
Fault Tolerance in
Distributed Systems

ICS 230
Prof. Nalini Venkatasubramanian
(with some slides modified from Prof.
Ghosh, University of Iowa and
Indranil Gupta, UIUC)

● What is fault?
● A fault is a blemish, weakness, or shortcoming of a

particular hardware or software component.
● Fault, error and failures

● Why fault tolerant?
● Availability, reliability, dependability, …

● How to provide fault tolerance ?
● Replication
● Checkpointing and message logging
● Hybrid

Fundamentals

Reliability

● Reliability is an emerging and critical concern in
traditional and new settings
● Transaction processing, mobile applications, cyberphysical

systems
● New enhanced technology makes devices vulnerable to

errors due to high complexity and high integration
● Technology scaling causes problems

● Exponential increase of soft error rate
● Mobile/pervasive applications running close to humans

● E.g Failure of healthcare devices cause serious results
● Redundancy techniques incur high overheads of power and

performance
● TMR (Triple Modular Redundancy) may exceed 200% overheads

without optimization [Nieuwland, 06]
● Challenging to optimize multiple properties (e.g.,

performance, QoS, and reliability)

3

Classification of failures

Crash failure

Omission failure

Transient failure Byzantine failure

Software failure

Temporal failure

Security failure

Environmental perturbations

Crash failures

Crash failure = the process halts. It is irreversible.

In synchronous system, it is easy to detect crash failure (using heartbeat

signals and timeout). But in asynchronous systems, it is never accurate, since

it is not possible to distinguish between a process that has crashed, and a

process that is running very slowly.

Some failures may be complex and nasty. Fail-stop failure is a simple

abstraction that mimics crash failure when program execution becomes

arbitrary. Implementations help detect which processor has failed. If a system

cannot tolerate fail-stop failure, then it cannot tolerate crash.

Transient failure

(Hardware) Arbitrary perturbation of the global state. May be induced
by power surge, weak batteries, lightning, radio-frequency
interferences, cosmic rays etc.

(Software) Heisenbugs are a class of temporary internal faults and are
intermittent. They are essentially permanent faults whose conditions
of activation occur rarely or are not easily reproducible, so they are
harder to detect during the testing phase.

Over 99% of bugs in IBM DB2 production code are non-deterministic
and transient (Jim Gray)

Temporal failures

Inability to meet deadlines – correct results
are generated, but too late to be useful. Very
important in real-time systems.

May be caused by poor algorithms, poor
design strategy or loss of synchronization
among the processor clocks

Byzantine failure

Anything goes! Includes every conceivable form
of erroneous behavior. The weakest type of
failure

Numerous possible causes. Includes malicious
behaviors (like a process executing a different
program instead of the specified one) too.

Most difficult kind of failure to deal with.

Errors/Failures across
system layers

● Faults or Errors can cause Failures

9

Application

Middleware/

OS

Hardware

Network

Soft
Error

Pack
et
Loss

Bug

Exce
ption

Hardware Errors and Error
Control Schemes10

Failures Causes Metric
s

Traditional
Approaches

Soft Errors,
Hard Failures,
System Crash

External Radiations,
Thermal Effects,
Power Loss, Poor
Design, Aging

FIT,
MTTF,
MTBF

Spatial Redundancy (TMR,
Duplex, RAID-1 etc.) and
Data Redundancy (EDC,
ECC, RAID-5, etc.)

•FIT: Failures in Time (109 hours)
•MTTF: Mean Time To Failure
•MTBF: Mean Time b/w Failures
•TMR: Triple Modular
Redundancy
•EDC: Error Detection Codes
•ECC: Error Correction Codes
•RAID: Redundant Array of
Inexpensive Drives

◻ Hardware failures are increasing as technology scales
� (e.g.) SER increases by up to 1000 times [Mastipuram, 04]

◻ Redundancy techniques are expensive
� (e.g.) ECC-based protection in caches can incur 95% performance

penalty [Li, 05]

Soft Errors (Transient
Faults)

● SER increases
exponentially as
technology scales

● Integration, voltage
scaling, altitude, latitude

● Caches are most hit due to:
● Larger portion in processors

(more than 50%)
● No masking effects (e.g.,

logical masking)

Transistor

01

5 hours MTTF

1 month MTTF

Intel Itanium II Processor

•MTTF: Mean time To
Failure

Bit Flip

11

[Baumann, 05]

Soft errors
12

SER (FIT) MTTF Reason
1 Mbit @ 0.13 µm 1000 104 years

SER (FIT) MTTF Reason
1 Mbit @ 0.13 µm 1000 104 years
64 MB @ 0.13 µm 64x8x1000 81 days High Integration

