CS 237:
Event Framework for
TIPPERS

Qiushi Bai, Avinash Kumar, Jonathan Harijanto

Motivation
e TIPPERS App: “Concierge”

o Allows users to
m Locate entities such as people, room, and events
m Receive a notification when a room / a person is available in the building
o For example, “Notify me when person X is in the building” OR “Looking for person X”

e However,

o Only simple predicates defined
o Duplicate coding for each function
o Has a backend which does all the work of filtering data and finding the result

Goal

e Implementing an event framework for TIPPERS loT data stream, which
o Allow user define events with more complex predicates.
m Person X and Person Y appear on the same floor, notify me.
m Person X appears in the building and Room R is empty, notify me.
o Very little coding for this applications - declare predicates and rules like using SQL

Related Work

e Research on Stream Processing softwares:
o Apache Storm, Apache Samza, Apache Spark, Apache Flink
e Research on Rules Engine

e Research on Pub/Sub frameworks:
o (Google) Cloud Pub/Sub
m (+) Provides a “push subscription” feature.
m (-) Charges a small amount of money per gigabyte once exceed the quota.
o Apache Kafka, ActiveMQ
m (+) Open source, so it is free
m (-) Requires a perfectly running server

Prototype Architecture

[AdapterN]

(Adapter1

{ TippersAdapter

)_Jo T’s Data

] Events

[App Devs/ End Users]

Event Rule definition

1 Refined Outputs

)

(Apache Spark Streaming
L Rules Engine

~

fRuIes Engine Processing Steps

1 - Map data by stream source

2 - Apply Event Rules’ predicates to each record
3 - Reduce records by matching Ruleld

4 - Apply Event Rules’ merger to all records
matched this event rule

KS - Publish records by topic = ruleld j

ActiveMQ
Pub/Sub
Service

~

Prototype Design Specification

e TippersAdapter
o Pulls the IoT sensor data from TIPPERS’ database in a real-time manner

m Current loT data:
e Physical sensor type — WeMo, Thermometer, and WifiAP

e Semantic sensor type — Presence and Occupancy
o Pushes the loT data to the rules engine through a socket.

OCCUPANCY |470c9f13-d107-49ba-ablb-5c19ba0dc6278 |2100_1|36|2017-11-08 07:02:00|vSensor2
PRESENCE | dd30fe99-98eb-4b7a-87d1-aaa530¢c23113 | 2baf@alf_6d3a_47bd_9137_05ea3692bda9|5100_4|2017-11-08 07:04:00|vSensorl

WiFiAPObservation|0d68ac60-94fe-40ac-baec-881943ea2c95|1d3477bc-4d1c-472c-a3fb-50f0d017c8d6 |2017-11-08 07:04:00|3143_cl

ThermometerObservation|258cf974-0261-4c7d—-ad4e2-55e6286e84dc |24 |2017-11-08 07:02:00|24c0a2bb_9dee_4d58_9110_7df4lac63afa
ThermometerObservation|8bc88da7-7de1-4014-8976-9b017c7c9cdl1|3|2017-11-08 07:02:00|70fe2e8f_4baf_4ef0_al33_205d302190eb
WeMoObservation|3aaf2909-0e83-4e4b-816d-8cfc9ae@e33a|23|484|2017-11-08 07:04:00|7503c550_a671_4599_a583_bld6eefabde8

Example of the IoT data from TIPPERS

Prototype Design Specification

e Apache Spark Streaming rules engine
o Processes the incoming lIoT data on a socket in a real-time manner.
o Loads event rules defined by user-defined functions (UDF)
o Applies the event rules by filtering the loT data
m Supports combination of predicates among streams
e For example, presence.userld = “X” AND occupancy.location = “2065” AND

occupancy.NumberOfPeople = 0
e Meaning: Person X is in building AND Room 2065 is empty
m Supports conjunction predicates within a record
e For example, presence.userld = “X” AND presence.location like “20%”
e Meaning: “Person X present on 2nd floor”
o Outputs a list of records that satisfy the rules

Prototype Design Specification

e Apache ActiveMQ

o Receives a list of records that satisfies a specific rule from Spark

m The rule becomes the topic
e For example, “TwoUsersPresentSameFloor”
m The records becomes the message(s)
e PRESENCE,ID1,user8,2058,2017-11-08 07:04:00,vSensor1
e PRESENCE,ID2,user9,2056,2017-11-08 07:06:00,vSensor1
o A publisher of a topic pushes the message(s)
o Subscribers of a topic pull the message(s)

Data Flow

loT Data Stream Stream - Records
1-Map by stream source

""" <Thermometer>, [rid, 11, 2017-11-08 07:02:00, sensor_id2]

