

Dan Morgan (55086407)

Mazhar Abbass (73877540)

Siddharth Joshi (30807928)

Billing Service Prototype with Kafka Middleware

Objective

The aim is to design a scalable distributed system which provides the functionality of a client-server

billing application, using message oriented middleware(MOM). The project involves testing of the

system under variable load conditions to evaluate performance. The simulation results of a basic and a

scaled version of the system are considered for the evaluation.

Proposed Work
For the stated objective we are proposing to use a Kafka cluster as middleware platform which will be

backbone of the whole billing system. We are going to use set of producers which will produce data in

certain topics depending on payment type.

Clients which will send a payment request to the proxy servers, which sits between the Kafka cluster and

the clients. This configuration simulates the actual configuration what you can find in various

applications. Proxy servers read data from proxy topics. Now this topics will contain data published by

the backend servers. Backend servers read from the transaction topics and process the messages. Now

this messages sent and received as protobuf. As protobuf, provides more advantages over normal XML

or JSON format.

Proxy once again reads from the proxy topics which contain message id, and payment confirmation or

error message if any. This configuration allows multiple clients to simultaneously do transactions

without much delay.

Existing Work

For the case of building a distributed system , the choice of the architecture depends on the application.

A typical billing service cares about metrics like scalability reliability and speed of the system . There is a

wide range of work already done as well as ongoing research , in the evaluation of need based

middleware architectures. Messaging systems like Kafka , RabbitMQ, ActiveMQ , Redis etc are in a fierce

competition to satisfy the demands of the customers. RabbitMQ and kafka have persistence and good

throughput , ActiveMQ on the other hand is well suited for enterprise level applications whereas Redis is

really fast. A survey of different technologies especially RabbitMQ and Kafka answered the question of

which technology to use for our prototype​[8]​. The existing work related to our project revolves around

these message brokers. For similar applications like transactions processing, financial services etc these

are the top contenders.

Project Approach

The overall goal of the project was to produce a system prototype, not an actual usable billing service;

therefore, we mostly aimed to analyze Kafka’s performance, scalability, and usability, and less to

produce a usable system. Toward that end, we deployed a Kafka broker cluster and our own custom

code on Amazon EC2 t2.micro instances, which have the benefit of being free but are very

resource-constrained.

Our custom code was developed in .NET (specifically the .NET Core framework version 1.1), and Java.

The .NET client, proxy, and backend “payment” and “balance” processors were developed in Visual

Studio 2017 as C# console applications that can run on Windows, Mac, or Linux. .NET code for this

project can be found on GitHub here ​https://github.com/Jensaarai/CS237-billing-service​. The Java code

can be found here on github ​https://github.com/sj2753/cs237​; Java code includes only a backend

“payment processor,” which we didn’t end up using because the paradigm of “only consume the latest

messages” was not as straightforward for the Java Kafka library as it was for C#.

In the .NET applications, a few third-party packages were used as well. gRPC (​http://www.grpc.io/​) with

Protobuf was used for communication between the clients and proxies, and a Protobuf message,

serialized to a byte array, was also used as the Kafka payload. Confluent’s C# Kafka library was also used

(​https://github.com/confluentinc/confluent-kafka-dotnet​) as the Kafka driver for the .NET applications.

The .NET client console application generates many parallel requests of a user-input number that

round-robin to configured proxy servers. The client keeps a stopwatch for each request to record the

round-trip time for each request as seen by the client. The requests are sent through generated gRPC

APIs, ​MakePayment ​and ​CheckBalance, ​as described in ​billing.proto​. When the proxy receives a request,

it reads the requested payment method and publishes a new message to the Kafka cluster to a topic

that corresponds to the payment type, e.g. Visa or Mastercard, and the request type, e.g. payment or

balance check. For our prototype implementation, only Visa payments and balance checks are sent by

the client and handled by the proxy. The message a proxy publishes also includes a “reply-to”-type field,

proxy_topic​, that identifies the proxy-specific Kafka topic that this particular proxy is consuming from

(each proxy generates its own custom topic name upon startup). The backend servers consume from

their configured topics, currently only “VisaPayment” and “VisaBalance”, and Kafka consumer groups

are configured for those topics. This tells Kafka to ensure that each message published to the various

topic partitions are given to only one consumer in the group; this gives us our parallelization by allowing

us to add more backend servers to consume more messages in parallel. After the backend server

determines if the payment should be accepted or denied, or what the client’s balance is, it publishes a

serialized Protobuf response to the topic specified by the proxy, from which the proxy has a consumer.

