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The Concept of Time 

●  The Concept of Time  
●  A standard time is a set of instants with a temporal precedence 

order < satisfying certain conditions [Van Benthem 83]: 
●  Transitivity 
●  Irreflexivity 
●  Linearity 
●  Eternity (∀x∃y: x<y) 
●  Density (∀x,y: x<y → ∃z: x<z<y) 

 
●  Transitivity and Irreflexivity imply asymmetry 
●  A linearly ordered structure may be  insufficient to represent 

time in distributed systems..  
 



Time and clocks  
(A  real world example)  
 
Cloud airline reservation system (with multiple servers A, B, C,...)  
 
●  Server A receives a client request to purchase last ticket on flight ABC 123. 
●  Server A timestamps purchase using local clock 9h:15m:32.45s, and logs it. Replies 

ok to client.  
●  That was the last seat. Server A sends message to Server B saying “flight full.” 

 
●  B enters “Flight ABC 123 full” + its own local clock value (which reads 9h:10m:

10.11s) into its log. 
 
●  Server C queries A’s and B’s logs. Is confused that a client purchased a ticket at A 

after the flight became full at B. 
●  This may lead to further incorrect actions at C.  cf:  Indy Gupta, CS 425, UIUC  



Time 



Global Time & Global States of 
Distributed Systems 

●  Asynchronous distributed systems consist of several 
processes  
●  no common shared memory or global clock,    
●  unpredictable processing delays 
●  communicate (solely) via messages with unpredictable transmission 

delays 

●  Global time & global state are hard to realize  
●  Rate of event occurrence may be very high  
●  Event execution times may be very small 

●  We can only approximate the global view 
●  Simulate a synchronous distributed system on an asynchronous system 
●  Simulate a global time – Clocks (Physical and Logical) 
●  Simulate a global state – Global Snapshots 



Simulate Synchronous  
Distributed Systems 

●  Synchronizers [Awerbuch 85] 
●  Simulate clock pulses in such a way that a message is only 

generated at a clock pulse and will be received before the next 
pulse 

●  Drawback 
●  Very high message overhead 



Global time in distributed systems 

●  An accurate notion of global time is difficult to achieve in 
distributed systems. 
●  Uniform notion of time is necessary for correct operation 
●  Apps: Mission critical distributed control, online games/

entertainment, financial apps, smart environments 
●  We often derive “causality” from loosely synchronized clocks 

 
●  Class Activity!! 

●  Check wall clock, laptop clock (with sec setting), and mobile device 
clock (use timer) 

●  Check half way ;  
●  Repeat with network/GPS turned off... 

 
 



Simulating global time 

●  Clocks in a distributed system drift 
●  Relative to each other 
●  Relative to a real world clock 

●  Determination of this real world clock itself may be an issue 

 

●  Clock Skew versus Drift 
•  Clock Skew = Relative Difference in clock values of two processes 

•  Like distance between two vehicles on a road 

•  Clock Drift = Relative Difference in clock frequencies (rates) of two 
processes   

•  Like difference in speeds between 2 vehicles on a road 

.  
 



Clock Synchronization 
●  Needed to simulate global time.  

 
●  A non-zero clock drift will cause skew to continuously increase 
●  If faster device  is ahead, it will drift away 

●  If faster device  is behind, it will catch up and then drift away 

●  Maximum Drift Rate (MDR) of a clock  
●  Absolute MDR is defined relative to a Coordinated Universal Time (UTC) 

●  MDR of a process depends on the  environment. 

●  Max drift rate between two clocks with similar MDR is 2 * MDR 

●  Given a maximum acceptable skew M between any pair of clocks, need to 
synchronize at least once every: M / (2 * MDR) time units 

●  Since time = distance/speed 
 



Clock Synchronization 

 
●  Physical Clocks vs. Logical clocks  

 
 

 



Physical Clock Synchronization 



Physical Clocks 

How do we measure real time? 
● Early – Stonehenge, sundials 
● 13th -17th century 

●  Mechanical clocks based on 
astronomical measurements  

● Solar Day - Transit of the sun 
● Solar Seconds - Solar Day/(3600*24) 

Date Duration in mean solar 
time 

February 11 24 hours 

March 26 24 hours − 18.1 sec  

May 14 24 hours 
June 19 24 hours + 13.1 sec 
July 26 24 hours 
September 16 24 hours − 21.3 sec 
November 3 24 hours 

December 22 24 hours + 29.9 sec 

Length of apparent solar day (1998) 
 – (cf: wikipedia ) 

Problem (1940): Rotation of earth varies! 
 