SER (FIT) MTTF Reason
1 Mbit @ 0.13 µm 1000 104 years
64 MB @ 0.13 µm 64x8x1000 81 days High Integration
128 MB @ 65 nm 2x1000x64x8x10

00
1 hour Technology scaling

and Twice Integration

SER (FIT) MTTF Reason
1 Mbit @ 0.13 µm 1000 104 years
64 MB @ 0.13 µm 64x8x1000 81 days High Integration
128 MB @ 65 nm 2x1000x64x8x10

00
1 hour Technology scaling

and Twice Integration
A system @ 65
nm

2x2x1000x64x8x
1000

30
minutes

Memory takes up
50% of soft errors in
a system

SER (FIT) MTTF Reason
1 Mbit @ 0.13 µm 1000 104 years
64 MB @ 0.13 µm 64x8x1000 81 days High Integration
128 MB @ 65 nm 2x1000x64x8x10

00
1 hour Technology scaling

and Twice Integration
A system @ 65
nm

2x2x1000x64x8x
1000

30
minutes

Memory takes up
50% of soft errors in
a system

A system with
voltage scaling
@ 65 nm

100x2x2x1000x6
4x8x1000

18
seconds

Exponential
relationship b/w SER
& Supply Voltage

SER (FIT) MTTF Reason
1 Mbit @ 0.13 µm 1000 104 years
64 MB @ 0.13 µm 64x8x1000 81 days High Integration
128 MB @ 65 nm 2x1000x64x8x100

0
1 hour Technology scaling and

Twice Integration
A system @ 65 nm 2x2x1000x64x8x10

00
30
minutes

Memory takes up 50%
of soft errors in a
system

A system with
voltage scaling @
65 nm

100x2x2x1000x64x
8x1000

18
seconds

Exponential relationship
b/w SER & Supply
Voltage

A system with
voltage scaling @
flight (35,000 ft) @
65 nm

800x100x2x2x1000
x64x8x1000 FIT

0.02
seconds

High Intensity of
Neutron Flux at flight
(high altitude)

Soft Error Rate (SER) – FIT (Failures in Time) = number of errors in 109 hours

Software Errors and Error
Control Schemes

13

Failures Causes Metrics Traditional
Approaches

Wrong
outputs,
Infinite
loops, Crash

Incomplete
Specification, Poor
software design,
Bugs, Unhandled
Exception

Number of
Bugs/Klines,
QoS, MTTF,
MTBF

Spatial Redundancy
(N-version Programming,
etc.), Temporal
Redundancy (Checkpoints
and Backward Recovery,
etc.)

•QoS: Quality of Service

◻ Software errors become dominant as system’s complexity increases
� (e.g.) Several bugs per kilo lines

◻ Hard to debug, and redundancy techniques are expensive
� (e.g.) Backward recovery with checkpoints is inappropriate for real-time applications

Software failures

Coding error or human error
On September 23, 1999, NASA lost the $125 million Mars

orbiter spacecraft because one engineering team used metric
units while another used English units leading to a navigation
fiasco, causing it to burn in the atmosphere.

Design flaws or inaccurate modeling
Mars pathfinder mission landed flawlessly on the Martial

surface on July 4, 1997. However, later its communication failed
due to a design flaw in the real-time embedded software kernel
VxWorks. The problem was later diagnosed to be caused due to
priority inversion, when a medium priority task could preempt a
high priority one.

Software failures

Memory leak
Processes fail to entirely free up the physical memory that has

been allocated to them. This effectively reduces the size of the
available physical memory over time. When this becomes
smaller than the minimum memory needed to support an
application, it crashes.

Incomplete specification (example Y2K)
Year = 99 (1999 or 2099)?

Many failures (like crash, omission etc) can be
caused by software bugs too.

Network Errors and Error
Control Schemes16

Failures Causes Metrics Traditional
Approaches

Data Losses,
Deadline
Misses, Node
(Link) Failure,
System Down

Network
Congestion,
Noise/Interfere
nce, Malicious
Attacks

Packet Loss
Rate,
Deadline
Miss Rate,
SNR, MTTF,
MTBF, MTTR

Resource Reservation, Data
Redundancy (CRC, etc.),
Temporal Redundancy
(Retransmission, etc.),
Spatial Redundancy
(Replicated Nodes, MIMO,
etc.)

