
A Survey of
Asynchronous Remote Procedure Calls

A.L. Ananda
B.H. Tay

Department of Information Systems and Computer Science
Natiomd University of Singapore

Kent Ridge Crescent
Singapore 0511

Republic of Singapore
BITNET: ananda@m~sdiscs.bitnet, taybengh@nusdiscs.bitnet

and

E.K. Koh
Information Technology Institute

711 Science Park Drive
NCB Building
Singapore 0511

Republic of Singapore
BITNq~T: engkiat@ itivax.bitnet

Abstract

Remote Procedure Call (RPC) is a popular paradigm for interprocess communication

in distributed systems. It is simple, flexible and powerful. However, most of the RPC

systems today are synchronous in nature, and hence fail to exploit fully the parallelism

inherent in distributed applications. In view of this, various asynchronous RPC

systems have been designed and :implemented to achieve higher parallelism while

retaining the familiarity and simplicity of synchronous RPC. Asynchronous RPC

calls do not block the caller (client) and the replies can be received as and when they are

needed, thus allowing the client execution to proceed locally in parallel with the caUee

(server) invocation. Asynchronous RPC calls can be classified into two types

depending on whether the calls return a value. Most asynchronous RPC systems only

support calls that do not return a value, and few support both classes. In this paper, an

analysis and comparison of various asynchronous RPC systems are presented.

Keywords:

distributed systems, interprocess communication (IPC), remote

procedure call (RPC), synchronous RPC, asynchronous RPC,

parallelism, low-latency, high-throughput, transport-independent,

intra-machine call.

92

1. Introduction

Remote Procedure Call (RPC) is a simple, flexible and powerful interprocess communication (IPC)

paradigm for developing distributed applications [Wilbur and Bacarisse 87]. It is a widely used

communication mechanism in distributed systems and applications such as Amoeba distributed operating

system [Mullender et al. 90], Sprite network operating system [Ousterhout et al. 88], and Andrew File

System [Satyanarayanan 90].

Many RPC systems have been built since Nelson's PhD thesis [Nelson 81]. Notable works include Cedar

RPC [Birrell and Nelson 84], Sun RPC [Sun 88], NCA/RPC [Dineen et al. 87], and HRPC [Bershad et al.

87]. A survey of some of these works can be found in ['ray and Ananda 90]. However, most of these RPC

systems are synchronous in nature, and hence fail to exploit fully the parallelism inherent in distributed

applications. This severely limits the kind of interactions the distributed application can have, resulting in

lower performance. To achieve concurrency, the user has to resort to other means such as light-weight

processes (threads) or the low level inter-machine message-passing mechanism (send~receive). If the host

operating system does not support thread as in the case of Unix, costly heavy-weight processes have to be

used instead. However, both solutions are not attractive to the users. The first solution is unwieldy, hard to

debug, and does not scale well in a large distributed environment. The second solution is much more difficult

to use than the RPC mechanism. In view of this, various asynchronous RPC systems have been designed

and implemented to achieve higher parallelism while retaining the familiarity and simplicity of synchronous

RPC. Asynchronous RPC calls do not block the caller (client) and the replies can be received as and when

they are needed, thus allowing the client execution to proceed locally in parallel with the server invocation.

This paper is a comparative study of a few distinctive asynchronous RPC mechanisms. The asynchronous

RPC mechanisms included in the discussion are Athena Non-blocking RPC, NCA Maybe RPCo Sun

Batching RPC, Remote Pipes, Stream (Promises), Future and ASTRA. The comparison is based mainly on

the following characteristics of the asynchronous RPC mechanisms"

• Support for the receipt of reply message

• Transportprotocols

• Order of delivery of call and reply messages

• Call semantics

• Optimization for low-latency or high-throughput

93

• Optimization for intra-machine calls

Section 2 examines the motivation for the development of the asynchronous RPC mechanisms, and

discusses its design criterion. A detailed analysis of each asynchronous RPC system is presented in section

3. Section 4 presents a scorecard for the asynchronous RPC systems discussed.

2. Background

The design of an asynchronous RPC mechanism is motivated mainly by the need to achieve high-parallelism

while retaining the simplicity and familiarity of the RPC abstraction. Limited degree of parallelism can be

achieved by creating multiple light-weight processes (threads) for each RPC call [Bal et al. 87]. This allows

the client to make multiple calls to multiple se, rvers, and still be able to execute in parallel with the servers.