Mean solar second = average over many days 



Atomic Clocks 

●  1948 - Counting transitions of a crystal 
(Cesium 133, quartz) used as atomic 
clock  
●  crystal oscillates at a well known 

frequency 
 

●  2014 – NIST-F2 Atomic clock 
●  Accuracy: ± 1 sec in 300 mil years 
●  NIST-F2 measures particular transitions in 

Cesium atom (9,192,631,770 vibrations 
per second), in much colder environment, 
minus 316F, than NIST-F1 

 
●  TAI - International Atomic Time 

●  9,192,631,779 transitions = 1 mean 
solar second in 1948 

 

UTC (Universal Coordinated Time) 
From time to time, UTC skips a solar 
second to stay in phase with the sun 
(30+ times since 1958) 
 
UTC is broadcast by several sources 
(satellites…) 



Next Generation Atomic Clocks  
-- NIST F2 



From Distributed Systems  (cs.nju.edu.cn/distribute-systems/lecture-notes/ 15 

How Clocks Work in Computers 

Quartz 
crystal 

  Counter  

Holding 
register 

Each crystal oscillation 
decrements the counter by 1 

When counter gets 0, its 
value reloaded from the 

holding register 

CPU 

When counter is 0, an 
interrupt is generated, which 

is call a clock tick 

At each clock tick, an interrupt 
service procedure add 1 to time 

stored in memory Memory 

Oscillation at a well-
defined frequency 



Accuracy of Computer Clocks 

● Modern timer chips (RTCs) have a relative 
error of 1/100,000 – (~1 - 8 sec a day) 

● To maintain synchronized clocks 
● External Synchronization 
● Can use UTC source (time server) to obtain 

current notion of time 

● Internal Synchronization 
● Use solutions without UTC. 



Cristian’s (Time Server) Algorithm 
(external synchronization) 
●  Uses a time server (S) to synchronize clocks 

●  Time server keeps the reference time (say UTC) 
●   A client asks the time server for time, the server responds with 

its current time, and the client uses the received value to set its 
clock.  

P 

S 

Time 

What’s the time? 

Here’s the time t! 

Check local clock to find time t 

Set clock to t 



What’s Wrong 
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●  But network round-trip time introduces errors… 
●  By the time response message is received at P, time has moved on 

●  Let RTT = response-received-time – request-sent-time 
(measurable at client),  

●  If we know (a) min = minimum client-server one-way transmission 
time and (b) that the server timestamped the message at the last 
possible instant before sending it back 

●  Then, the actual time could be between [T+min,T+RTT— min] 

P

S

Time 

What’s the 
time? 

Here’s the time 
t! 

Check local clock to find time t 

  Set clock to t 
RT
T 

Cristian’s Algorithm (cont.) 



Cristian’s Algorithm (cont.) 

♣  Client sets its clock to halfway between  T+min and T
+RTT— min  i.e.,  at T+RTT/2 
☹ Expected (i.e., average) skew in client clock time = (RTT/2 – min) 

♣  Can increase clock value, should never decrease it. 
♣  Can adjust speed of clock too (either up or down is ok) 
♣  Multiple requests to increase accuracy 

♣ For unusually long RTTs, repeat the time request 
♣ For non-uniform RTTs 

♣ Drop values beyond threshold;  Use averages (or weighted 
average) 



Berkeley UNIX algorithm 
(Internal Synchronization) 

● One Version 
●  One daemon without UTC 
●  Periodically, this daemon polls and asks all the machines for 

their time 
●  The machines respond. 
●  The daemon computes an average time and then broadcasts 

this average time. 
● Another Version  
●  Master/daemon uses Cristian’s algorithm to calculate time from 

multiple sources, removes outliers, computes average and 

broadcasts  
 



Decentralized Averaging Algorithm 
(Internal Synchronization) 

● Each machine has a daemon without UTC 
● Periodically, at fixed agreed-upon times, 

each machine broadcasts its local time. 
● Each of them calculates the average time 

by averaging all the received local times. 



