
Evaluation of Apache Kafka & Redis as a potential
back-end for Ascoltatori & Ponte to enable highly

resilient & fault tolerant pub-sub mechanism

Nithin Vommi(87203572), Ashish Pedaballi(73222322), Sripad K S(73524050)

University of California, Irvine

June 9, 2016

Objectives

Evaluate the potential of Apache Kafka and Redis in terms of the ability
to provide a distributed broker network for the IoT devices along with the
multi-protocol benefits of Ponte.
These two systems were tested against the following metrics -

Average End to End Latency

Communication Losses

Ability to equip the system to favor storage of messages at the
production site

Auto creation of topics when a publisher starts publishing to a topic
that is non existing

Fault tolerance in-case of broker failure

Ability to support at-least 500 open clients (publishers and
subscribers) simultaneously

Ease of integration with Ascoltatori and Ponte

Related Work - Kafka

Related Work - Redis

Deployed Redis in Master-Slave configuration with the two instances
located geographically distant from each other

Configured Redis to work as a cluster with 3 Master Servers

Pub - Sub across all the servers

Tested Ponte over Redis

Testing & Evaluation Plan

Avg End - End Latency Comparison for Pub-Sub in MQTT

Distributed Network

Metric - ” Maximum Number of Concurrent Clients ”

Experimental Setup -
Experiments were conducted by firing a MQTT Publisher for each topic
and a MQTT subscriber subscribing to that topic.

Publisher Location - North California
Logs Location - North California

Subscriber Location - Sydney
Publisher : Subscriber = 1
messages per topic - 100

Distributed Broker Network Performance - Kafka

Publisher Location - North California
Logs Location - North California

Subscriber Location - Sydney
Publisher : Subscriber = 1
messages per topic - 100

Conclusion

The performance of Kafka and Redis in a non - distributed network
are comparable.

Ponte is compatible with Kafka in single and distributed broker
networks but with Redis, it only supports a single broker network

Storage of messages at the production site can be achieved by passing
JSON objects that store the reassignment information.

Kafka can handle upto (n-1) failures where ’n’ is the replication factor

Kafka Distributed Network is best suitable for 500 clients because the
performace degrades as we increase the number of clients beyond
500.

The End