WeMo, rid, 35, 2008, 2017-11-08 07:04:00, sensor_id1 S e ey P ;
Thermometer, rid, 11, 2017-11-08 07:02:00, sensor_id2 »| <Thermometer>, [rid, 82, 2017-12-01 14:02:00, sensor_id7]

OCCUPANCY, rid, 2013, 85, 2017-11-08 07:02:00, vSensor2
PRESENCE, rid, ,4062, 2017-11-08 08:30:00, vSensor1
WIFIAP, rid, device3, 2017-11-08 08:52:00, router8

2 - Apply Event Rules’ predicates to each record

3 - Reduce records by matching Ruleld

4 - Apply Event Rules’ merger to all records matched
this event rule

<OCCUPANCY>, [rid, 2013, 85, 2017-11-08 07:02:00, vSensor2]
<OCCUPANCY>, [rid, 2065, 2, 2017-11-08 08:30:00, vSensor6]

Topic Events EventRuleld - RecordRuleld, Records

[1] TwoUserPresentSameFloor ---- | | e
PRESENCE, rid, user8, 2058, 2017-11-08 07:04:00, vSensor1 <Usr1nFIr&Usr2nFIr>, <Usr1nFIr, [PRESENCE, user8, 2058, 2017-11-08 07:04:00, vSensor1]>

PRESENCE. rid. user9. 2056, 2017-11-08 07:06:00. vSensor1 <USr1nF|r&USr2nF|r>, <USr2nF|r, [PRESENCE, user9, 2056, 2017-11-08 070600, VSenSOr1]>

[2] UserinBuildingAndRoomEmpty —— <UsrIinBId&RmEmpt>, <RmEmpt, [OCCUPANCY, rid, 2065, 0, 2017-11-08 07:42:00, vSensor2]>
PRESENCE. rid. user8. 6086, 2017-11-08 07:42:00. vSensor1 <UernBId&RmEmpt>, <UernBId, [PRESENCE, rld, user8, 6086, 2017-11-08 074200, vSensor1]>

OCCUPANCY, rid, 2065, 0, 2017-11-08 07:42:00, vSensor2 | [=

5 - Publish records by topic = ruleld

@Override
String topicName()

@Override

UDF - User Defined Function

List<IRecordRule> recordRuleList = ArrayList<>()

RecordRule r_user_in_building = RecordRule(
r_user_in_building. =
r_user_in_building. =

Event Rule: Predicate p_user = Predicate(r_user_in_building)
- p_user.id =
User X In Building And Room R Empty iy -
p_user. = AttributeType.
p_user. = Operators.
p_user. = .

l l r_user_in_building. .add(p_user)

RecordRule r_room_empty = RecordRule(
r_room_empty.id =

Record Rule 1: Record Rule 2: r_room_empty. =

Presence of User X Occupancy of Room R is 0 Predicate p_room Predicate(r_room_empty)
p_room. =
p_room.
p_room. = AttributeType.
p_room. Operators.
p_room. =

Predicate p_empty Predicate(r_room_empty)

p_empty. =

p_empty.

p_empty. = AttributeType.
Predicate 1_1: Predicate 2_1: Predicate 2_2: p_empty. OESKALOr=:

w " p " p_empty.
Presence.User = “User8 Occupancy.Room = “2065 Occupancy.NumberOfPeople = 0
r_room_empty. .add(p_room)
r_room_empty. .add(p_empty)

recordRuleList.add(r_user_in_building)
recordRuleList.add(r_room_empty)

recordRulelList

Challenges

e Abstraction - Declarative UDF

o Supports conjunction predicates within record
m Example - presence.userld = “X” AND presence.location like “20%”;
m Meaning - Person X present on 2nd floor

o Supports combination predicates among streams
m Example - presence.userld = “X” AND occupancy.location = “2065” AND

occupancy.NumberOfPeople = 0.

m Meaning - Person X is in building AND Room 2065 is empty

o UDF coding is little

e Scalability - Spark Stream

o High frequency of input stream data
o Support distributed environment

Challenges

e (Google) Cloud Pub/Sub is very complicated!
o Authentication issue:
m Cloud Pub/Sub API Client Library for Java
o Runtime issue:
m Google App Engine
o Dependency issue:
m Cloud Pub/Sub API Client Library brings a lot of conflicts
e Solution: new Pub/Sub framework called Apache ActiveMQ
o Works exactly the same way the Cloud Pub/Sub, but easier to implement
m No authentication, runtime, and dependency issues
o Drawback — pull subscription based

Contributions

e Exploration on implementing Stream Event Framework for TIPPERS
e Spark + Apache ActiveMQ / Google Cloud Pub/Sub
e Semantically more complex Rule and Predicates flexibility

e UDF support

Thank you.