Network Time Protocol (NTP) 

●  Most widely used physical clock synchronization protocol 
on the Internet (http://www.ntp.org) 
●  Currently used: NTP V3 and V4 

●  10-20 million NTP servers and clients  in the Internet 
●  Claimed Accuracy (Varies) 

●  milliseconds on WANs, submilliseconds on LANs, 
submicroseconds using a precision timesource 

●  Nanosecond NTP in progress 
 



NTP Design 

●  Hierarchical tree of time 
servers. 
●  The primary server at the root 

synchronizes with the UTC. 
●  The next level contains 

secondary servers, which act 
as a backup to the primary 
server. 

●  At the lowest level is the 
synchronization subnet which 
has the clients. 

●  Variant of Cristian’s algorithm 
that does not use RTT’s, but 
multiple 1-way messages 

 



NTP Protocol - Determining Error  

Child 

Parent 

Time 

Let’s start protocol 

Message 1 

Message 1 send time ts1 

Message 2 send time ts2 
Message 1 recv time tr1 

Message 2 recv time tr2 

Message 2 ts1, tr2 
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•  Child calculates offset between its clock and parent’s 
clock 

•  Uses ts1, tr1, ts2, tr2 
•  Offset is calculated as  

o = (tr1 – tr2 + ts2 – ts1)/2 



•  Suppose real offset is oreal 
–  Child is ahead of parent by oreal 
–  Parent is ahead of child by -oreal 

•  Suppose one-way latency of Message 1 is L1 (L2 for Message 2) 
•  No one knows L1 or L2! 
•  Then  

tr1 = ts1 + L1 + oreal 
tr2 = ts2 + L2 – oreal  
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NTP Protocol - Determining Error  

•  Subtracting second equation from the first 
oreal = (tr1 – tr2 + ts2 – ts1)/2 + (L2 – L1)/2 => oreal = o + (L2 – L1)/2  
=> |oreal – o| < |(L2 – L1)/2| < |(L2 + L1)/2|   

–  Thus, the error is bounded by the round-trip-time 

We still have a non-zero error! Will exist as long as message latency exists! 



From (http://www.ece.udel.edu/~mills/database/brief/seminar/ntp.pdf) 



From (http://www.ece.udel.edu/~mills/database/brief/seminar/ntp.pdf) 



Logical Clock Synchronization 



Ordering Events in a Distributed System 

•  Trying to sync physical clocks is one approach. 
 

•  What if we instead assigned timestamps to events that 
were not absolute time? 

•  Timestamps must obey causality to preserve event ordering 
○  If an event A causally happens before another event B, then  
■  timestamp(A) < timestamp(B) 

○  Humans use causality all the time 
E.g., I enter a house only after I unlock it 
E.g., You receive a letter only after I send it 
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Logical Clocks 

●  Used to determine causality in distributed 
systems 

●  Time is represented by non-negative integers 
●  Event structures represent distributed 

computation (in an abstract way) 
●  A process can be viewed as consisting of a sequence 

of events, where an event is an atomic transition of 
the local state which happens in no time  

●  Process Actions can be modeled using the 3 types of 
events 
● Send Message 
● Receive Message 
●  Internal (change of state) 



Causal Relations 

●  Distributed application results in a set of 
distributed events 
●  Induces a partial order 𐆋𐆌𐆍𐆎𐆜𐆠 causal precedence relation 

●  Knowledge of this causal precedence relation is 
useful in reasoning about and analyzing the 
properties of distributed computations 
●  Liveness and fairness in mutual exclusion 
●  Consistency in replicated databases 
● Distributed debugging, checkpointing 

 



Event Ordering 
● Lamport defined the “happens 

before” (=>) relation 
● If a and b are events in the same process, 

and a occurs before b, then a => b. 
● If a is the event of a message being sent 

by one process and b is the event of the 
message being received by another 
process, then a => b. 