•SNR: Signal to Noise Ratio
•MTTR: Mean Time To Recovery
•CRC: Cyclic Redundancy Check
•MIMO: Multiple-In
Multiple-Out

◻ Omission Errors – lost/dropped messages

◻ Network is unreliable (especially, wireless networks)
● Buffer overflow, Collisions at the MAC layer, Receiver out of range

◻ Joint approaches across OSI layers have been investigated for
minimal costs [Vuran, 06][Schaar, 07]

Classifying fault-tolerance

Masking tolerance.
Application runs as it is. The failure does not have a visible impact.
All properties (both liveness & safety) continue to hold.

Non-masking tolerance.
Safety property is temporarily affected, but not liveness.

Example 1. Clocks lose synchronization, but recover soon thereafter.
Example 2. Multiple processes temporarily enter their critical sections,
but thereafter, the normal behavior is restored.

Classifying fault-tolerance

Fail-safe tolerance
Given safety predicate is preserved, but liveness may be affected

Example. Due to failure, no process can enter its critical section for
an indefinite period. In a traffic crossing, failure changes the traffic in
both directions to red.

Graceful degradation
Application continues, but in a “degraded” mode. Much depends on
what kind of degradation is acceptable.

Example. Consider message-based mutual exclusion. Processes will
enter their critical sections, but not in timestamp order.

Conventional Approaches
● Build redundancy into hardware/software

● Modular Redundancy, N-Version ProgrammingConventional
TRM (Triple Modular Redundancy) can incur 200%
overheads without optimization.

● Replication of tasks and processes may result in
overprovisioning

● Error Control Coding

● Checkpointing and rollbacks
● Usually accomplished through logging (e.g. messages)
● Backward Recovery with Checkpoints cannot guarantee the

completion time of a task.

● Hybrid
● Recovery Blocks

19

1) Modular Redundancy

● Modular Redundancy
● Multiple identical replicas

of hardware modules
● Voter mechanism

● Compare outputs and
select the correct output

● Tolerate most hardware
faults

● Effective but expensive

Consume
r

Data

Producer
B

voter

Producer
A

fault

20

2) N-version Programming
● N-version Programming

● Different versions by
different teams
● Different versions may

not contain the same
bugs

● Voter mechanism
● Tolerate some

software bugs

Producer
A Consumer

Data

voter

Progra
m i

Program
j

Programmer K Programmer L

fault

21

3) Error-Control Coding

● Error-Control Coding
● Replication is effective

but expensive
● Error-Detection Coding

and Error-Correction
Coding
● (example) Parity Bit,

Hamming Code, CRC
● Much less redundancy

than replication

Producer
A Consumer

Data

Error
Control

Data
fault

22

Concept: Consensus

Reaching Agreement is a fundamental problem in distributed
computing
●Mutual Exclusion

● processes agree on which process can enter the critical section
●Leader Election

● processes agree on which is the elected process
●Totally Ordered Multicast

● the processes agree on the order of message delivery
●Commit or Abort in distributed transactions
●Reaching agreement about which processes have failed
●Other examples

● Air traffic control system: all aircrafts must have the same view
● Spaceship engine control – action from multiple control processes(“proceed” or “abort”)
● Two armies should decide consistently to attack or retreat.

N processes
● Every process contributes a value
● Goal: To have all processes decide on the same (some) value

● Once made, the decision cannot be changed.
Each process p has

● input variable xp : initially either 0 or 1
● output variable yp : initially b (b=undecided) – can be changed only once

Consensus problem: design a protocol so that either
1. all non-faulty processes set their output variables to 0
2. Or non-faulty all processes set their output variables to 1
3. There is at least one initial state that leads to each outcomes 1 and 2

above

Defining Consensus

Consensus Properties/Terms

● Termination
● Every non-faulty process

must eventually decide.
● Integrity

● The decided value must
have been proposed by
some process

● Validity
● If every non-faulty process

proposes the same value v,
then their final decision must
be v.

● Agreement
○ The final decision of every

non-faulty process must be
identical.

● Non-triviality
○ There is at least one initial

system state that leads to
each of the all-0’s or all-1’s
outcomes

Variant of Consensus Problem

● Consensus Problem (C)
● Each process proposes a value
● All processes agree on a single value

● Byzantine General Problem (BG)
● Process fails arbitrarily, byzantine failure
● Still processes need to agree

● Interactive Consistency (IC)
● Each process propose its value
● All processes agree on the vector

Solving Consensus

● No failures – trivial
● All-to-all broadcast followed by applying a choice function

● With failures
● One Assumption: Processes fail only by crash-stopping

● Synchronous system: Possible?
● Asynchronous system: ???

What about other failures??
● Omission Failures
● Byzantine Failures

Synchronous Distributed System
● Drift of each process’ local clock

has a known bound
● Each step in a process takes lb <

time < ub
● Each message is received within

bounded time

Consensus is possible in the presence of
failures!!

