
CS 237 Project Report
Group 16: Zhixuan Jia, Shayang Zang, Hao Ni

Section 1: Key objective and proposed work

Social networking has been a hot topic for many years and there are many influential IT companies
focusing on this area. The intrinsic complexity of social networking requires the related applications to
be highly scalable and reliable. Therefore, middleware plays an important role in these applications.

In this project, we focused on implementing one of the essential features of social networking
applications, which is the message exchange feature. Message exchange feature is essentially a
publisher/subscriber system, which commonly appears in distributed systems. Our main objective is to
build a web application on which people can anonymously publish real-time messages to a group of
people to which himself/herself belongs to. We believe anonymity encourages and assists people,
especially the ones who are very shy, to better express their ideas or opinions. For example, lots of
people are afraid of asking a “stupid” question. However, by posting anonymously within a group, no
one can associate this question to you and because users can only join a group with approval from group
leader, all the anonymous message posted within a group will be highly related to this group.
Furthermore, our application will also allow users to draft anonymous messages to specific group
member. These anonymous messages will be stored in our server and only be sent out when some
conditions are met.

Section 2: Related efforts

1. Heroku: Deployment platform
Building scalable and highly available infrastructure from scratch is expensive and time-consuming.
Therefore, many web application developers choose to build, run and operate their applications entirely
on some cloud-based infrastructures. These cloud infrastructures are typically maintained by
trustworthy IT companies and delivered as a utility (on-demand, available in second, with pay-as-you-go
pricing). With ready-to-use infrastructure, developers only need to focus on the development of their
applications. Some widely-used cloud-infrastructure services are Amazon’s AWS, Microsoft’s Azure,
Google’s App Engine, etc. These cloud-infrastructure can be further classified into two categories:
Infrastructure as a Service (IaaS) and Platform as a Service (PaaS). Our choice of the cloud infrastructure
for this project is Heroku, which is maintained by Salesforce and offers PaaS. It provides these attractive
features [1]:

• Fast deployment (within minutes) using git push

• Useful add-ons such as database, SSL and activity logs

• Each application component can be scaled up independently

• Provide first 750 computation hours free of charge

However, Heroku has its disadvantages. It does not have the flexibility that IaaS offers. Developers do
not have much influence on server-side architecture. For example, load balancing, deployment system
and server activity logging are determined and automatically handled by Heroku.

2. Ruby on Rails (or Simply Rails): Development Framework
Ruby on Rails is a popular open source server-side web application framework written in Ruby. Many
high-volume websites such as Airbnb, Hulu, GitHub, Twitter etc. were initially built on Ruby on Rails. Like
many other web frameworks, it uses the model-view-controller (MVC) pattern to organize application

architecture [6]. It also emphasizes the use of some well-known software engineering patterns and
paradigms [2]:

• Convention over Configuration: This design concept free developers from making decisions
which are not worthy of recurrent deliberation, which means more productivity gains.

• The menu is omakase: Rails diminishes developers privilege to choose each tool or library during
development. Instead, Rails provide a tool box for all. This makes interaction of different
tools/libraries much more stable.

These two practices above are the most important reasons that we chose Ruby on Rails for this project.
They make Rails good for rapid application development.

3. Rack: Web server interface
Rack provides a modular and adaptable interface for developing web applications in Ruby. By wrapping
HTTP requests and responses in the simplest way possible, it unifies and distill the API for web servers,
web frameworks, and middleware into a single method call [3]. Developers only need to know how to
configure Rack and Rack will be responsible for communicating with many different HTTP servers, such
as Puma, Unicorn, Nginx, etc. To use Rack in a web application, developers create a Ruby object that
responds to the call method, which takes the environment hash as a parameter, and returns an array
with three elements: The HTTP response code, A hash of headers and the response body [3].
Furthermore, developers can easily add a chain of different middleware components between the
application and the web server, which naturally forms a pipeline design pattern. These middleware
components can handle tasks like enabling caching, authentication, catching exceptions, etc. Some
often-used middleware are:

• Rack::URLMap, to route to multiple applications inside the same process.

• Rack::CommonLogger, for creating Apache-style logfiles.

• Rack::ShowException, for catching unhandled exceptions and presenting them in a nice and
helpful way with clickable backtrace.

• Rack::File, for serving static files.

4. Faye: Real-time pub/sub system
Faye is a publish-subscribe messaging system created by James Coglan. It is one of the open source
implementations of the Bayeux protocol (described in next section). It provides message servers for
Ruby, and clients for use on the server and in all major web browsers. Components that make up the
Faye’s messaging stack are listed below [4]:

• Storage: The storage layer is the base of the whole stack. It stores the state of the Faye service.
The state includes a list of active client IDs, which channels each client is subscribed to, and any
queued messages waiting to be delivered to clients. This storage can be server’s memory or a
Redis database.

• Engine: The engine is an object that provides an abstract API on top of the storage layer. It
implements the core operations of the Faye service, such as registering new clients, storing
subscriptions and routing messages. The engine’s operation assume that all necessary validation
has been done on incoming data further up the stack.

• Server: The server implements the Bayeux messaging protocol, providing the handshake,
connect, disconnect, subscribe and publish operations. The engine executes these operations.

• Server-side extension: This component is written by the developers. They can use this
component to intercept messages that flow in an out of the server.

• Adapter: The adapter exposes the server’s interface over HTTP. It is responsible for serializing
and deserializing messages as JSON and accepting connections over various HTTP transport.

• Transport: Its job is to serialize client’s messages and send them to the Server. When responses
from server arrive, it deserializes the responses and give them to clients.

• Client-side extensions: These are components written by the user that intercept massages that
flow in and out of Client.