The program structure is similar to the fork~join, but is unwieldy and hard to debug. Although bundling

RPC with threads incurs less overhead, this solution does not scale well. In a large distributed environment

where the number of RPC calls grows and shrinks dynamically, using threads is not economical because of

the cumulative cost of thread creation, context switching and thread destruction. Moreover, threads are not

supported in some of the host operating systems such as Unix System V.

Some systems like Multi-RPC [Satyanarayanan and Siegel 90] attempt to achieve higher parallelism by

allowing a client to invoke multiple instances of a procedure concurrently. The client is blocked until all

responses are received, or the call is explicitly terminated by the client. While some parallelism is achieved,

it is not possible for a client to invoke two different procedures in parallel. Thus Multi-RPC does not fully

exploit parallelism in many situations.

Alternatively, one could achieve the desired paxallelism through the use of the message-passing inter-machine

IPC mechanism. However, the users of such a system have to handle many details which were previously

hidden within RPC, including data representation, packaging of the messages, and the pairing of responses

with request messages. Asynchronous RPC provides an intermediate abstraction between message passing

IPC and synchronous RPC.

2.1 Design Criterion

There are several criterion which are desirable in the design of an asynchronous RPC system. Firstly, an

asynchronous RPC system must have the look and feel of a synchronous RPC system, except that the client

94

does not wait for a reply after making an asynchronous call. In this case, the client may or may not be able

to defer receipt of return replies. In addition, it is desirable that all the calls are received and executed by the

server in the order called by the client to preserve the correct call semantics. Therefore an asynchronous RPC

system should retain all the benefits that a conventional synchronous RPC system has to offer, and yet

allow parallel execution of the client and the server.

Secondly, an asynchronous RPC system must be designed to be transport independent to suit different types

of application needs. Generally, clients and servers are involved in two kinds of interactions, intermittent

exchange and extended exchange. By intermittent exchange we mean the client makes a few occasional

request-response (RR) type of calls to the sewer. By extended exchange we mean the client is either involved

in bulk data transfer, or makes many RR type of calls to a particular server. An asynchronous RPC system

should ideally incorporate both virtual-circuit and datagram transport protocols, so as to allow the application

to choose the best transport that meets its needs. To achieve optimum performance, virtual-circuit could be

selected for extended exchange since it provides better flow and error control with negligible processing

overhead. On the other hand, datagram is more suitable for intermittent exchange due to its simplicity.

Thirdly, an asynchronous RPC facility must be optimized for intra-machine calls. According to a survey

conducted by Bershad et al. [Bershad et al. 89], less than 10% of the remote activities are cross-machine calls.

This is because most of the applications are designed to maximize local processing. In view of this, an

asynchronous RPC system should be designed to optimize inlra-machine calls by bypassing the expensive

data conversion and network communication operations.

Existing synchronous RPC systems are designed for low-latency to improve the response time, whereas the

asynchronous RPC systems are mostly designed for high-throughput. It is desirable to structure an

asynchronous RPC system such that either low-latency or high-throughput can be achieved. In this case, the

user is able to specify explicitly the optimization needed at run-time, and to mix low-latency calls with high-

throughput calls.

3. Asynchronous RPC Systems

Asynchronous RPC calls can be classified into two types depending on whether the call returns a value.

Most asynchronous RPC systems only support calls that do not return a value, and few support both

classes. A taxonomy of the asynchronous RPC mechanism discussed in this paper is shown in figure 1.

95

RPC Calls

I
Asynchronous Calls

I
I

Without return value

I
I I I I I

Athena NCA Sun MIT Stream
Non-blocking Maybe Batching Remote (Promises)

RPC RPC RPC Piipe

I
Synchronous Calls

I
With return value

I ,
Future ASTRA

Figure 1 A Taxonomy of RPC calls

In this section, we examine a number of asynchronous RPC systems in the chronological order of the

development, and highlight their similarities and differences. Section 3.1 describes the asynchronous RPC

systems that do not return a value. We will discuss the class of asynchronous RPC systems that can defer

receipt of replies in the section 3.2.

3.1 Asynchronous RPC without return value

3.1.1 MIT Project Athena Non-blocking RPC

The objective of MIT's project Athena [Champine et al. 90] was to integrate various computing and

communication resources for educational purposes. Athena RPC [Souza and Miller 86] was developed under

the constraints imposed by the coherence model 0 of the Project Athena. Some of the constraints included no

modification to the Unix kernel, support of RPC in a heterogeneous environment, and support of multiple

language suites. It was implemented as a prototype in the BSIM.2 Unix operating system.

Athena RPC provides both blocking (synchronous) and non-blocking (asynchronous) calls. Athena non-

blocking RPC was developed primarily to improve the performance of applications where no information or

status need to be returned from the called procedure.

