’s the time
t!

Check local clock to find time t

 Set clock to t
RT
T

Cristian’s Algorithm (cont.)

Cristian’s Algorithm (cont.)

♣  Client sets its clock to halfway between T+min and T
+RTT— min i.e., at T+RTT/2
☹ Expected (i.e., average) skew in client clock time = (RTT/2 – min)

♣  Can increase clock value, should never decrease it.
♣  Can adjust speed of clock too (either up or down is ok)
♣  Multiple requests to increase accuracy

♣ For unusually long RTTs, repeat the time request
♣ For non-uniform RTTs

♣ Drop values beyond threshold; Use averages (or weighted
average)

Berkeley UNIX algorithm
(Internal Synchronization)

● One Version
●  One daemon without UTC
●  Periodically, this daemon polls and asks all the machines for

their time
●  The machines respond.
●  The daemon computes an average time and then broadcasts

this average time.
● Another Version
●  Master/daemon uses Cristian’s algorithm to calculate time from

multiple sources, removes outliers, computes average and

broadcasts

Decentralized Averaging Algorithm
(Internal Synchronization)

● Each machine has a daemon without UTC
● Periodically, at fixed agreed-upon times,

each machine broadcasts its local time.
● Each of them calculates the average time

by averaging all the received local times.

Network Time Protocol (NTP)

●  Most widely used physical clock synchronization protocol
on the Internet (http://www.ntp.org)
●  Currently used: NTP V3 and V4

●  10-20 million NTP servers and clients in the Internet
●  Claimed Accuracy (Varies)

●  milliseconds on WANs, submilliseconds on LANs,
submicroseconds using a precision timesource

●  Nanosecond NTP in progress

NTP Design

●  Hierarchical tree of time
servers.
●  The primary server at the root

synchronizes with the UTC.
●  The next level contains

secondary servers, which act
as a backup to the primary
server.

●  At the lowest level is the
synchronization subnet which
has the clients.

●  Variant of Cristian’s algorithm
that does not use RTT’s, but
multiple 1-way messages

NTP Protocol - Determining Error

Child

Parent

Time

Let’s start protocol

Message 1

Message 1 send time ts1

Message 2 send time ts2
Message 1 recv time tr1

Message 2 recv time tr2

Message 2 ts1, tr2

24

•  Child calculates offset between its clock and parent’s
clock

•  Uses ts1, tr1, ts2, tr2
•  Offset is calculated as

o = (tr1 – tr2 + ts2 – ts1)/2

•  Suppose real offset is oreal
–  Child is ahead of parent by oreal
–  Parent is ahead of child by -oreal

•  Suppose one-way latency of Message 1 is L1 (L2 for Message 2)
•  No one knows L1 or L2!
•  Then

tr1 = ts1 + L1 + oreal
tr2 = ts2 + L2 – oreal

25

NTP Protocol - Determining Error

•  Subtracting second equation from the first
oreal = (tr1 – tr2 + ts2 – ts1)/2 + (L2 – L1)/2 => oreal = o + (L2 – L1)/2
=> |oreal – o| < |(L2 – L1)/2| < |(L2 + L1)/2|

–  Thus, the error is bounded by the round-trip-time

We still have a non-zero error! Will exist as long as message latency exists!

From (http://www.ece.udel.edu/~mills/database/brief/seminar/ntp.pdf)

From (http://www.ece.udel.edu/~mills/database/brief/seminar/ntp.pdf)

Logical Clock Synchronization

Ordering Events in a Distributed System

•  Trying to sync physical clocks is one approach.

•  What if we instead assigned timestamps to events that
were not absolute time?

•  Timestamps must obey causality to preserve event ordering
○  If an event A causally happens before another event B, then
■  timestamp(A) < timestamp(B)

○  Humans use causality all the time
E.g., I enter a house only after I unlock it
E.g., You receive a letter only after I send it

29

Logical Clocks

●  Used to determine causality in distributed
systems

●  Time is represented by non-negative integers
●  Event structures represent distributed

computation (in an abstract way)
●  A process can be viewed as consisting of a sequence

of events, where an event is an atomic transition of
the local state which happens in no time

●  Process Actions can be modeled using the 3 types of
events
● Send Message
● Receive Message
●  Internal (change of state)

Causal Relations

●  Distributed application results in a set of
distributed events
●  Induces a partial order 𐆋𐆌𐆍𐆎𐆜𐆠 causal precedence relation

●  Knowledge of this causal precedence relation is
useful in reasoning about and analyzing the
properties of distributed computations
●  Liveness and fairness in mutual exclusion
●  Consistency in replicated databases
● Distributed debugging, checkpointing

Event Ordering
● Lamport defined the “happens

before” (=>) relation
● If a and b are events in the same process,

and a occurs before b, then a => b.
● If a is the event of a message being sent

by one process and b is the event of the
message being received by another
process, then a => b.