Consensus
Synchronous vs. Asynchonous Models

28

• Asynchronous Distributed System
• No bounds on process

execution
• The drift rate of a clock is

arbitrary
• No bounds on message

transmission delays

 Consensus is impossible with the
possibility of even 1 failure!!

Consensus in a Synchronous System

● Possible
● With one or more faulty processes

● Solution - Basic Idea:
● all processes exchange (multicast) what other

processes tell them in several rounds

● To reach consensus with f failures, the algorithm
needs to run in f + 1 rounds.

For a system with at most f processes crashing
- All processes are synchronized and operate in “rounds” of time.

● Round length >> max transmission delay.
- The algorithm proceeds in f+1 rounds (with timeout), using reliable

communication to all members
- Valuesr

i: the set of proposed values known to pi at the beginning of round r.

Consensus in Synchronous Systems

Round
1

Round
2

Round
3

30

For a system with at most f processes crashing
- All processes are synchronized and operate in “rounds” of time
- the algorithm proceeds in f+1 rounds (with timeout), using reliable communication to

all members. Round length >> max transmission delay.
- Valuesr

i: the set of proposed values known to pi at the beginning of round r.

Initially Values0
i = {} ; Values1

i = {vi}
 for round = 1 to f+1 do

multicast (Values ri – Valuesr-1
i) // iterate through processes, send each a message

Values r+1
i 🡪 Valuesr

i

 for each Vj received
 Values r+1

i = Values r+1
i ∪ Vj

 end
 end
di = minimum(Values f+1

i) // consistent minimum based on say, id (not minimum value)

Possible to
achieve!

Consensus with at most f failures :
Synchronous Systems

31

After f+1 rounds, all non-faulty processes would have received the same set of Values.

Proof by contradiction.
● Assume that two non-faulty processes, say pi and pj , differ in their final set of values (i.e., after

f+1 rounds)

● Assume that pi possesses a value v that pj does not possess.
� pi must have received v in the very last round

� Else, pi would have sent v to pj in that last round
🡪 So, in the last round: a third process, pk, must have sent v to pi, but then crashed before sending v to pj.
🡪 Similarly, a fourth process sending v in the last-but-one round must have crashed; otherwise, both pk and pj

should have received v.
🡪 Proceeding in this way, we infer at least one (unique) crash in each of the preceding rounds.
🡪 This means a total of f+1 crashes, while we have assumed at most f crashes can occur => contradiction.

Proof: Consensus in Synchronous Systems
(extra)

32

Asynchronous Consensus

● Messages have arbitrary delay,
processes arbitrarily slow

● Impossible to achieve!
● a slow process indistinguishable

from a crashed process
● Result due to Fischer, Lynch,

Patterson (commonly known as
FLP 85).

Theorem: In a purely asynchronous distributed system,
the consensus problem is impossible to solve if even a
single process crashes.

Intuition Behind FLP
Impossibility Theorem

● Jill and Sam will meet for lunch. They’ll eat in
the cafeteria unless both are sure that the
weather is good
● Jill’s cubicle is inside, so Sam will send email
● Both have lots of meetings, and might not read

email. So she’ll acknowledge his message.
● They’ll meet inside if one or the other is away

from their desk and misses the email.
● Sam sees sun. Sends email. Jill acks’s. Can

they meet outside?

34

Sam and Jill

CS5412 Spring 2012 (Cloud
Computing: Birman)

35

Sam Jill
Jill, the weather is beautiful!
Let’s meet at the sandwich
stand outside.

I can hardly wait. I haven’t
seen the sun in weeks!

They eat inside! Sam
reasons:

● “Jill sent an acknowledgement but doesn’t
know if I read it

● “If I didn’t get her acknowledgement I’ll
assume she didn’t get my email

● “In that case I’ll go to the cafeteria
● “She’s uncertain, so she’ll meet me there

36

Sam had better send an
Ack

37

Sam Jill
Jill, the weather is beautiful!
Let’s meet at the sandwich
stand outside.

I can hardly wait. I haven’t
seen the sun in weeks!

Great! See yah…

Why didn’t this help?

● Jill got the ack… but she realizes that Sam
won’t be sure she got it

● Being unsure, he’s in the same state as
before

● So he’ll go to the cafeteria, being dull and
logical. And so she meets him there.

38

New and improved
protocol

● Jill sends an ack. Sam acks the ack. Jill
acks the ack of the ack….

● Suppose that noon arrives and Jill has
sent her 117’th ack.
● Should she assume that lunch is outside in

the sun, or inside in the cafeteria?

39

How Sam and Jill’s
romance ended

40

Jill, the weather is beautiful!
Let’s meet at the sandwich
stand outside.