● If X =>Y and Y=>Z then X => Z. 
If a => b then time (a) => time (b)  



P1 

P2 

P3 

e21 

e11 

e31 

e22 

e13 

global time 

e12 

e23 

e32 

e14 

Program order:  e13 < e14 

Send-Receive:  e23 < e12 

Transitivity:  e21 < e32 

Processor Order: e precedes e’ in the same process 

Send-Receive: e is a send and e’ is the corresponding 
receive 

Transitivity: exists e’’ s.t. e < e’’ and e’’< e’ 

Example: 

Event Ordering- an example 



Causal Ordering 

●  “Happens Before” also called causal ordering 
●  Possible to draw a causality relation between  2 

events if  
●  They happen in the same process 
●  There is a chain of messages between them 

●  “Happens Before” notion is not straightforward 
in distributed systems 
● No guarantees of synchronized clocks 
●  Communication latency 

 



Logical Clocks 

●  A logical Clock C is some abstract mechanism which assigns 
to any event e∈E the value C(e) of some time domain T such 
that certain conditions are met 

●  C:E→T :: T is a partially ordered set : e<e’→C(e)<C(e’) holds 
 

●  Consequences of the clock condition [Morgan 85]: 
●  Events occurring at a particular process are totally ordered by their 

local sequence of occurrence 
●  If an event e occurs before event e’ at some single process, then event e 

is assigned a logical time earlier than the logical time assigned to event e’ 
●  For any message sent from one process to another, the logical time of 

the send event is always earlier than the logical time of the receive 
event 
●  Each receive event has a corresponding send event 
●  Future can not influence the past (causality relation) 



Implementation of Logical Clocks 

●  Requires   
●  Data structures local to every process to represent logical time and 
●  A protocol to update the data structures to ensure the consistency condition. 

 
●  Each process Pi maintains data structures that allow it the following two 

capabilities: 
●  A local logical clock, denoted by LC_i , that helps process Pi measure its own 

progress. 
●  A logical global clock, denoted by GCi , that is a representation of process Pi 

’s local view of the logical global time. Typically, lci is a part of gci  
 

 
●  The protocol ensures that a process’s logical clock, and thus its view of 

the global time, is managed consistently.  
●  The protocol consists of the following two rules: 

●  R1: This rule governs how the local logical clock is updated by a process when it 
executes an event. 

●  R2: This rule governs how a process updates its global logical clock to update its 
view of the global time and global progress. 



Types of Logical Clocks 

● Systems of logical clocks differ in their 
representation of logical time and also in 
the protocol to update the logical clocks. 

● 3 kinds of logical clocks 
● Scalar 
● Vector  
● Matrix 



Scalar Logical Clocks - Lamport 

●  Proposed by Lamport in 1978 as an attempt to 
totally order events in a distributed system. 

●  Time domain is the set of non-negative integers. 
●  The logical local clock of a process pi and its 

local view of the global time are squashed into 
one integer variable Ci . 

● Monotonically increasing counter 
● No relation with real clock 

●  Each process keeps its own logical clock used to 
timestamp events 

 



Consistency with Scalar Clocks 

●  To guarantee the clock condition, local clocks 
must obey a simple protocol: 
● When executing an internal event or a send event at 

process Pi the clock Ci ticks 
•  Ci += d  (d>0) 

● When Pi sends a message m, it piggybacks a logical 
timestamp t which equals the time of the send event 

● When executing a receive event at Pi where a 
message with timestamp t is received, the clock is 
advanced 

•  Ci = max(Ci,t)+d   (d>0) 
●  Results in a partial ordering of events. 
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Lamport Timestamps 
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Lamport Timestamps 
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Lamport Timestamps 
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Lamport Timestamps 
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Lamport Timestamps 



Obeying Causality 
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•  A 𐆋𐆌𐆍𐆎𐆜𐆠 B :: 1 < 2 
•  B 𐆋𐆌𐆍𐆎𐆜𐆠 F :: 2 < 3 
•  A 𐆋𐆌𐆍𐆎𐆜𐆠 F :: 1 < 3 

A                      B               C                   D        E                             

                      E’                    F            G 

        H                                I                                          J 
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Obeying Causality (2) 
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A                      B               C                   D        E                             

                      E’                    F            G 

        H                                I                                          J 

•  H 𐆋𐆌𐆍𐆎𐆜𐆠 G :: 1 < 4  
•  F 𐆋𐆌𐆍𐆎𐆜𐆠 J   :: 3 < 7 
•  H 𐆋𐆌𐆍𐆎𐆜𐆠 J  :: 1 < 7 
•  C 𐆋𐆌𐆍𐆎𐆜𐆠 J  :: 3 < 7 
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0 



Not always implying Causality 
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A                      B               C                   D        E                             