The proxy consumer reads the message, matches it against a transaction ID for the particular client

request, and sets the message as the result to a TaskCompletionSource set up earlier. This wakes up the

server-side handling of ​MakePayment ​or ​CheckBalance​, which finally returns the response to the client.

https://github.com/Jensaarai/CS237-billing-service
http://www.grpc.io/
https://github.com/sj2753/cs237
https://github.com/confluentinc/confluent-kafka-dotnet

Finally, when the client has received responses to all of its requests, it prints the total number of

requests, the shortest request time, longest request time, and average request time for its set of

payment requests and its set of balance requests, and total time taken for all requests.

The .NET applications were built against the ​ubuntu.16.04-x64 runtime and each were deployed to their

own Ubuntu Server 16.04 AWS EC2 instance. The .NET Core SDK was installed on each AWS instance as

described here ​https://www.microsoft.com/net/core#linuxubuntu which allowed the applications to be

run. Three clients, three proxies, three backend payment processors and three backend balance

processors were deployed for a total of twelve Ubuntu instances for our custom code. A system diagram

is shown below:

Kafka cluster

We used EC2 instances from Amazon Web Services to host out kafka multi-node broker cluster. We used

EC2 free tier eligible t2.micro instances whose specifications are: which use 1 CPU and offer 1 GB of

RAM. This are the baseline instances and hence they are not very powerful or performance optimized.

First of all to even run, zookeeper and kafka broker on the dedicated instance we needed to deallocate

the default heap size which is required for zookeeper and kafka broker. In all three instances the heap

size has been kept to 256 MB. This is very low considering the fact that Kafka when used with right

hardware and software configuration it can process data up to 2 million writes per second. But, this

instances do not scale up to that level.

The instances mentioned here are tied to the static ip offered by Amazon and each instance of the

broker does have its own Zookeeper and Kafka broker running. We used in total 3 instances each with

zookeeper and a single kafka node hosted on port 2181 and 9092 respectively.

Zookeeper configuration files have been changed so that it can recognize brokers on different server as

well. All the broker configuration files have been changed as well such that default partition value for

https://www.microsoft.com/net/core#linuxubuntu

any created topic is 5 and leader imbalance check is done frequently. Moreover considering the limits of

the machine we have decided to change the log retention period from the default as well. Server

configuration files recognize the zookeeper ensemble, zookeeper ensemble is responsible for broker

related management tasks. Each broker announces its public ip as advertised host name. This was the

basic configuration. Total topics created were for VISA, MASTERCARD and Proxies. System can tolerate

up to 2 zookeeper failures. Maximum replication achievable is 3 which is number of brokers. We could

have set up multiple brokers on each instance but we haven’t only because of limits on heap size and

limited capabilities of RAM.

Google’s Protocol Buffers

Protocol Buffer (PB) is a platform neutral extensible way of serializing structured data for use in

communications protocols, data storage, and more. Google has open sourced this internal development

tool as 'Protocol Buffer' in 2008​[7]​. As compared to xml and other data formats , it is more compact and

robust since it is works in an object oriented manner. Once the Protocol Buffer interface is

defined, the rest of the implementation process is straightforward. Protocol Buffer saves data in binary

format, so there is no overhead for parsing as in XML which leads to fast and easy data transfer over the

a communication channel.

Evaluation

To test and evaluate our application, we planned two different approaches. First, we wanted to run

some benchmark scripts provided by Kafka itself, and second we wanted to run our own set of tests with

the applications we wrote. Unfortunately, we were not able to get the Kafka benchmark scripts fully

working, so we only have results for the tests with our own applications.

We ran tests at three different rates of client requests, one set when only one backend processor was

consuming from the Visa topic, and another when three backend processors were consuming. In both

cases, three clients were running sending requests to three proxies, and all three proxies were

publishing to the Visa topic. Therefore, we wanted to see the system’s throughput with one backend

consumer, and then with three when Kafka distributed the Visa topic’s partitions between the three.

These are the results from our tests. In these tables, the number of requests is the number of

simultaneous requests ​per client, ​so “5,000 requests” is a total of 15,000 simultaneous requests from

the three clients round-robining to the three proxies, and either one, or three, backend processor

consuming all 15,000.

Number of Requests One Backend Processor Three Backend Processors

5,000
Shortest Response: 1.864751s
Longest Response: 3.095911s
Average Response: 2.378374s

Shortest Response: 1.883761s
Longest Response: 3.168537s
Average Response: 2.416574s

10,000
Shortest Response: 1.737001s
Longest Response: 4.198972s
Average Response: 2.673143s

Shortest Response: 1.681944s
Longest Response: 4.292545s
Average Response: 2.653532s

25,000
Shortest Response: 1.770683s
Longest Response: 7.885425s
Average Response: 4.65759s

Shortest Response: 1.662826s
Longest Response: 7.893259s
Average Response: 4.449785s

As we can see, three processors were slightly faster, except in the 5,000 (x3) case, which may be

because of batching in the Kafka driver being more efficient at higher loads. At 10,000 (x3), three

processors was less than 1% faster, but at 25,000 (x3), throughput was almost 5% higher. Since our

throughput is much, much lower than the theoretical Kafka throughput, it’s likely that if we could scale

out further, and with more powerful machines, we’d see a much larger increase in throughput.