I can hardly wait. I haven’t seen the sun
in weeks!

Great! See yah…

Got that…

Maybe tomorrow?

Yup…

Oops, too late for lunch

. . .

Things we just can’t do

● We can’t detect failures in a trustworthy,
consistent manner

● We can’t reach a state of “common
knowledge” concerning something not
agreed upon in the first place

● We can’t guarantee agreement on things
(election of a leader, update to a
replicated variable) in a way certain to
tolerate failures

41

But what does it mean?

● In formal proofs, an algorithm is totally correct if
● It computes the right thing
● And it always terminates

● When we say something is possible, we mean “there is a
totally correct algorithm” solving the problem

● FLP proves that any fault-tolerant algorithm solving
consensus has runs that never terminate
● These runs are extremely unlikely (“probability zero”)
● Yet they imply that we can’t find a totally correct solution
● And so “consensus is impossible” (“not always possible”)

● In practice, fault-tolerant consensus is ..
● Definitely possible.
● E.g. Paxos [Lamport 1998, 2001] that has become quite

popular – discussed later!

FLP Proof Sketch (extra):

Terms
○ Bivalent and Univalent states: A decision state is bivalent, if

starting from that state, there exist two distinct executions leading to
two distinct decision values 0 or 1. Otherwise it is univalent.
Bivalent ---> outcome is unpredictable

○ Process: has state
○ Network: Global buffer (processes put and get messages)
○ Configuration -- global state (state for each process + state of

global buffer)
○ Atomic Events -- receipt of message by process p, processing of

message (may change state), send out all needed messages from p
○ Schedule: sequence of atomic events

Lemma 1: Schedules are commutative
Lemma 2: There exists an initial configuration that is bivalent.
Lemma 3: Starting from a bivalent config., there is always another bivalent config. that is
reachable

Landmark paper by Leslie Lamport (1998)
– Does not solve pure consensus problem (impossibility);

But, provides consensus with a twist
– Paxos provides safety and eventual liveness

• Safety: Consensus is not violated
• Eventual Liveness: If things go well sometime in the

future (messages, failures, etc.), there is a good
chance consensus will be reached. But there is no
guarantee.

– FLP result still applies: Paxos is not guaranteed to reach
Consensus (ever, or within any bounded time)

– Used in Zookeeper (Yahoo!), Google Chubby, and many
other companies

The PAXOS Algorithm
-- Towards a Practical Approach to Consensus

44

• Paxos has rounds; each round has a unique ballot id
• Rounds are asynchronous

– Time synchronization not required
– If you’re in round j and hear a message from round j+1, abort everything and

move over to round j+1
– Use timeouts; may be pessimistic

• Each round itself broken into phases (which are also asynchronous)
– Phase 1: A leader is elected (Election)
– Phase 2: Leader proposes a value, processes ack (Bill)
– Phase 3: Leader multicasts final value (Law)

The Paxos Strategy

45MORE DETAILS LATER!!

• http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf

http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf

Failure detection

The design of fault-tolerant algorithms will be simple if
processes can detect failures.
● Impossibility results assume failures cannot be observed.
● In synchronous systems with bounded delay channels,

crash failures can definitely be detected using timeouts.
● In asynchronous distributed systems, the detection of

crash failures is imperfect.

●

Processes carry a Failure Detector to detect crashed
processes.

Desirable Properties of a failure detector:
● Completeness – Every crashed process is suspected
● Accuracy – No correct process is suspected.
● Other factors

● Speed -- time to first detection of a failure
● Overhead -- load on member process, network

message load

Designing failure detectors

Example

0

6

1 3

5

247

0 suspects {1,2,3,7} to have failed.
Does this satisfy completeness?
Does this satisfy accuracy?

Classification of completeness

● Strong completeness. Every crashed process
is eventually suspected by every correct
process, and remains a suspect thereafter.

● Weak completeness. Every crashed process is
eventually suspected by at least one correct
process, and remains a suspect thereafter.
Note that we don’t care what mechanism is used for suspecting a

process.

Classification of accuracy

● Strong accuracy. No correct process is ever
suspected.

● Weak accuracy. There is at least one correct
process that is never suspected.

Eventual accuracy

A failure detector is eventually strongly accurate, if there exists a
time T after which no correct process is suspected.

(Before that time, a correct process be added to and removed from
the list of suspects any number of times)

A failure detector is eventually weakly accurate, if there exists a
time T after which at least one process is no more suspected.

Classifying failure detectors

Perfect P. (Strongly) Complete and strongly accurate
Strong S. (Strongly) Complete and weakly accurate
Eventually perfect ◊P.