OCoherence means that the same system interface is provided to all users regardless of the systems deployed from
various vendors.

96

A request-response (UDP-RR) protocol is built on top of UDP for normal blocking RPC. Non-blocking

RPC uses UDP as its transport mechanism. As a result, it does not guarantee the delivery of call messages,

nor the order of delivery. Consequently, the order of execution in the server may not be the same as the order

of call invocation by the client.

Athena non-blocking RPC has may-be call semantics, as defined in Spector's paper [Spector 85], since there

is no guarantee of delivery of call messages. The applications have to implement their own end-to-end

mechanism if any communication reliability is desired. The may-be semantics renders it unsuitable for any

wansactional applications.

To reduce latency, Athena non-blocking RPC sends out its call message immediately after each call. In

addition, it does not differentiate between inter-machine and intra-machine calls, and hence no optimization is

performed for local in~a-machine calls.

3 .1 .2 N C A M a y b e R P C

NCA/RPC [Zahn et al. 90] was developed by HP/Apollo as part of the Network Computing Architecture

(NCA). It provides a rich set of RPC calls for the programmer: a normal blocking RPC which is termed

send-wait-reply, an asynchronous RPC which is called maybe RPC, broadcast RPC, and broadcast~maybe

RPC.

To specify a maybe RPC, the interface definition language (IDL) file must contain a [maybe] operation

attribute in front of the procedure definition. This is illuslrated in the following code segment written in the

Network Interface Definition language (C syntax):

[maybe] void simple$op(...);

Here simple$opO is the name of a remote procedure which does not return a value. The stub generator will

produce a stub procedure simple$opO as specified in the IDL file. The client can call the the remote procedure

simple$opO as a local procedure.

In addition to the above call types, NCA/RPC provides functions which are rarely available in other RPC

implementations; for example, a client is able to send "ping" packets to inquire an outstanding request and

"quit" packets to inform the server that it is to abort processing of the remote call.

NCA/RPC is designed to work on top of a connectionless-oriented transport layer. Currently, this layer

supports the Apollo Domain Protocol (DDS) and UDP. NCA maybe RPC is very similar in characteristics

97

to Athena non-blocking RPC. Both rely on an unreliable datagram for transporting the call messages, and do

not expect a reply from the servers. Therefore,, it has may-be call semantics and the order of delivery of

messages is not guaranteed.

NCA maybe RPC does not attempt to buffer the call messages; the call message is sent immediately to

achieve low-latency. In addition, it does not optimize intra-machine calls since it does not distinguish

between intra-machine and inter-machine calls.

3.1.3 Sun Batching RPC

Sun ONC/RPC [Sun 88] was developed by Sun Microsystems as part of the Open Network Computing

(ONC). Sun batching RPC is one of the call types provided by Sun RPC; others are normal synchronous

RPC and broadcast RPC. Batching RPC aUows a series of calls to be made from the client to the server.

Each RPC call in the pipeline requires no reply from the server, and the server can not send a reply message.

The last call must be a normal blocking RPC in order to flush out the pipeline of calls.

Sun RPC provides two types of interface for application programmers. One is available as library routines.

The other interface uses a RPC specification hmguage (RPCL) and a stub generator (RPCGEN). The RPCL

is an extension of the eXternal Data Representation (XDR) [Sun 87] specification. To use batching RPC,

one can use RPCGEN or the library routines.

The clnt_callO library routine can be used to invoke Sun batching RPC as follows:

clnt_call(client, PROCNUM, xdr req, &request, xdr_ret, return, timeout);

The call is distinguished from the normal blocking RPC by setting timeout, xdr_ret and return to zero

(NULL). Here client is a handle returned by clnt_createO which creates and binds a RPC client handle;

PROCNUM is the procedure number to be called in the server, and the xdr req is the corresponding xdr

routine for the data called request.

Sun RPC provides both UDP and TCP as its transport communication mechanism. However, batching RPC

is built on top of TCP alone. In contrast to Athena non-blocking RPC and NCA maybe RPC, all the

messages are reliably delivered. However, the fact that TCP is the only transport mechanism supported

makes it un-suitable for request-response type of transactional applications. The call semantics of Sun

batching RPC is at-most-once. This is an improvement over the may-be call semantics of Athena non-

blocking RPC and NCA maybe RPC.

98

Sun batching RPC makes use of TCP to buffer call messages, and send them to the server in one Unix

write() system call. This greatly decreases the system call overhead, thus improving performance and

throughput. However, no optimization is done for intra-machine calls in Sun batching RPC.