After discussion with Professor Venkatasubramanian, she recommended we try to simulate more

real-world behavior in the backend processors to see if that would make a difference in response time

and scalability. A random 100-1000ms jitter delay was added to the payment processor, and the balance

processor was created to give a second, longer-lived request type that had a random 2-5 second jitter

delay. Here, we can see that as we scale up, our throughput increases by a much larger percent: at

10,000 (x3), we’re already 9.5% faster, and at 25,000 (x3), we’re 15.9% faster. It’s feasible that if we

could push this farther, we’d see even better results, as we haven’t seemed to have hit Kafka’s limits.

Number of Requests One Backend Processor Three Backend Processors

5,000
Shortest Response: 3.283162s
Longest Response: 6.223261s
Average Response: 4.533328s

Shortest Response: 3.028235s
Longest Response: 6.359679s
Average Response: 4.411553s

10,000
Shortest Response: 2.91652s
Longest Response: 8.782683s
Average Response: 5.122519s

Shortest Response: 2.738824s
Longest Response: 8.203394s
Average Response: 4.637534s

25,000
Shortest Response: 3.01406s
Longest Response: 17.11741s
Average Response: 9.17651s

Shortest Response: 2.692739s
Longest Response: 14.15711s
Average Response: 7.725362s

Overall, we exercised the Kafka auto-consumer rebalancing functionality, and showed that it could easily

re-distribute load across multiple consumers to provide an increase in throughput.

Conclusion

Kafka works excellently well as message oriented middleware, but in our case its performance is limited

by the hardware, if the same system is scaled over large clusters and better hardware we could achieve

significant progress in the latency and throughput. Moreover, we are certain that this type of setup with

increased sophistication can be used at industrial scale.

Future expansion

In future, we could migrate whole system to hardware platform which provides more storage and

speed. As we mentioned in evaluation, increase in partition count and throughput which should have

improved latency time affect much. This was mainly because of limitation and we were facing memory

full exception which could be because low heap size.

Moreover our backend which is currently in .NET can also work with Java backend. Performance analysis

could have been improved. We can also improve incorporated monitoring service, which is useful as

cluster size grows. There are many errors which are only found as we scale. Incorporated monitor

service on sample data service may help to discover errors early. This are some of proposed changes in

existing project.

Works Cited

[1] John, Vineet, and Xia Liu. "A Survey of Distributed Message Broker Queues." ​arXiv preprint

arXiv:1704.00411​ (2017).

[2] Zhang, Tianning. "Reliable event messaging in big data enterprises: looking for the balance

between producers and consumers." ​Proceedings of the 9th ACM International Conference on

Distributed Event-Based Systems​. ACM, 2015.

[3] Kreps, Jay, Neha Narkhede, and Jun Rao. "Kafka: A distributed messaging system for log
processing." ​Proceedings of the NetDB​. 2011.

[4] Jones, Brett, et al. "RabbitMQ performance and scalability analysis." ​project on CS​ 4284 (2011).

[5] Wang, Zhenghe, et al. "Kafka and Its Using in High-throughput and Reliable Message
Distribution." ​Intelligent Networks and Intelligent Systems (ICINIS), 2015 8th International

Conference on​. IEEE, 2015.

[6] Wang, Guozhang, et al. "Building a replicated logging system with Apache Kafka." ​Proceedings
of the VLDB Endowment​ 8.12 (2015): 1654-1655.

[7] Kaur, Gurpreet, and Mohammad Muztaba Fuad. "An evaluation of protocol buffer." ​IEEE
SoutheastCon 2010 (SoutheastCon), Proceedings of the​. IEEE, 2010.

[8] Magnoni, L. "Modern messaging for distributed systems." ​Journal of Physics: Conference Series​.
Vol. 608. No. 1. IOP Publishing, 2015.

[9] Kleppmann, Martin, and Jay Kreps. "Kafka, Samza and the Unix philosophy of distributed data."
Bulletin of the IEEE CS Technical Committee on Data Engineering​ (2015).

[10] Goodhope, Ken, et al. "Building LinkedIn's Real-time Activity Data Pipeline." ​IEEE Data Eng.
Bull.​ 35.2 (2012): 33-45.