                      E’                    F            G 

        H                                I                                          J 

•  ? C 𐆋𐆌𐆍𐆎𐆜𐆠 F ? :: 3 = 3  
•  ? H 𐆋𐆌𐆍𐆎𐆜𐆠 C ? :: 1 < 3 
•  (C, F) and (H, C) are pairs of 

concurrent events 

2 

0 

 
 
0 

 
 
0 





Concurrent Events 

•  A pair of concurrent events doesn’t have a causal path from one event to another 
(either way, in the pair) 

•  Lamport timestamps not guaranteed to be ordered or unequal for concurrent 
events 

•  Ok, since concurrent events are not causality related! 
•  Remember 

 
E1 𐆋𐆌𐆍𐆎𐆜𐆠 E2 ⇒  timestamp(E1) < timestamp (E2),  BUT 
timestamp(E1) < timestamp (E2)  ⇒   {E1 𐆋𐆌𐆍𐆎𐆜𐆠 E2} OR {E1 and E2 concurrent} 
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Total Ordering 

● Extending partial order to total order 
 
 
● Global timestamps: 
● (Ta, Pa) where Ta is the local timestamp and 

Pa is the process id. 
● (Ta,Pa) < (Tb,Pb) iff   
● (Ta < Tb) or   ( (Ta = Tb) and (Pa < Pb)) 

● Total order is consistent with partial order. 

time Proc_id 



Properties of Scalar Clocks 

●  Event counting  
●  If the increment value d is always 1, the scalar time 

has the following interesting property: if event e has 
a timestamp h, then h-1 represents the minimum 
logical duration, counted in units of events, required 
before producing the event e; 

● We call it the height of the event e. 
●  In other words, h-1 events have been produced 

sequentially before the event e regardless of the 
processes that produced these events. 

 



Properties of Scalar Clocks   

●  No Strong Consistency 
●  The system of scalar clocks is not strongly 

consistent; that is, for two events ei and ej , 
C(ei ) < C(ej ) does not imply ei → ej . 

●  Reason: In scalar clocks, logical local clock and 
logical global clock of a process are squashed 
into one, resulting in the loss of causal 
dependency information among events at 
different processes. 



Independence 

●  Two events e,e’ are mutually independent (i.e. e||e’) if 
~(e<e’)∧~(e’<e) 
●  Two events are independent if they have the same timestamp 
●  Events which are causally independent may get the same or 

different timestamps 
●  By looking at the timestamps of events it is not possible 

to assert that some event could not influence some 
other event 
●  If C(e)<C(e’) then ~(e’<e) however, it is not possible to decide 

whether e<e’ or e||e’ 
●  C is an order homomorphism which preserves < but it does not 

preserves negations (i.e. obliterates a lot of structure by 
mapping E into a linear order) 



Problems with Total Ordering 

●  A linearly ordered structure of time is not always 
adequate for distributed systems 
●  captures dependence of events 
●  loses independence of events - artificially enforces an ordering 

for events that need not be ordered – loses information 
●  Mapping partial ordered events onto a linearly ordered set of 

integers is losing information 
●  Events which may happen simultaneously may get different 

timestamps as if they happen in some definite order. 

●  A partially ordered system of vectors forming a lattice 
structure is a natural representation of time in a 
distributed system 



Vector Clocks 
●  Independently developed by Fidge, Mattern and Schmuck. 
●  Aim: To construct a mechanism by which each process gets an 

optimal approximation of global time 
●  Time  representation 

●  Set of n-dimensional non-negative integer vectors. 
●  Each process has a clock Ci consisting of a vector  of length n, where n 

is the total number of processes vt[1..n], where vt[j ] is the local logical 
clock of Pj and describes the logical time progress at process Pj . 