3.1.4 Remote Pipe

Remote pipe [Gifford and Glasser 88] was designed to allow bulk data and incremental results to be

efficiently transported in a type-safe manner. These objectives are realized using a communication model

called the Channel Model. The Channel Model consists of three basic elements: remote procedure, remote

pipe and channel groups.

In the Channel Model, a node 1 is similar to a process. A node may contain a number of channels. A

channel, in this context, is either a remote procedure or a pipe. The difference between a remote procedure and

a pipe is that the former is a synchronous RPC while the latter is an asynchronous RPC that does not return

a value. A node can inaport any channel exported by any other node or possibly re-export them to other

nodes. This makes the channel a first-class value 2 that can be freely exchanged among nodes [Nelson 81].

The importing node can group channels into a set called a channel group. A channel group controls the

sequencing of the calls; data sent to a channel within a channel group are received in the order sent.

The remote interface definition can be specified using Modula-2 as follows:

D E F I N I T I O N M O D U L E xxx;

PIPE pipeop(. . .) ;

PROCEDURE rpcop(. . .) ;

* o o

S E Q U E N C E pipeop, rpcop;

o o *

END xxx.

In this example, xxx is the name of the module, pipeop is the name of the remote pipe, and rpcop is the

name of the remote procedure. The SEQUENCE statement statically groups pipeop and rpcop into a

channel group. Alternatively, the programmer can group a set of channels using the group() primitive at run-

time. As the definition module suggests, remote procedures or pipes can be called just like any local

procedures as follows:

1 A node is defined as a virtual computer with a private address space. A physical computer can have one or many nodes.

2 A first-class object is a value (including remote procedures) that can be freely stored in memory, passed as a parameter to both

local and remote procedures, ~md returned as a result from both local and remote procedures.

99

{ Import the xxx server }

yyy :-- xxxClient.Import(.. .);

{ Call the remote pipe and procedure }

yyy .p ipeop(. . .) ;

yyy .rpcop(. . .) ;

Here yyy is an instance of the type xxx.

The Channel Model is transport independent; it can be implemented on top of raw datagrams by providing its

own flow control, or on transport protocols that include flow control such as VMTP [Cheriton 86]. In fact,

Gifford and Glasser implemented it on top of TCP.

The Channel Model can be implemented using either at-most-once or exactly-once semantics. However, it is

believed that most of the implementation of the channel model will have at-most-once semantics due to its

simplicity. This is similar to many other RPC systems such as Sun batching RPC.

The performance of the Channel Model can be optimized by buffering and combining pipe calls destined for

the same sink node into a single message to reduce the message-handling overhead and hence improving the

throughput. This is similar to Sun batching RPC. Other optimizations include combining pipe calls with

procedure calls to flush out the buffered pipe calls, combining pipe returns to a single message to reduce

message handling and system call overheads, preaUocating processes in a process pool to eliminate fork

overhead, and factoring packages and groups to save space. In the Channel Model, no attempt is made to

differentiate between inter-machine and intra-machine calls. As a result, intra-machine calls are not

optimized.

3.2 Asynchronous RPC with return value

Although the RPC systems discussed provide some form of asynchronism, none of them includes a

mechanism to defer receipt of return results. This shortcoming limits the design of distributed applications to

strictly uni-directional exchange from client to server. There are three choices opened to the application

programmer in these systems: 1) program the application using synchronous RPC call and sacrifice

concurrency, 2) structure the application in such a way that no reply from servers is needed, 3) directly

program on top of the transport layer. In view of these shortcomings, asynchronous RPC systems that can

defer receipt of replies such as stream (promises),future and ASTRA have been developed.

3.2.1 Stream (Promises)

100

Stream in the MIT Mercury system is the first RPC system that combines synchronous and asynchronous

calls with return value in a clean and uniform way [Liskov et al. 88]. Stream provides three kind of calls:

normal synchronousRPC calls, stream calls and send. Stream calls is a kind of asynchronous RI~ call with

reply message. Send, on the other hand, is similar to Sun Batching RPC and remote pipe calls, in that the

client is not interested in the reply. In addition to the above three calls, stream provides a "flush" primitive

that can be used to flush out the buffered call or reply messages, and a "synch" primitive that will block the

caller until the processing of all the earlier calls have been completed.

A stream-based transport protocol such as TCP is used for transporting and sequencing the stream call and

reply messages reliably. It simplifies the implementation of stream, and also provides at-most-once call

semantics. However, the fact that stream relies solely on a specific reliable stream-based transport makes it

more suitable for bulk data transfer rather than low-latency calls. Moreover, the use of TCP leads to higher

overheads for most transactional applications where a request-response protocol is more appropriate.

