

 Distributed Broker Network System in Cloud

 Sharad Manasali, Pratikshya Panigrahi, Lakshmipriyadarshini Velmurugan

1. Introduction

In the last decade, cloud computing has been a major trend in the industry. With cloud
computing, users have access to applications all over the world through a web browser. It is,
in fact, a virtualized computer system that contains all software and applications needed for
businesses. It provides a different model of operation in which the service providers are
liable for hardware resources, upgrade, maintenance, failover, backups, security, etc. There
are no extra investments on the server, Instead, users can only pay for the services on
demand. Thus using cloud computing services saves a lot of time, money and make their
operations more effective [1]. Our project’s main aim is to containerize the Distributed
Brokers Nodes in a highly scaled, PubSub based Emergency notification system and deploy
them on the cloud. Publish-Subscribe system (PubSub), is a type of database system that
serves a group of subscribers interested in various events with notifications as publications
for events occur. This PubSub based Emergency notification system is based on Big Active
Data that uses BAD AsterixDB as its database. The broker Nodes are connected with the
users providing them notifications about various emergencies based on their subscription.
These Broker Nodes are managed as Kubernetes cluster to ensure availability and load
balancing.

2. Related Work

Implementing distributed broker nodes on the cloud has been an active research domain
and the following section of the report highlights some of the literary work based on cloud
brokers and how they tie together with our project. Stratos[12] is a Cloud Broker Service
that deploys applications and services on demand from various providers based on
requirements from the users. Stratos allows the application deployer to specify important
decision-making algorithms so that when a request for resource acquisition comes in, the
cloud broker can take appropriate decisions. It is also responsible for connecting the
resource providers with users for the acquirement and release of resources. Similarly, in our
proposed work, the Broker Controller Service is responsible for assigning the brokers to the
users based on the requirements such as the number of users, location and also takes care
of the load balancing among the brokers. Based on the users’ traffic to and from the
database, the broker controller assigns the load to other available brokers.

In this era of Big Data and Cloud Computing, many applications have high scalability and
availability requirements that cannot be handled by traditional centralized data management
systems. To meet such requirements in a cost-effective manner, data usually has to be
partitioned across commodity hardware computing clusters [2, 3, 4]. However, as clusters
grow larger hardware failures become unavoidable. To tolerate hardware failures,
data-replication strategies are used. For proper implementation of data-replication, we have
to keep in mind what consistency constraints should be guaranteed, what is an acceptable

recovery time in case of failures, where to place different replicas, how to load balance
workloads across replicas, and how to reach consensus between replicas in case of failures.
Data-replication protocol is a complex task and requires a careful design as well as
implementation. Over the years, many data replication strategies have been proposed [5, 6,
7]. In this thesis of Data Replication and Fault Tolerance in AsterixDB [8], they have
described a new data replication protocol for AsterixDB that guarantees data consistency,
has a low impact on throughput as well as on the computational resources required for
replication and exploits the properties of Log-Structured Merge-trees (LSM-tree) [9] to
achieve efficient data replication and controllable recovery time. AsterixDB is one such Big
Data Management System (BDMS) that is designed to run on large clusters of commodity
hardware. They have also explained how fault tolerance is implemented on top of the data
replication protocol.

Similarly in A BAD Thesis: The Vision, Creation, and Evaluation of a Big Active Data
Platform [11], the BAD platform is presented, that combines ideas and capabilities from both
Big Data and Active Data (e.g., Publish/Subscribe, Streaming Engines). It supports complex
subscriptions that consider not only newly arrived items but also their relationships to past,
stored data. Further, it can provide actionable notifications by enriching the subscription
results with other useful data. The platform extends an existing open-source Big Data
Management System, Apache AsterixDB. A Big Active Data (BAD) system should
continuously and reliably capture Big Data while enabling timely and automatic delivery of
relevant information to a large pool of interested users, as well as supporting retrospective
analyses of historical information. Because we are designing a PubSub based emergency
notification system, where we have continuously keep a record of all subscribers and also all
the publications about any emergencies that might happen at any time, we need a very
robust and highly scalable system. The highly scalable, available, robust, fault-tolerant
nature of BAD-AsterixDB (Big Active Data-AsterixDB), plus the data-replication protocol
implemented on it makes it the best option for such applications.

