
CS 237:
Event Framework for

TIPPERS
Qiushi Bai, Avinash Kumar, Jonathan Harijanto

Motivation
● TIPPERS App: “Concierge”

○ Allows users to
■ Locate entities such as people, room, and events
■ Receive a notification when a room / a person is available in the building

○ For example, “Notify me when person X is in the building” OR “Looking for person X”

● However,
○ Only simple predicates defined
○ Duplicate coding for each function
○ Has a backend which does all the work of filtering data and finding the result

● Implementing an event framework for TIPPERS IoT data stream, which
○ Allow user define events with more complex predicates.

■ Person X and Person Y appear on the same floor, notify me.
■ Person X appears in the building and Room R is empty, notify me.

○ Very little coding for this applications - declare predicates and rules like using SQL

Goal

Related Work
● Research on Stream Processing softwares:

○ Apache Storm, Apache Samza, Apache Spark, Apache Flink
● Research on Rules Engine
● Research on Pub/Sub frameworks:

○ (Google) Cloud Pub/Sub
■ (+) Provides a “push subscription” feature.
■ (-) Charges a small amount of money per gigabyte once exceed the quota.

○ Apache Kafka, ActiveMQ
■ (+) Open source, so it is free
■ (-) Requires a perfectly running server

AdapterN

Apache Spark Streaming
Rules Engine

App Devs/ End Users

Event Rule definition ActiveMQ
Pub/Sub
ServiceRefined Outputs

Events

Prototype Architecture

Adapter1
IoT’s Data

Rules Engine Processing Steps

1 - Map data by stream source
2 - Apply Event Rules’ predicates to each record
3 - Reduce records by matching RuleId
4 - Apply Event Rules’ merger to all records
matched this event rule
5 - Publish records by topic = ruleId

TippersAdapter

… ...

● TippersAdapter
○ Pulls the IoT sensor data from TIPPERS’ database in a real-time manner

■ Current IoT data:
● Physical sensor type → WeMo, Thermometer, and WifiAP
● Semantic sensor type → Presence and Occupancy

○ Pushes the IoT data to the rules engine through a socket.

Prototype Design Specification

Example of the IoT data from TIPPERS

Prototype Design Specification
● Apache Spark Streaming rules engine

○ Processes the incoming IoT data on a socket in a real-time manner.
○ Loads event rules defined by user-defined functions (UDF)
○ Applies the event rules by filtering the IoT data

■ Supports combination of predicates among streams
● For example, presence.userId = “X” AND occupancy.location = “2065” AND

occupancy.NumberOfPeople = 0
● Meaning: Person X is in building AND Room 2065 is empty

■ Supports conjunction predicates within a record
● For example, presence.userId = “X” AND presence.location like “20%”
● Meaning: “Person X present on 2nd floor”

○ Outputs a list of records that satisfy the rules

Prototype Design Specification
● Apache ActiveMQ

○ Receives a list of records that satisfies a specific rule from Spark
■ The rule becomes the topic

● For example, “TwoUsersPresentSameFloor”
■ The records becomes the message(s)

● PRESENCE,ID1,user8,2058,2017-11-08 07:04:00,vSensor1
● PRESENCE,ID2,user9,2056,2017-11-08 07:06:00,vSensor1

○ A publisher of a topic pushes the message(s)
○ Subscribers of a topic pull the message(s)

IoT Data Stream

… …
WeMo, rid, 35, 2008, 2017-11-08 07:04:00, sensor_id1
Thermometer, rid, 11, 2017-11-08 07:02:00, sensor_id2
OCCUPANCY, rid, 2013, 85, 2017-11-08 07:02:00, vSensor2
PRESENCE, rid, ,4062, 2017-11-08 08:30:00, vSensor1
WiFiAP, rid, device3, 2017-11-08 08:52:00, router8
… …

Topic Events

… …
[1] TwoUserPresentSameFloor ----
PRESENCE, rid, user8, 2058, 2017-11-08 07:04:00, vSensor1
PRESENCE, rid, user9, 2056, 2017-11-08 07:06:00, vSensor1

[2] UserInBuildingAndRoomEmpty ----
PRESENCE, rid, user8, 6086, 2017-11-08 07:42:00, vSensor1
OCCUPANCY, rid, 2065, 0, 2017-11-08 07:42:00, vSensor2
… …

Stream - Records

… …
<Thermometer>, [rid, 11, 2017-11-08 07:02:00, sensor_id2]
<Thermometer>, [rid, 82, 2017-12-01 14:02:00, sensor_id7]
… …
<OCCUPANCY>, [rid, 2013, 85, 2017-11-08 07:02:00, vSensor2]
<OCCUPANCY>, [rid, 2065, 2, 2017-11-08 08:30:00, vSensor6]
… …

EventRuleId - RecordRuleId, Records

… …
<Usr1nFlr&Usr2nFlr>, <Usr1nFlr, [PRESENCE, user8, 2058, 2017-11-08 07:04:00, vSensor1]>
<Usr1nFlr&Usr2nFlr>, <Usr2nFlr, [PRESENCE, user9, 2056, 2017-11-08 07:06:00, vSensor1]>
… …
<UsrInBld&RmEmpt>, <RmEmpt, [OCCUPANCY, rid, 2065, 0, 2017-11-08 07:42:00, vSensor2]>
<UsrInBld&RmEmpt>, <UsrInBld, [PRESENCE, rid, user8, 6086, 2017-11-08 07:42:00, vSensor1]>
… …

1-Map by stream source

2 - Apply Event Rules’ predicates to each record
3 - Reduce records by matching RuleId
4 - Apply Event Rules’ merger to all records matched
this event rule

5 - Publish records by topic = ruleId

Data Flow

UDF - User Defined Function

Event Rule:
User X In Building And Room R Empty

Record Rule 1:
Presence of User X

Record Rule 2:
Occupancy of Room R is 0

Predicate 2_2:
Occupancy.NumberOfPeople = 0

Predicate 2_1:
Occupancy.Room = “2065”

Predicate 1_1:
Presence.User = “User8”

Challenges
● Abstraction - Declarative UDF

○ Supports conjunction predicates within record
■ Example - presence.userId = “X” AND presence.location like “20%”;
■ Meaning - Person X present on 2nd floor

○ Supports combination predicates among streams
■ Example - presence.userId = “X” AND occupancy.location = “2065” AND

occupancy.NumberOfPeople = 0.
■ Meaning - Person X is in building AND Room 2065 is empty

○ UDF coding is little

● Scalability - Spark Stream
○ High frequency of input stream data
○ Support distributed environment

● (Google) Cloud Pub/Sub is very complicated!
○ Authentication issue:

■ Cloud Pub/Sub API Client Library for Java
○ Runtime issue:

■ Google App Engine
○ Dependency issue:

■ Cloud Pub/Sub API Client Library brings a lot of conflicts

● Solution: new Pub/Sub framework called Apache ActiveMQ
○ Works exactly the same way the Cloud Pub/Sub, but easier to implement

■ No authentication, runtime, and dependency issues
○ Drawback → pull subscription based

Challenges

Contributions
● Exploration on implementing Stream Event Framework for TIPPERS

● Spark + Apache ActiveMQ / Google Cloud Pub/Sub

● Semantically more complex Rule and Predicates flexibility

● UDF support

Thank you.