● If X =>Y and Y=>Z then X => Z.
If a => b then time (a) => time (b)

P1

P2

P3

e21

e11

e31

e22

e13

global time

e12

e23

e32

e14

Program order: e13 < e14

Send-Receive: e23 < e12

Transitivity: e21 < e32

Processor Order: e precedes e’ in the same process

Send-Receive: e is a send and e’ is the corresponding
receive

Transitivity: exists e’’ s.t. e < e’’ and e’’< e’

Example:

Event Ordering- an example

Causal Ordering

●  “Happens Before” also called causal ordering
●  Possible to draw a causality relation between 2

events if
●  They happen in the same process
●  There is a chain of messages between them

●  “Happens Before” notion is not straightforward
in distributed systems
● No guarantees of synchronized clocks
●  Communication latency

Logical Clocks

●  A logical Clock C is some abstract mechanism which assigns
to any event e∈E the value C(e) of some time domain T such
that certain conditions are met

●  C:E→T :: T is a partially ordered set : e<e’→C(e)<C(e’) holds

●  Consequences of the clock condition [Morgan 85]:
●  Events occurring at a particular process are totally ordered by their

local sequence of occurrence
●  If an event e occurs before event e’ at some single process, then event e

is assigned a logical time earlier than the logical time assigned to event e’
●  For any message sent from one process to another, the logical time of

the send event is always earlier than the logical time of the receive
event
●  Each receive event has a corresponding send event
●  Future can not influence the past (causality relation)

Implementation of Logical Clocks

●  Requires
●  Data structures local to every process to represent logical time and
●  A protocol to update the data structures to ensure the consistency condition.

●  Each process Pi maintains data structures that allow it the following two

capabilities:
●  A local logical clock, denoted by LC_i , that helps process Pi measure its own

progress.
●  A logical global clock, denoted by GCi , that is a representation of process Pi

’s local view of the logical global time. Typically, lci is a part of gci

●  The protocol ensures that a process’s logical clock, and thus its view of

the global time, is managed consistently.
●  The protocol consists of the following two rules:

●  R1: This rule governs how the local logical clock is updated by a process when it
executes an event.

●  R2: This rule governs how a process updates its global logical clock to update its
view of the global time and global progress.

Types of Logical Clocks

● Systems of logical clocks differ in their
representation of logical time and also in
the protocol to update the logical clocks.

● 3 kinds of logical clocks
● Scalar
● Vector
● Matrix

Scalar Logical Clocks - Lamport

●  Proposed by Lamport in 1978 as an attempt to
totally order events in a distributed system.

●  Time domain is the set of non-negative integers.
●  The logical local clock of a process pi and its

local view of the global time are squashed into
one integer variable Ci .

● Monotonically increasing counter
● No relation with real clock

●  Each process keeps its own logical clock used to
timestamp events

Consistency with Scalar Clocks

●  To guarantee the clock condition, local clocks
must obey a simple protocol:
● When executing an internal event or a send event at

process Pi the clock Ci ticks
•  Ci += d (d>0)

● When Pi sends a message m, it piggybacks a logical
timestamp t which equals the time of the send event

● When executing a receive event at Pi where a
message with timestamp t is received, the clock is
advanced

•  Ci = max(Ci,t)+d (d>0)
●  Results in a partial ordering of events.

P2

Tim
e

Instruction or step

P1

P3

Message

0

0

0

Initial counters (clocks)

Lamport Timestamps

P2

Tim
e

Instruction or step

P1

P3

Message

Message send

ts = 1

ts = 1

Message carries

ts = 1

0

0

0

Lamport Timestamps

P2

Tim
e

Instruction or step

P1

P3

Message

1

1

Message carries

ts = 1

ts = max(local, msg) + 1
= max(0, 1)+1

= 2

0

0

0

Lamport Timestamps

P2

Tim
e

Instruction or step

P1

P3

Message

1

1

Message carries

ts = 2

2

2

max(2, 2)+1

=3

0

0

0

Lamport Timestamps

P2

Tim
e

Instruction or step

P1

P3

Message

1

1

2

2 3 4

3
max(3, 4)+1 =5

0

0

0

LLamport Timestamps

P2

Tim
e

Instruction or step

P1

P3

Message

1

1

2

2 3 4

3 5 6

7 2

0

0

0

Lamport Timestamps

Obeying Causality

P2

Tim
e

Instruction or step

P1

P3

Message

1

1

2

2 3 4

3 5 6

7

•  A 𐆋𐆌𐆍𐆎𐆜𐆠 B :: 1 < 2
•  B 𐆋𐆌𐆍𐆎𐆜𐆠 F :: 2 < 3
•  A 𐆋𐆌𐆍𐆎𐆜𐆠 F :: 1 < 3

A B C D E

 E’ F G

 H I J

2

0

0

0

Obeying Causality (2)