Like Sun batching RPC and remote pipes, it was designed mainly to achieve high-throughput where call

messages are buffered and flushed when convenient. This is to reduce the system call overhead. Although

low-latency can also be achieved by explicitly flushing out the calls, it is however somewhat inconvenient.

Again, no optimization is done for intra-machine calls.

Streams have been integrated into Argus [Liskov 88] as a new data type called promises [Liskov and Shrira

88]. A promise is returned to the caller whenever a stream call is performed. It is like a mailbox that holds

the result computed by the server, and can be claimed by the client when it is ready. The result of the claim

operation reflects the outcome of a stream call. The claim returns the type of the result if the call succeeds,

and the names and types of the exceptions if the call fails. A promise can be claimed many times in any

convenient order, and the same outcome will be returned each time. Although stream only provides at-most-

once call semantics, promises is able to achieve exactly-once call semantics because Argus computations run

as atomic transactions.

The declaration, stream call and claim operations for promises can be illustrated as follows:

% declaration - this is a comment statement

objtype = promise returns (type) signals (...)

% stream call operation

obj type$operat ion_name(x , ...)

% claim operation

y: type = objtype$claim(x)

I01

except when ...

end

Here x is a promise of type objtype, and type is the data type for the return result y. The control only

goes to the except portion when the call terminates with an exception.

3 .2 .2 F u t u r e

Future [Walker et al. 90] is an asynchronous RPC provided in the CRONUS system [Schantz et al. 86]. A

future is an object that is returned after each client invocation. It is an I.O.U. that can be used to claim the

result of an invocation at a later stage. Futures are created and claimed by the stub procedures which are

automatically generated from a specification of the remote operations.

For each remote operation that is invoked, a pair of stub procedures - FlnvokeXXXO and FCIaimXXXO are

generated by the stub generator. FlnvokeXXXO is used to invoke a remote operation and return a future. The

calling format of FlnvokeXXXO is shown as follow in the C language syntax:

FUTURE FInvokeXXX(object , ;Statement, InvokeControl)

In this example, XXX is the remote operation name exported by the server, object specifies the item to be

operated on, and statement specifies the input data. I nvokeCon t ro l is used to set various handling

options for the invocation such as the hostname where a server resides and the absolute time limit for the

reply to arrive. The system will signal an erro:r if the absolute time limit is exceeded. On the other hand,

FCIaimXXXO is used to claim a future at a later time. The calling format of FCIaimXXXO is shown below:

int FClaimXXX(future, output)

Here XXX is the operation name exported by the server, fu ture is the unique identifier returned by

FlnvokeXXXO, and output is the output arguments returned by remote procedure XXX.

In addition, there are three other primitives provided to manipulate futures : Discard(), IsReadyO and

AllowMultipleClaimsO. Discard() notifies the system that the future is no longer of interest and should

therefore be destroyed. IsReadyO tests if a future is ready for collection. AllowMultipleClaimsO allows

multiple replies to be claimed for a future. This is a unique primitive provided in future to support

asynchronous call with multiple replies.

Future also provides an abstraction called Fut~,~reSet. This allows multiple futures to be grouped into a set.

FutureSet facilitates the management of futures and eliminates the strict ordering of claim operations. For

example, the primitive FuturesetExtractReadyO extracts any one of the futures in a set which is ready. This

102

particular future retrieved can be claimed subsequently using FCIaimXXX(). Thus FuturesetExtractReady() is

analogous to the select() primitive in the BSD socket [Sechrest 86].

In addition, future supports flow control for asynchronous calls through an abstraction called Funnels. A

Funnel essentially specifies the maximum number of outstanding futures that is allowed at any one time.

When a client calls FlnvokeXXX(), the call will return to its caller immediately. However, the remote

operation is invoked only if the number of outstanding futures has not exceeded the maximum. Otherwise

the call message is held until the outstanding futures are either claimed or discarded. As a result, overload in

server is prevented via funnels. However, in the current implementation, the flow control using funnels is

handled at the application level, not at the system level.

Future was implemented on both TCP and UDP. TCP is the main transport protocol supported in future.

With TCP, the delivery of the call and reply messages are guaranteed. On the other hand, future do not

provide any end-to-end mechanism on top of UDP. Thus UDP-based future calls are not reliable nor

dependable. Although TCP is a sequenced transport protocol, future makes no guarantees concerning the

order of delivery of the call messages. The call messages may be reordered in the process of buffering before

it is transmitted [Walker 90]. This is a serious drawback since the order of execution in the server may be

different from the order called by the client.