(Strongly) Complete and eventually strongly accurate
Eventually strong ◊S

(Strongly) Complete and eventually weakly accurate

Other classes are feasible: W (weak completeness) and
weak accuracy) and ◊W

53

Distributed Failure Detectors:
Desired Properties

● Completeness
● Accuracy
● Speed

● Time to first detection of a failure
● Scale

● Equal Load on each member
● Network Message Load

Completeness and
Accuracy impossible
together in lossy networks
[Chandra and Toueg]

If possible, then can
solve consensus! (but
consensus is known to be
unsolvable in
asynchronous systems)

54

Real Failure Detectors

● Completeness
● Accuracy
● Speed

● Time to first detection of a failure
● Scale

● Equal Load on each member
● Network Message Load

Guaranteed

Partial/Probabilistic
guarantee

Time until some
process detects the failure

No bottlenecks/single
failure point

Detection of crash failures

Failure can be detected using heartbeat messages
(periodic “I am alive” broadcast) and timeout

- if processor speed has a known lower bound
- channel delays have a known upper bound.

56

Centralized Heartbeating

…

pi, Heartbeat Seq. l++

pi
☹ Hotspot

pj •Heartbeats sent periodically
•If heartbeat not received from pi within
timeout, mark pi as failed

57

Ring Heartbeating

pi, Heartbeat Seq. l++

☹ Unpredictable on
simultaneous multiple

failures
pi

……

pj

Approach used in cluster settings

58

All-to-All Heartbeating

pi, Heartbeat Seq. l++

…

☺ Equal load per member
☹ Single hb loss 🡪 false

detection
pi

pj

Variant - gossip style heartbeating (heartbeats with a member subset) -- AWS???
Determine gossip-period; send o(N) heartbeats to a subset every gossip period

Tolerating crash failures

Triple modular redundancy (TMR) for

masking any single failure. N-modular

redundancy masks up to m failures,

when N = 2m +1.

Take a vote

What if the voting unit fails?

Detection of omission failures

For FIFO channels: Use sequence numbers with messages.
(1, 2, 3, 5, 6 …) ⇒ message 4 is missing

Non-FIFO bounded delay channels - use timeout

What about non-FIFO channels for which the upper bound
of the delay is not known?

Use unbounded sequence numbers and acknowledgments.
But acknowledgments may be lost too!

Tolerating omission failures
A real example

A central issue in networking
A

B

router

router

Routers may drop messages, but
reliable end-to-end transmission is an
important requirement. If the sender

does not receive an ack within a time period,
it retransmits (it may so happen that the

was not lost, so a duplicate is generated).
This implies, the communication must

tolerate Loss, Duplication, and Re-ordering
of messages

Byzantine Generals Problem

Lieutenants agree on what the commander
says

Lieutenants agree on what the commander
says

at
ta

ck attack
att

ack

re
tr

ea
t attack

att
ac

k

Byzantine Generals Problem

Replication

❖ Enhances a service by replicating data
❖ Increased Availability

❖ Of service. When servers fail or when the network is partitioned.
❖ Fault Tolerance

❖ Under the fail-stop model, if up to f of f+1 servers crash, at least
one is alive.

❖ Load Balancing
❖ One approach: Multiple server IPs can be assigned to the same

name in DNS, which returns answers round-robin.

P: probability that one server fails= 1 – P= availability of service.
e.g. P = 5% => service is available 95% of the time.

Pn: probability that n servers fail= 1 – Pn= availability of service.
e.g. P = 5%, n = 3 => service available 99.875% of the time

Goals of Replication

❖ Replication Transparency
 User/client need not know that multiple physical copies of data

exist.

❖ Replication Consistency
 Data is consistent on all of the replicas (or is converging towards

becoming consistent)

Client Front End
RM

RM

RM
Client Front End

Client Front End

Service
server

server

server

Replica Manager

Replication Management

❖ Request Communication
❖ Requests can be made to a single RM or to multiple RMs

❖ Coordination: The RMs decide
❖ whether the request is to be applied
❖ the order of requests

❖ FIFO ordering: If a FE issues r then r’, then any correct RM handles r and
then r’.

❖ Causal ordering: If the issue of r “happened before” the issue of r’, then
any correct RM handles r and then r’.

❖ Total ordering: If a correct RM handles r and then r’, then any correct RM
handles r and then r’.

❖ Execution: The RMs execute the request (often they
do this tentatively).

Replication Management

❖ Agreement: The RMs attempt to reach consensus on the effect
of the request.
❖ E.g., Two phase commit through a coordinator
❖ If this succeeds, effect of request is made permanent

❖ Response
❖ One or more RMs responds to the front end.