• Client: This is the component that developers interact most with. It provides the interface
through which subscriptions are registered and messages are published. It also responsible for
distributing messages to the right listeners as new messages arrive from the server.

• Clustering: Faye supports clustering. Developers can run a single Faye service across multiple
front-end web servers.

Two figures below shows the architecture of Faye and some basic code to use Faye. [4]

In project, we used a Ruby gem called Private Pub which publish and subscribe to messages through
Faye. It provides real-time updates through an open socket without tying up a Rails process. All channels
are private so users can only listen to events you subscribe them to. [7]

5. Mobile Friendly: iOS App
For any messaging application, mobile phone is one of the most important target devices. We developed
our own iOS app which made it more convenient for our users to access the application through their
mobile phones so that they can send and receive the messages with minimum delays and overhead.
Users of the iOS app will directly communicate with our app server through RESTful APIs to publish and
receive messages.

Figure below shows how different components interact with each other.

Section 3: Approach, methods and techniques

Bayeux Protocol: Foundation of Faye
Delivery of asynchronous messages from a remote server to a web client is often described as server
push. The combination of server push techniques with an AJAX web application has been called Comet.
Bayeux seek to reduce the complexity of developing Comet web applications by providing a
communication protocol for transporting asynchronous messages (primarily over web protocols such as
HTTP and Web Socket), with low latency between a web server and web clients. The messages are
routed via named channels and can be delivered: server to client, client to server and client to client (via
server) according to t Bayeux protocol. These topic channels are independent of the network transport
being used [5].

Section 4: Evaluation plan and implementation issues

1. Overall Performance Evaluation Plan
The performance of an application can be affected by clients’ network, web server processing ability and
database I/O. The application is currently in testing phase and hosted on Heroku, a cloud-based
deployment platform. We plan to invite UCI students to sign up for our web application and see how the
growth of the number of users can impact the application performance such as web server response
time and database I/O.

2. Web Server
When evaluating or choosing a web server, we mainly considered four factors: First, whether the web
server provides buffering for clients’ requests. Second, whether the web server supports concurrency.
Third, whether it is compatible with Rack. Fourth, how easy it is to be configured. After considering all
these three factors, we chose Puma as the web server, which provides concurrency and buffering of
clients’ request, compatible with Rack and most importantly, very easy to configure. [9] However, the
downside is that Puma does not provide more advanced configurations as the other web servers such as
Passenger and Unicorn. We may choose web servers with more functionalities in the later phase of the
development cycle.

3. Database
Considering the nature of our application, relational database is the go-to option. We evaluated three
popular open source relational database: SQLite, MySQL and PostgreSQL. SQLite can be embedded
inside the application and store data locally, which enables extremely fast data access. But it hinders the
scalability of our application. MySQL is known for distributed deployment, ease of use and high security.
But the drawbacks are also obvious: First, it does not ensure ACID compliance. [10] Second, it does not
provide good performance in concurrent “write” requests. Finally, we consider PostgreSQL. PostgreSQL
is comparable with MySQL in many aspects. Particularly, it alleviates the obvious problems that MySQL
has and provides our application with better extensibility because it is also an object-oriented database
with an object-oriented programming API for storing and retrieving objects. However, PostgreSQL’s
performance is not as good as MySQL in concurrent “read” requests, which will become a bottleneck of
the application in the long run since the application frequently performs both “read” and “write”
operations.

In terms of database migration, Rails framework provides Active Record Module, which is the laying of
the system responsible for representing business data and logic. [8] It is a very convenient way to realize
the migration of database schema but not the actual data record, which remains an issue to be solved.

4. Future Distribution
The scale of the application has been relatively limited so far. The following high-level distribution
strategy will not be used until we can prove there is a market for this application.

• Run the application on a cluster independent of Heroku.

• Use Nginx as a dedicated front-facing server to handle slow clients, load balancing problems.

• Use a dedicated cluster as database to achieve high-availability, high partition tolerance and
eventual consistency.

Section 5: Conclusion and possible extensions

Building a functional web application, even within a small scale, involves many components and how to
make these components properly interact with each other requires significant amount of work. In this
project, we implemented a web application which allows users to publish messages to a group of people
in real-time. From web server to message server, from front-end JavaScript and CSS to back-end
database logic, each of these components requires careful decisions.

This application can possibly be extended to many other scenarios because being able to exchange
messages is essential in most people’s lives. One possible scenario we can think of is location-based
group messaging. In this scenario, everyone within some specific distance to each other can also form a

group. Real-time messages can be published to this group and everyone within a certain distance from
the message-sent location is automatically subscribed and will receive a copy of these messages. This
scenario is much harder to implement because every user is constantly moving and system has to
subscribe and unsubscribe each user very often. This impose great amount of work on the system and
most likely will require distributed system combined with NoSQL database.

Code:

• https://github.com/lishiming9/yipiejihe

• https://github.com/zhixuan1120/237_Project

Reference:
[1] How Heroku Works (https://devcenter.heroku.com/articles/how-heroku-works)
[2] David Heinemeier Hansson: The Rails Doctrine
[3] Rack: a Ruby Webserver Interface (http://rack.github.io)
[4] Faye: Simple pub/sub messaging for the web (https://faye.jcoglan.com/architecture.html)
[5] Alex Russell; Greg Wilkins; David Davis; Mark Nesbitt: The Bayeux Protocol Specification 1.0
[6] Ruby on Rails: A web-application framework that includes everything (http://rubyonrails.org)
[7] Private Pub (https://github.com/ryanb/private_pub)
[8] Active Record Basics (http://guides.rubyonrails.org/active_record_basics.html)
[9] PUMA: A modern, concurrent web server for Ruby (http://puma.io)
[10] Brian Jepson: PostgreSQL vs. MySQL