Unlike most of the asynchronous RPC systems, future was designed mainly for low-latency. The call

message is sent immediately for each request made, and the returned results can be claimed in any order. In

the current implementation, future does not bypasses the expensive data conversion and network

communication for intra-machine calls [Walker 90].

3.2.3 ASTRA

ASTRA [Ananda et al. 91] is built within the framework of SHILPA - a Distributed Computing

Environment for the Department of Information Systems and Computer Science (DISCS) at the National

University of Singapore (NUS). The main design objective of SHILPA is to provide a generic distributed

computing platform for building distributed applications on an interconnection of local area networks in a

heterogeneous environment.

ASTRA calls are similar to stream and future calls in that it is able to defer receipt of results. The client can

make the an ASTRA call in the C language using the following primitives:

RPCXID rpc.cintasycai l(cinthandler , service, call_option, ...)

103

The clnthandler is a handle returned by rpc_clntinitO which creates and binds a client handle; service is

the service name/number to be called, and the call_option parameter can be used to specify various options

such as low-latency or high-throughput. Each rpcclntasycallO call returns a monotonically increasing rpcxid

in the case of a successful call or a -1 in the case of an error. Each rpcxid is unique within a clnthandler and

is used for claiming the reply message for a particular invocation at a later stage. To receive a reply for a

particular call for a clnthandler, the client can use the following primitive:

int rpe_clntclaim(clnthandler, rpcxid, delay_option, ...)

Unless the de layopt ion is set to NO_DELAY, this function will be blocked if the reply message for this

particular invocation is not available.

In addition to the normal call and claim primitives, ASTRA provides a primitive rpc_clntwaitO that allows a

client to wait for a reply up to a specified time limit. Several other primitives are also provided for handling

the abnormal conditions, including rpc_clntpingO, rpc_clntretryO, and rpc_clntabortO. The rpc_clntpingO

primitive is used to determine the status of the server process. The rpc_clntretryO primitive is used to re-try a

particular call without re-executing the operati(m if it has been performed earlier, and rpc_clntabortO aborts a

call that is pending or executing in the server.

ASTRA is transport independent in that it does not rely on any particular communication protocol. Two

types of transport services are supported for inter-machine calls: virtual circuit and reliable datagram.

Transport protocols currently supported are: 'rcP/IP and RDTP/IP. RDTP is a reliable datagram transport

protocol that is built on top of UDP. ASTRA .,~quences the delivery of call and reply messages regardless of

the underlying transport protocols. Thus all the calls are received and executed by the server in the order

called by the client. Moreover, ASTRA is designed to achieve at-most-once call semantics.

ASTRA integrates both low-latency and high-throughput communication into one single asynchronous RPC

model. The user can specify explicitly whether low-latency or high-throughput is the main concern for an

invocation, and the system will optimize the call accordingly. It differs from other asynchronous RPC

systems such as stream and future that are designed to achieve only one of them, but not both.

Unlike stream and future, ASTRA provides hiighly optimized Oight-weight) intra-machine calls. For an intra-

machine call, ASTRA will bypass the data conversion and network communication, and directly uses the

fastest native IPC mechanism provided by the local operating system. This is a unique feature provided by

ASTRA. However, ASTRA does not incorporate concepts like FutureSet and Funnel. The flow control in

ASTRA is done by the underlying transport protocol.

104

4. Asynchronous Remote Procedure Calls Scorecard

The following table is a scorecard of the asynchronous RPC systems discussed. The call semantics defined

here follow the definitions in Spector's paper [Spector 82] closely, except we denote Only-Once-Type- 1 as at-

most-once.

Distributed
Computing

Environment
Transport
Protocol

Defer
Receipt of
Reply
Call

Semantics
Reliable

Delivery of
Message
Ordered

Delivery of
Message

Low
Latency,

High
Throughput
Suitable for

RR
transaction
appl icat ion

Light-
weight
Intra-

machine
Cal l

A t h e n a
R P C

MIT Athena

UDP

No

may-be

No

No

Yes

No

No

No

N C A / R P C

HP/Apollo
NCS

UDP

No

may-be

No

No

Yes

No

No

No

Sun
B a t c h i n g

RPC

Sun ONC

TCP

No

at-most-
o n c e

Yes

Yes

No

Yes

No

No

R e m o t e
P i p e s

(C h a n n e l
Mode l)
Mercury

Datagram or
Stream based

(TCP)
No

at-most-once

Yes

Yes

No

Yes

No

No

Stream
(P r o m i s e s)

Mercury

TCP

Yes

at-most-
once

Yes

Yes

Yes

Yes

Yes (high
overhead
because of

TCP)

No

Future

CRONUS

TCP
UDP

Yes (TCP)
No 0JDP)

at-most-
once.