P2

Tim
e

Instruction or step

P1

P3

Message

1

1

2

2 3 4

3 5 6

7

A B C D E

 E’ F G

 H I J

•  H 𐆋𐆌𐆍𐆎𐆜𐆠 G :: 1 < 4
•  F 𐆋𐆌𐆍𐆎𐆜𐆠 J :: 3 < 7
•  H 𐆋𐆌𐆍𐆎𐆜𐆠 J :: 1 < 7
•  C 𐆋𐆌𐆍𐆎𐆜𐆠 J :: 3 < 7

2

0

0

0

Not always implying Causality

P2

Tim
e

Instruction or step

P1

P3

Message

1

1

2

2 3 4

3 5 6

7

A B C D E

 E’ F G

 H I J

•  ? C 𐆋𐆌𐆍𐆎𐆜𐆠 F ? :: 3 = 3
•  ? H 𐆋𐆌𐆍𐆎𐆜𐆠 C ? :: 1 < 3
•  (C, F) and (H, C) are pairs of

concurrent events

2

0

0

0

Concurrent Events

•  A pair of concurrent events doesn’t have a causal path from one event to another
(either way, in the pair)

•  Lamport timestamps not guaranteed to be ordered or unequal for concurrent
events

•  Ok, since concurrent events are not causality related!
•  Remember

E1 𐆋𐆌𐆍𐆎𐆜𐆠 E2 ⇒ timestamp(E1) < timestamp (E2), BUT
timestamp(E1) < timestamp (E2) ⇒ {E1 𐆋𐆌𐆍𐆎𐆜𐆠 E2} OR {E1 and E2 concurrent}

50

Total Ordering

● Extending partial order to total order

● Global timestamps:
● (Ta, Pa) where Ta is the local timestamp and

Pa is the process id.
● (Ta,Pa) < (Tb,Pb) iff
● (Ta < Tb) or ((Ta = Tb) and (Pa < Pb))

● Total order is consistent with partial order.

time Proc_id

Properties of Scalar Clocks

●  Event counting
●  If the increment value d is always 1, the scalar time

has the following interesting property: if event e has
a timestamp h, then h-1 represents the minimum
logical duration, counted in units of events, required
before producing the event e;

● We call it the height of the event e.
●  In other words, h-1 events have been produced

sequentially before the event e regardless of the
processes that produced these events.

Properties of Scalar Clocks

●  No Strong Consistency
●  The system of scalar clocks is not strongly

consistent; that is, for two events ei and ej ,
C(ei) < C(ej) does not imply ei → ej .

●  Reason: In scalar clocks, logical local clock and
logical global clock of a process are squashed
into one, resulting in the loss of causal
dependency information among events at
different processes.

Independence

●  Two events e,e’ are mutually independent (i.e. e||e’) if
~(e<e’)∧~(e’<e)
●  Two events are independent if they have the same timestamp
●  Events which are causally independent may get the same or

different timestamps
●  By looking at the timestamps of events it is not possible

to assert that some event could not influence some
other event
●  If C(e)<C(e’) then ~(e’<e) however, it is not possible to decide

whether e<e’ or e||e’
●  C is an order homomorphism which preserves < but it does not

preserves negations (i.e. obliterates a lot of structure by
mapping E into a linear order)

Problems with Total Ordering

●  A linearly ordered structure of time is not always
adequate for distributed systems
●  captures dependence of events
●  loses independence of events - artificially enforces an ordering

for events that need not be ordered – loses information
●  Mapping partial ordered events onto a linearly ordered set of

integers is losing information
●  Events which may happen simultaneously may get different

timestamps as if they happen in some definite order.

●  A partially ordered system of vectors forming a lattice
structure is a natural representation of time in a
distributed system

Vector Clocks
●  Independently developed by Fidge, Mattern and Schmuck.
●  Aim: To construct a mechanism by which each process gets an

optimal approximation of global time
●  Time representation

●  Set of n-dimensional non-negative integer vectors.
●  Each process has a clock Ci consisting of a vector of length n, where n

is the total number of processes vt[1..n], where vt[j] is the local logical
clock of Pj and describes the logical time progress at process Pj .