❖ The first response to arrive is good enough because all the RMs will return the
same answer.

❖ Thus each RM is a replicated state machine
“Multiple copies of the same State Machine begun in the Start state, and

receiving the same Inputs in the same order will arrive at the same State
having generated the same Outputs.” [Wikipedia, Schneider 90]

Group Communication: A building block

❖ “Member”= process (e.g., an RM)

❖ Static Groups: group membership is pre-defined
❖ Dynamic Groups: Members may join and leave, as

necessary

Group
Send

Address
Expansion

Multicast
Comm.

Membership
Management

Leave

Fail

Join

Group

Replication using GC

Client Front End

RM

RM

RM
Client Front End

Client Front End

Service
server

server

server

Need consistent updates to all copies of an object
•Linearizability

•Sequential Consistency

Linearizability

❖ Let the sequence of read and update operations
that client i performs in some execution be oi1,
oi2,….
❖ “Program order” for the client

❖ A replicated shared object service is linearizable if
for any execution (real), there is some interleaving
of operations (virtual) issued by all clients that:
❑ meets the specification of a single correct copy of objects
❑ is consistent with the real times at which each operation occurred during

the execution

❑ Main goal: any client will see (at any point of time) a copy
of the object that is correct and consistent

Sequential Consistency
❖ The real-time requirement of linearizability is hard, if not

impossible, to achieve in real systems
❖ A less strict criterion is sequential consistency: A replicated

shared object service is sequentially consistent if for any execution
(real), there is some interleaving of clients’ operations (virtual) that:

❑ meets the specification of a single correct copy of objects

❑ is consistent with the program order in which each individual client
executes those operations.

❖ This approach does not require absolute time or total order. Only
that for each client the order in the sequence be consistent with
that client’s program order (~ FIFO).

❖ Linearilizability implies sequential consistency. Not vice-versa!
❖ Challenge with guaranteeing seq. cons.?

❖ Ensuring that all replicas of an object are consistent.

Passive Replication
(Primary-Backup)

❖ Request Communication: the request is issued to the
primary RM and carries a unique request id.

❖ Coordination: Primary takes requests atomically, in order, checks
id (resends response if not new id.)

❖ Execution: Primary executes & stores the response

❖ Agreement: If update, primary sends updated state/result, req-id
and response to all backup RMs (1-phase commit enough).

❖ Response: primary sends result to the front end

Client Front End

RM
RM

RM
Client Front End RM

prima
ry

Backu
p

Backu
pBacku

p

….

Fault Tolerance in Passive
Replication
❖ The system implements linearizability, since the

primary sequences operations in order.
❖ If the primary fails, a backup becomes primary by

leader election, and the replica managers that survive
agree on which operations had been performed at the
point when the new primary takes over.
❖ The above requirement can be met if the replica managers

(primary and backups) are organized as a group and if the
primary uses view-synchronous group communication to send
updates to backups.

❖ Thus the system remains linearizable in spite of
crashes

Active Replication

❖ Request Communication: The request contains a unique identifier and
is multicast to all by a reliable totally-ordered multicast.

❖ Coordination: Group communication ensures that requests are
delivered to each RM in the same order (but may be at different physical
times!).

❖ Execution: Each replica executes the request. (Correct replicas return
same result since they are running the same program, i.e., they are
replicated protocols or replicated state machines)

❖ Agreement: No agreement phase is needed, because of multicast
delivery semantics of requests

❖ Response: Each replica sends response directly to FE

Client Front End RM

RM

Client Front End RM

….

FT via Active Replication

❖ RMs work as replicated state machines, playing equivalent roles.
That is, each responds to a given series of requests in the same
way. One way of achieving this is by running the same program
code at all RMs (but only one way – why?).

❖ If any RM crashes, state is maintained by other correct RMs.
❖ This system implements sequential consistency

❖ The total order ensures that all correct replica managers process the same
set of requests in the same order.

❖ Each front end’s requests are served in FIFO order (because the front end
awaits a response before making the next request).

❖ So, requests are FIFO-total ordered.
❖ Caveat (Out of band): If clients are multi-threaded and

communicate with one another while waiting for responses from
the service, we may need to incorporate causal-total ordering.

EXTRA SLIDES

Proof of FLP ‘83
(Impossibility of Consensus in
an Asynchronous System)

(adapted from UIUC CS425 - Indranil Gupta)

Asynchronous system: All message delays and processing
delays can be arbitrarily long or short.

