
Handshake
A Mobile Application for Contact Sharing

Rohit Malhotra
Prateek Jain
Gaurav Gupta

Motivation & Goals
The main idea herein is to develop a mobile application that would allow people
to easily exchange contact information among each other by leveraging near
field communication between their mobile phones, in conjunction with push
notifications from a remote server to the phones.
Contact information may refer to -
Phone Number
Facebook Profile’s Url
Twitter Handle
LinkedIn Profile’s Url
Personal Website’s Url
Github Profile Url

Related Work
● Bump - A motion sensor based android app that

enables users to share any data between two phones
by tapping them together and sending location data to a
server. (requires proximity)

● Share Contact - Share contacts with other people over
SMS or internet. (proximity not required)

● Slip - Instant Contact Sharing (for iOS only)

Middleware Concepts/Technologies
1) IAAS: We use Amazon EC2 from AWS as our infrastructure to host the backend of our application
2) RPC Runtime : We use Apache Thrift as our RPC runtime. It provides an IDL (Similar to CORBA).
3) Distributed Shared Memory: We use two memcached servers running on two different ec2 instances

forming a memcached cluster. Our application uses this as a layer of caching over the database
interactions.

4) Memcache Middleware : We use ‘mcrouter’ as a middleware which provides Qos such as high
availability, fault tolerance and pool based allocation of memcached servers. This can help us
horizontally scale up the application in case we need to add more memcached servers.

5) Java Based Middleware: We use JDBC to connect to the MySQL database from our Java thrift service.
6) HTTP Server: We use Nginx as our front end HTTP server for interactions with the mobile client.
7) Asynchronous message Delivery Service : Google Cloud Messaging platform
8) Middleware Framework: Python Django Framework

System Architecture

Design Rationale
We have designed the system in order to focus on the following non-functional properties of the
system.

1) Runtime Performance: For our query processing from MySQLDB, we use a Java service
running over an RPC runtime. Since Java has better runtime performance than python, we get
less turnaround time for query processing.

2) Fast Read Performance: We use memcache demand-filled look-aside cache on top of our
MySQL database. This helps us save database I/O cost for frequently issues queries.

3) Reliability: We use mcrouter (memcache middleware) which provides the option of server
pooling of memcached servers and provides QoS like fault tolerance and high availability.

4) Interoperability: We use Django as our frontend web framework since python is suited to fast
paced development. For interacting with services written in other programming languages, we
use Apache Thrift which provides an IDL to write interoperable services.

