
CS 237
Billing Service with Kafka Middleware

Dan Morgan (55086407)

Mazhar Abbass (73877540)

Siddharth Joshi (30807928)

Motivation & Goals
Motivation

Designing a complete

system like a billing

service, which uses

message oriented

middleware such as Kafka,

scale it and evaluate its

performance.

Goal

To Build a billing service

using Kafka as middleware

and server assembly of

producers and consumers.

Simulate the real word

billing application scenario

and make different client

and producer platforms.

Goal

Write and perform the test

cases to evaluate the

performance of the Kafka

cluster.

Find parameters like

Producer Latency,

Consumer Latency.

Related Work
RabbitMQ

RabbitMQ is a solid, mature,

general purpose message broker

that supports several standardized

protocols such as AMQP

It does not have horizontal scaling

unlike Kafka

For testing, it has a performance

tool which reports the rate at which

messages are sent and received,

along with the latency.

ActiveMQ

Implements the Java Message

Service specification

Support for enterprise integration

and Spring framework

Is has better cost performance and

reliability but lacks in speed when

compared to modern brokers like

Kafka

Redis

In-memory database that has

pub-sub features

Better for short lived messages

No persistence but high speed

Supports data structures like string,

hash tables, lists

Client

...

Client n

Proxy 1

...

Proxy n

VisaPayment 1

...

VisaPayment n

VisaBalance 1

...

VisaBalance nVisaBalance

VisaPayment

Kafka

Proxy 1

Proxy n

System Prototype

Design specifics

C# Clients/Proxies

.NET Core Console Apps (x3)

● gRPC with Protobuf

messages for

communication between

client and proxy

● Clients round-robin

between proxies

● Proxies publish Protobuf

messages to “Visa” Kafka

topic

● Proxies consume replies

from process-specific topic

Kafka Middleware

kafka_2.11-0.10.2.0

● 3 AWS servers

● 1 GB RAM

● 3 broker cluster

● Topics auto-created

● num.partitions=5

● 1 Gb Device RAM.

● 256 MB Heap memory

● 3 zookeeper ensemble

● Low leader imbalance

check

C# Payment/Balance

Processors

.NET Core Console Apps (x6)

● Kafka consumers from

“VisaPayment” (x3) and

“VisaBalance” (x3) topics

● Uses “Subscribe” API so

Kafka will auto-balance

partitions across consumers

● Publish response to

proxy-specific topic

delivered in originally

consumed message

Evaluation Plan and Results
One Backend Processor

5,000 requests

● Shortest Response: 1.864751s

● Longest Response: 3.095911s

● Average Response: 2.378374s

10,000 requests

● Shortest Response: 1.737001s

● Longest Response: 4.198972s

● Average Response: 2.673143s

25,000 requests

● Shortest Response: 1.770683s

● Longest Response: 7.885425s

● Average Response: 4.65759s

Three Backend Processors

5,000 requests

● Shortest Response: 1.883761s

● Longest Response: 3.168537s

● Average Response: 2.416574s

10,000 requests

● Shortest Response: 1.681944s

● Longest Response: 4.292545s

● Average Response: 2.653532s

25,000 requests

● Shortest Response: 1.662826s

● Longest Response: 7.893259s

● Average Response: 4.449785s

● Perform simultaneous requests per
client, so “5,000” requests is 15,000
total being handled by the system

● Measure system response time from
the client (time from request sent to
response received)

● Perform tests with one backend
processor first, then add two more
and re-run

○ Kafka rebalances the topic partitions
between the three

● Three processors slightly faster
○ Limited by AWS t2.micro instances;

at higher rates clients and proxies
would run out of memory

○ Might have been gRPC server
memory leak

Evaluation Plan and Results - Round 2
One Backend Processor

5,000 requests

● Shortest Response: 3.283162s

● Longest Response: 6.223261s

● Average Response: 4.533328s

10,000 requests

● Shortest Response: 2.91652s

● Longest Response: 8.782683s

● Average Response: 5.122519s

25,000 requests

● Shortest Response: 3.01406s

● Longest Response: 17.11741s

● Average Response: 9.17651s

Three Backend Processors

5,000 requests

● Shortest Response: 3.028235s

● Longest Response: 6.359679s

● Average Response: 4.411553s

10,000 requests

● Shortest Response: 2.738824s

● Longest Response: 8.203394s

● Average Response: 4.637534s

25,000 requests

● Shortest Response: 2.692739s

● Longest Response: 14.15711s

● Average Response: 7.725362s

● Same as before, except now there
are two backend topics,
VisaPayment and VisaBalance

● VisaPayment has a random jitter
delay of 100-1000ms before
response is sent

● VisaBalance has a random jitter
delay of 2-5 seconds before
response is sent

● Client splits number of requests in
half between payment and balance

9.5% throughput increase in 10,000 case
15.9% throughput increase in 25,000 case!