Consensus:

● Each process p has a state
• program counter, registers, stack, local variables

• input register xp : initially either 0 or 1

• output register yp : initially b (undecided)

● Consensus Problem: design a protocol so that either
• all processes set their output variables to 0 (all-0’s)

• Or all processes set their output variables to 1 (all-1’s)

• Non-triviality: at least one initial system state leads to each
of the above two outcomes

Recall

78

● For impossibility proof, OK to consider
1. more restrictive system model, and
2. easier problem

• Why is this is ok?

Proof Setup

79

p p’

Global Message Buffer

send(p’,m)
receive(p’)

may return null

“Network”

Network

80

● State of a process
● Configuration=global state. Collection of states, one for each

process; alongside state of the global buffer.
● Each Event (different from Lamport events) is atomic and

consists of three steps
• receipt of a message by a process (say p)
• processing of message (may change recipient’s state)
• sending out of all necessary messages by p

● Schedule: sequence of events

States

81

C

C’

C’’

Event
e’=(p’,m’)

Event e’’=(p’’,m’’)

Configuration
C

Schedule
s=(e’,e’’)

C

C’’

Equivale
nt

82

C

C’

C’’

Schedule s1

Schedule s2

s2

s1

s1 and s2 involve
disjoint sets of
receiving processes,
and are each
applicable
on C

Disjoint schedules are
commutative

Lemma 1

83

Easier Consensus Problem: some process
eventually sets yp to be 0 or 1

Only one process crashes – we’re free to choose
which one

Easier Consensus Problem

84

● Let config. C have a set of decision values V reachable from it
• If |V| = 2, config. C is bivalent
• If |V| = 1, config. C is 0-valent or 1-valent, as is the case

● Bivalent means outcome is unpredictable

Easier Consensus Problem

85

1. There exists an initial
configuration that is
bivalent

2. Starting from a bivalent
config., there is always
another bivalent config.
that is reachable

What the FLP proof shows

86

Some initial configuration is bivalent

•Suppose all initial configurations were either 0-valent or
1-valent.

•If there are N processes, there are 2N possible initial
configurations

•Place all configurations side-by-side (in a lattice), where
adjacent
 configurations differ in initial xp value for exactly one
process.

 1 1 0 1 0
1

•There has to be some adjacent
pair of
 1-valent and 0-valent configs.

Lemma 2

87

 1 1 0 1 0
1

•There has to be some adjacent pair of 1-valent and 0-valent
configs.

•Let the process p, that has a different state across these two
configs., be
 the process that has crashed (i.e., is silent throughout)

Both initial configs. will lead
to the same config. for the
same sequence of events

Therefore, both these initial
configs. are bivalent when
there is such a failure

Lemma 2 Some initial configuration is
bivalent

88

What we’ll show

1. There exists an initial
configuration that is
bivalent

2. Starting from a bivalent
config., there is always
another bivalent config.
that is reachable

89

Lemma 3

Starting from a bivalent config., there is always
another bivalent config. that is reachable

90

A bivalent initial
config. let e=(p,m) be some event

 applicable to the initial
config.

Let C be the set of configs.
reachable
 without applying e

Lemma 3

91

Backward vs. forward error
recovery

Backward error recovery
When safety property is violated, the computation rolls
back and resumes from a previous correct state.

tim
e

rollback
Forward error recovery
Computation does not care about getting the history right, but
moves on, as long as eventually the safety property is restored.
True for self-stabilizing systems.

Message Logging

● Tolerate crash failures
● Each process periodically records its local

state and log messages received after
● Once a crashed process recovers, its state must be

consistent with the states of other processes
● Orphan processes

• surviving processes whose states are inconsistent with
the recovered state of a crashed process

● Message Logging protocols guarantee that upon
recovery no processes are orphan processes

Message logging protocols

● Pessimistic Message Logging
• avoid creation of orphans during execution
• no process p sends a message m until it knows that all

messages delivered before sending m are logged; quick
recovery

• Can block a process for each message it receives - slows
down throughput

• allows processes to communicate only from recoverable
states; synchronously log to stable storage any
information that may be needed for recovery before
allowing process to communicate

Message Logging

● Optimistic Message Logging
• take appropriate actions during recovery to eliminate all

orphans
• Better performance during failure-free runs
• allows processes to communicate from non-recoverable

states; failures may cause these states to be
permanently unrecoverable, forcing rollback of any
process that depends on such states

Causal Message Logging

● Causal Message Logging
• no orphans when failures happen and do not block

processes when failures do not occur.
• Weaken condition imposed by pessimistic protocols
• Allow possibility that the state from which a process

communicates is unrecoverable because of a failure, but
only if it does not affect consistency.

• Append to all communication information needed to
recover state from which communication originates - this
is replicated in memory of processes that causally
depend on the originating state.