Yes (TCP)
No ~t.IDP)

No

Yes

No

Yes (high
overhead -

TCP)
No ~UDP)

No

A S TRA

SHILPA

TCP
RDTP (UDP)

Yes

a t - m o s t -

o n c e

Yes

Yes

Yes

Yes

Yes

Yes

Table 1 A comparison of the various Asynchronous RPC Systems

5. Conclusion

This paper briefly examined why asynchronous RPC is the most suitable paradigm to achieve higher

parallelism in a heterogeneous distributed computing environment. It also discussed the design criterion for

105

such a mechanism. Lastly, a number of asynchronous RPC systems developed in recent years were analyzed

and comlmred.

This survey revealed a few salient points. Firstly, the present trend is towards the development of

asynchronous RPC systems with return values. This is evident from the fact that the latest asynchronous

RPC developments such as stream, future and ASTRA are all in this category. Secondly, most of the

systems surveyed here did not optimize for intra-machine calls. A probable reason is that the dominance of

intra-machine calls is not known until recently when Bershad et al reported their findings [Bershad et al. 89].

Lastly, virtual-circuit (TCP) is a popular transport mechanism for the asynchronous RPC system, since it

conveniently provides the reliability and ordering of the asynchronous RPC calls.

Although the importance of asynchronous RAaC is highlighted, we expect that normal synchronous RPC

calls will dominate. That almost all the asynchronous RPC systems come with a synchronous counterpart is

a testimonial to our belief. We are confident that future RPC implementations will integrate both

synchronous and asynchronous calls together in order to provide a uniform, complete, and comprehensive

remote operation mechanism. Only then can distributed applications be universally and easily supported.

Acknowledgements

The work described here is supported by the, National University of Singapore's Research Scholarship and

Research Grant RP900608. We thank Barbara Liskov, William Weihl for sending us their papers, and

Edward F. Walker for clarifying some of the points in his paper.

106

References

[Amanda et al. 91] A.L. Ananda, B.H. Tay, and E.K. Koh, "ASTRA - Am Asynchronous Remote Procedure

Call Facility", Proc of the 11th International Conference on Distributed Computing Systems

(ICDCS-11), IEEE, Arlington, Texas, United States, May 20-24, 1991, pp.172-180.

[Bal et al. 87] Bal, H.E., Renesse, R. van, and Tanenbaum, A.S., "Implementing Distributed Algorithms

using Remote Procedure Call", Proc. National Computer Conference, AFIPS, pp. 499-505,

1987.

[Bershad et al. 87] Bershad B.N., Ching D.T., Lazowska E.D., Sanislo J., Schwartz M., "A Remote

Procedure (;all Facility for Interconnecting Heterogeneous Computer Systems", IEEE Trans. on

Software Eng., Vol. 13, No. 8, Aug 1987, pp. 880-894.

[Bershad et al. 89] Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and Henry M. Levy,

"Lightweight Remote Procedure Call", Proc. of 12th Symp. on Operating Systems Principles,

Dec 1989, pp. 102-113.

[Birrell and Nelson 84] Birrell A.D. and Nelson B.J., "Implementing Remote Procedure Calls", ACM

Trans. on Computer Systems, Vol. 2, No. I, Feb 1984, pp. 39-59.

[Champine et al. 90] George A. Champine, Daniel E. Geer, Jr., and William N. Ruh, "Project Athena as a

Distributed Computer System", Computer, Sep 1990, pp. 40-51.

[Cheriton 86] Cheriton, D.R., "VMTP: A Transport Protocol for the Next Generation of Communication
System", Proc. of SIGCOMM'86, Aug 1986, pp. 406-415.

[Dineen et al. 87] Dineen, T. H., Leach, PJ., Mishkin, N.W., Pato, J.N., and Wyant, G.L., "The Network

Computing Architecture and System: An Environment for Developing Distributed

Applications", In Proc. of the USENIX Conference (Phoenix, Ariz., June). USENIX

Association, Berkeley, Calif., 1987, pp. 385-398.

[Gifford and Glasser 88] David K. Gifford and Nathan Glasser, "Remote Pipes and Procedures for Efficient

Distributed Communication", ACM Trans. on Computer Syst., Vol. 6, No. 3, Aug 1988, pp.

258-283.