●  A process Pi ticks by incrementing its own component of its clock 
●  Ci[i] += 1 

●  The timestamp C(e) of an event e is the clock value after ticking 
●  Each message gets a piggybacked timestamp consisting of the vector 

of the local clock 
●  The process gets some knowledge about the other process’ time 

approximation 
●  Ci=sup(Ci,t):: sup(u,v)=w : w[i]=max(u[i],v[i]), ∀i 
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(0,0,0)   (1,0,0)          (2,0,0)       (3,0,0)          (4,3,1)      (5,3,1) 

                                         
                                          
(0,0,0)                (0,1,1)                (2,2,1)      (2,3,1) 

 
                       
(0,0,0)           (0,0,1)                       (0,0,2)                       (5,3,3) 

Vector Timestamps 



•   VT1 = VT2,   
  iff   (if and only if) 

                          VT1[i] = VT2[i], for all i = 1, … , N 
•   VT1 ≤ VT2,   

  iff   VT1[i] ≤ VT2[i], for all i = 1, … , N 
•   Two events are causally related iff 

     VT1 < VT2,  i.e., 
  iff   VT1 ≤ VT2 &  

                            there exists j such that  
                                   1 ≤ j ≤ N & VT1[j] < VT2 [j] 

Causally-Related … 
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•  Two events VT1 and VT2 are concurrent  
 iff 

           NOT (VT1 ≤ VT2)  AND NOT (VT2 ≤ VT1) 
 
          We’ll denote this as VT2 ||| VT1 

… or Not Causally-Related 
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(0,0,0)   (1,0,0)          (2,0,0)       (3,0,0)          (4,3,1)      (5,3,1) 

                                         
                                          
(0,0,0)                (0,1,1)                (2,2,1)      (2,3,1) 

 
                       
(0,0,0)           (0,0,1)                       (0,0,2)                       (5,3,3) 

Obeying Causality 

•  A 𐆋𐆌𐆍𐆎𐆜𐆠 B :: (1,0,0) < (2,0,0) 
•  B 𐆋𐆌𐆍𐆎𐆜𐆠 F :: (2,0,0) < (2,2,1) 
•  A 𐆋𐆌𐆍𐆎𐆜𐆠 F :: (1,0,0) < (2,2,1) 

A                      B               C                   D        E                             

                      E’                    F            G 

        H                                I                                          J 
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Obeying Causality (2) 

A                      B               C                   D        E                             

                      E’                    F            G 

        H                                I                                          J 

•  H 𐆋𐆌𐆍𐆎𐆜𐆠 G :: (0,0,1) < (2,3,1)  
•  F 𐆋𐆌𐆍𐆎𐆜𐆠 J   :: (2,2,1) < (5,3,3) 
•  H 𐆋𐆌𐆍𐆎𐆜𐆠 J  :: (0,0,1) < (5,3,3) 
•  C 𐆋𐆌𐆍𐆎𐆜𐆠 J  :: (3,0,0) < (5,3,3) 
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(0,0,0)                (0,1,1)                (2,2,1)      (2,3,1) 

 
                       
(0,0,0)           (0,0,1)                       (0,0,2)                       (5,3,3) 

Identifying Concurrent Events 

A                      B               C                   D        E                             

                      E’                    F            G 

        H                                I                                          J 

•  C & F :: (3,0,0) ||| (2,2,1)  
•  H & C :: (0,0,1) ||| (3,0,0)  
•  (C, F) and (H, C) are pairs of concurrent events 



Vector Clocks example 

From A. Kshemkalyani and M. Singhal (Distributed Computing) 

Figure 3.2: Evolution of 
vector time. 



Vector Times (cont) 

●  Because of the transitive nature of the scheme, a 
process may receive  time updates about clocks in non-
neighboring process 

●  Since process Pi can advance the ith component of global 
time, it always has the most accurate knowledge of its 
local time 

● At any instant of real time ∀i,j: Ci[i]≥ Cj[i] 



Structure of Vector Time 

●  For two time vectors u,v 
●  u≤v iff ∀i: u[i]≤v[i] 
●  u<v iff u≤v ∧ u≠v 
●  u||v iff ~(u<v) ∧~(v<u)   :: || is not transitive 

●  For an event set E,  
●   ∀e,e’∈E:e<e’ iff C(e)<C(e’) ∧ e||e’ iff iff C(e)||C(e’) 

 

●  In order to determine if two events e,e’ are causally 
related or not, just take their timestamps C(e) and C(e’) 
●  if C(e)<C(e’) ∨ C(e’)<C(e), then the events are causally related 
●  Otherwise, they are causally independent 



Matrix Time 

●  Vector time contains information about latest 
direct dependencies 
● What does Pi know about Pk 

●  Also contains info about latest direct 
dependencies of those dependencies 
● What does Pi know about what Pk knows about Pj 

● Message and computation overheads are high 
●  Powerful and useful for applications like 

distributed garbage collection 