●  A process Pi ticks by incrementing its own component of its clock
●  Ci[i] += 1

●  The timestamp C(e) of an event e is the clock value after ticking
●  Each message gets a piggybacked timestamp consisting of the vector

of the local clock
●  The process gets some knowledge about the other process’ time

approximation
●  Ci=sup(Ci,t):: sup(u,v)=w : w[i]=max(u[i],v[i]), ∀i

P2

Tim
e

P1

P3

(0,0,0) (1,0,0) (2,0,0) (3,0,0) (4,3,1) (5,3,1)

(0,0,0) (0,1,1) (2,2,1) (2,3,1)

(0,0,0) (0,0,1) (0,0,2) (5,3,3)

Vector Timestamps

•  VT1 = VT2,
 iff (if and only if)

 VT1[i] = VT2[i], for all i = 1, … , N
•  VT1 ≤ VT2,

 iff VT1[i] ≤ VT2[i], for all i = 1, … , N
•  Two events are causally related iff

 VT1 < VT2, i.e.,
 iff VT1 ≤ VT2 &

 there exists j such that
 1 ≤ j ≤ N & VT1[j] < VT2 [j]

Causally-Related …

58

•  Two events VT1 and VT2 are concurrent
 iff

 NOT (VT1 ≤ VT2) AND NOT (VT2 ≤ VT1)

 We’ll denote this as VT2 ||| VT1

… or Not Causally-Related

59

P2

Tim
e

P1

P3

(0,0,0) (1,0,0) (2,0,0) (3,0,0) (4,3,1) (5,3,1)

(0,0,0) (0,1,1) (2,2,1) (2,3,1)

(0,0,0) (0,0,1) (0,0,2) (5,3,3)

Obeying Causality

•  A 𐆋𐆌𐆍𐆎𐆜𐆠 B :: (1,0,0) < (2,0,0)
•  B 𐆋𐆌𐆍𐆎𐆜𐆠 F :: (2,0,0) < (2,2,1)
•  A 𐆋𐆌𐆍𐆎𐆜𐆠 F :: (1,0,0) < (2,2,1)

A B C D E

 E’ F G

 H I J

60

P2

Tim
e

P1

P3

(0,0,0) (1,0,0) (2,0,0) (3,0,0) (4,3,1) (5,3,1)

(0,0,0) (0,1,1) (2,2,1) (2,3,1)

(0,0,0) (0,0,1) (0,0,2) (5,3,3)

Obeying Causality (2)

A B C D E

 E’ F G

 H I J

•  H 𐆋𐆌𐆍𐆎𐆜𐆠 G :: (0,0,1) < (2,3,1)
•  F 𐆋𐆌𐆍𐆎𐆜𐆠 J :: (2,2,1) < (5,3,3)
•  H 𐆋𐆌𐆍𐆎𐆜𐆠 J :: (0,0,1) < (5,3,3)
•  C 𐆋𐆌𐆍𐆎𐆜𐆠 J :: (3,0,0) < (5,3,3)

P2

Tim
e

P1

P3

(0,0,0) (1,0,0) (2,0,0) (3,0,0) (4,3,1) (5,3,1)

(0,0,0) (0,1,1) (2,2,1) (2,3,1)

(0,0,0) (0,0,1) (0,0,2) (5,3,3)

Identifying Concurrent Events

A B C D E

 E’ F G

 H I J

•  C & F :: (3,0,0) ||| (2,2,1)
•  H & C :: (0,0,1) ||| (3,0,0)
•  (C, F) and (H, C) are pairs of concurrent events

Vector Clocks example

From A. Kshemkalyani and M. Singhal (Distributed Computing)

Figure 3.2: Evolution of
vector time.

Vector Times (cont)

●  Because of the transitive nature of the scheme, a
process may receive time updates about clocks in non-
neighboring process

●  Since process Pi can advance the ith component of global
time, it always has the most accurate knowledge of its
local time

● At any instant of real time ∀i,j: Ci[i]≥ Cj[i]

Structure of Vector Time

●  For two time vectors u,v
●  u≤v iff ∀i: u[i]≤v[i]
●  u<v iff u≤v ∧ u≠v
●  u||v iff ~(u<v) ∧~(v<u) :: || is not transitive

●  For an event set E,
●  ∀e,e’∈E:e<e’ iff C(e)<C(e’) ∧ e||e’ iff iff C(e)||C(e’)

●  In order to determine if two events e,e’ are causally
related or not, just take their timestamps C(e) and C(e’)
●  if C(e)<C(e’) ∨ C(e’)<C(e), then the events are causally related
●  Otherwise, they are causally independent

Matrix Time

●  Vector time contains information about latest
direct dependencies
● What does Pi know about Pk

●  Also contains info about latest direct
dependencies of those dependencies
● What does Pi know about what Pk knows about Pj

● Message and computation overheads are high
●  Powerful and useful for applications like

distributed garbage collection