[Liskov 88] B. Liskov, "Distributed Programming in Argus", Comm. of the ACM, Vol. 31, No. 3, Mar

1988, pp. 300-312.

107

[Liskov et al. 88] B. Liskov, T. Bloom, D. Gifford, R. Scheifler, and W.E. Weihl, "Communication in the

Mercury System", in Proc. 21st Annu. Hawaii Int. Conf. Syst. Sc., Jan 1988.

[Liskov and Shrira 88] B. Liskov and Shrira, "Promises: Linguistic Support for Efficient Asynchronous

Procedure Calls in Distributed Systems", in Proc. of the SIGPLAN'88 Conference on

Programming Language Design and Implementation, Atlanta, Georgia, June 22-24, 1988, pp.

260-267.

[Mullender et al. 90] Sape J. Mullender, and Guido van Rossum, Andrew S. Tanenbaum, Robbert van

Renesse, and Hans van Staveren, "Amoeba: A Distributed Operating Systems for the 1990s",

Computer, May 1990, pp. 44-53.

[Nelson 81] Nelson, B., "Remote Procedure Call", Report CSL-81-9, Xerox Palo Alto Research Center,

May 1981.

[Ousterhout et al. 88] John K.Ousterhout, Andrew R. Cherenson, Frederick Douglis, Michael NAlelson, and

Brent B. Welch, "The Sprite Network Operating System", Computer, Feb 1988, pp. 23-36.

[Satyanarayanan and Siegel 90] M. Satyanarayanan and E.H. Siegel, "Parallel Communication in a Large

Distributed Environment", IEEE Trans. on Computers, Vol. 39, No. 3, Mar 1990, pp. 323-348.

[Satyanarayanan 90] M. Satyanarayanan, "Scalable, Secure, and Highly Available Distributed File Access",

Computer, May 1990, pp. 9-21.

[Schantz et al. 86] R. Schantz, R. Thomas an cl G. Bono, "The Architecture of the CRONUS Distributed

Operating System", Proc of 6th International Conference on Distributed Computing System,

Cambridge, Massachusetts, May 1!)-23, 1986, pp. 250-259.

[Souza and Miller 86] Robert J. Souza and Steven P. Miller, "Unix and Remote Procedure Calls: A Peaceful

Coexistence?", Proc of 6th International Conference on Distributed Computing System,

Cambridge, Massachusetts, May 19-23, 1986, pp. 268-277.

[Sechrest 86] Smart Sechrest, "An IntroduclLory 4.3BSD Interprocess Communication Tutorial", Unix

Programmer's Supplementary Documents, Vol. 1 (PSI), 4.3 Berkeley Software Distribution,

Computer Systems Research Group, Computer Science Division, Univ. of California, Berkeley,

Calif., Apt 1986.

[Spector 82] Spector, A.Z., "Performing Remote Operations Efficiently on a Local Computer Network",

Comm. of the ACM, Vol. 25, No. 4, Apr 1982, pp. 246-260.

108

[Sun 87] Sun Microsystems, "XDR: External Data Representation Standard (RFC 1014)", in lnternet

Network Working Group Request for Comments, No. 1014, Network Information Center, SRI

International, Jun 1987.

[Sun 88] Sun Microsystems, "RPC: Remote Procedure Call Protocol Specification Version 2 (RFC 1057)",

in lnternet Network Working Group Request for Comments, No. 1057, Network Information

Center, SRI International, Jun 1988.

[Tay and Ananda 90] B.H. Tay and A.L. Ananda, "A Survey of Remote Procedure Calls", ACM Operating

Systems Review, Vol. 24, No. 3, July 1990.

[Walker et al. 90] Edward F. Walker, Richard Floyd, and Paul Neves, "Asynchronous Remote Operation

Execution in Distributed Systems", Proc. lOth Intl. Conf. on Distributed Computing Systems

(ICDCS-IO), IEEE, Pads, France, May 28-June 1, 1990, pp. 253-259.

[Walker 90] Edward F. Walker, Private Communication, Oct 1990.

[Wilbur and Bacadsse 87] Steve Wilbur, Ben Bacarisse, "Building Distributed Systems with Remote

Procedure Call", Software Eng. Journal, Sep 1987, pp. 148-159, also appeared in UCL-CS TR

141, Dept. of Comp. Se., Univ. College London.

[Zahn et al. 90] Lisa Zahn, Terence H. Dineen, Paul J. Leach, Elizabeth A. Martin, Nathaniel W. Mishkin,

Joseph N. Pato, and Geoffrey L. Wyant, Network Computing Architecture, Prentice-Hall, 1990.

109