Cloud computing has become a major trend in the industry, in recent years. Cloud
computing can be thought of as a virtualized computer system that contains all software and
applications needed for businesses. It provides a radically different model of operation in
which the service providers are liable for hardware resources, upgrade, maintenance,
failover, backups, security, etc. In Container-based IoT Sensor Node on Raspberry Pi
and the Kubernetes Cluster Framework [10], a container-based virtualization technique
has been adopted to implement an embedded IoT sensor node. Their main aim was to
develop a clustered system of five Raspberry Pi (RPi) embedded boards by utilizing Docker
containers and the Kubernetes cluster framework. Kubernetes [13] is a portable, extensible
open-source platform for managing containerized workloads and services, that aids both
declarative configuration and automation. Kubernetes provides a container-centric
management environment and a unified API to deploy web applications, batch jobs, and
databases. Containers are how apps are packaged and deployed in Kubernetes. The main
reason for selecting RPi is to produce an efficient system since it has an ARM-based
processor [10]. The sensor node operates by collecting temperature data and motion
detected pictures from the camera sensors attached to each RPi board [10]. The pictures in
the form of data are then replicated across a cluster and sent to the cloud platform, Apache
Kafka [10]. Similarly, in our project, we are trying to containerize the broker nodes and BCS

and deploy them on the Kubernetes cluster. The applications built in the docker are wrapped
with all the supporting dependencies into a docker container. The containers then keep
running in an isolated manner on top of the parent operating systems' kernel. Those
applications can run as independent services. Kubernetes manages and takes care of the
runtime of the docker containers by exposing the deployments. Kubernetes ensures
availability and load balancing in the cloud cluster.

3. Design
In this section, the main structure of the distributed broker network in Kubernetes is
introduced, including the project architecture, the flow design, and the implementation
framework.

3.1 System Architecture

Fig 1. The architecture of Distributed Broker Network

The architecture of the Distributed Broker Network as shown in figure 1 comprises of four
components, namely the brokers, the broker controller service, the clients, and the Asterix
database.

The responsibilities of each of these components are delineated as follows:

a. Broker Controller Service: Acts as an initial point for broker registration and client
registration. Responsible for migrating the clients to another broker node in case of a
failure.

b. Broker: Registers itself with the BCS. Responsible for delivering the published
information to the subscribed clients from the Asterix database.

c. Clients: Contacts the BCS to ask for a Broker URL, subscribes and unsubscribes to
random channels.

d. Asterix Database: Stores all the information regarding subscriptions, and
publications.

3.2 Design Flow

C - Client

Fig 2. The Design of the Broker Network

The Asterix database and the BCS are started first. The Brokers are started next. The
design of the distributed broker network is shown in Figure 2. When a broker is created, it
first registers itself with the BCS and receives the status information of the registration.
Periodically, the BCS makes sure that the brokers are still running and gets the load
information from all the brokers. BCS updates the overall load and detects if load balancing
has to be done. If so, starts a migration procedure and informs the respective clients of the
change with the new destination Broker URL. The client starts the migration procedure by
logging out of the current broker and logging into the new broker.

When a new client is started, it contacts the BCS and asks for the Broker URL. After
receiving the Broker URL, the client registers with the Broker and (un)subscribes to random
channels with random parameters. The client will be notified whenever there happens an
update in the information the client is interested in. The client receives the notification and
asks for more information from the Broker.

4. Implementation

The implementation of the Distributed Broker Network as shown in Figure 1 is implemented
using four major systems, namely the Kubernetes Cluster, the Docker containers as Broker
Nodes, AWS (Amazon Web Services) as a storage unit, and Asterix Database.

4.1 Kubernetes

Kubernetes is an open-source system for automating deployment, scaling, and management
of containerized applications. It groups containers that make up an application into logical
units for easy management and discovery [13]. In our project, Kubernetes is used to manage
the Broker Nodes as a Kubernetes Cluster.

4.2 Docker Containers

Docker is a standalone software that can be installed on any computer to run containerized
applications. Containerization is an approach of running applications on an operating system
such that the application is isolated from the rest of the system. Docker enables to run,
create and manage containers on a single operating system. In our project, the broker nodes
are deployed as Docker containers.

Kubernetes allows us to automate container provisioning, networking, load balancing, and
scaling across all these nodes from the command line or dashboard. The collection of nodes
that are managed by a single Kubernetes instance is referred to as a Kubernetes cluster.
This kind of deployment (Docker Containers on Kubernetes) offers the following advantages:

a. Robust Infrastructure: Offers high availability by bringing up nodes if some nodes
crash or fail.

b. Scalable Infrastructure: In case the workload of a node increase, we could spawn
additional containers or nodes and add them to the cluster [14].

4.3 Amazon Web Services (AWS)

Amazon hosts a large number of web services. In our project, we focus on the Amazon ECS
(EC2 Container Services). Amazon EC2 (Elastic Compute Cloud) is a web service that
provides secure, resizable compute capacity in the cloud. In our project, the Kubernetes
clusters are hosted on AWS EKS(Elastic Kubernetes Service).

4.4 Implementation Flow

● A role is created for the services in AWS.
● An empty stack is created using cloud formation. The output of the stack are:

VPC ID of the cluster, SubnetID’s, Control plane security group.
● AWS - IAM (Identity and Access Management) authenticator to connect to the AWS

console and kubectl which is the kubernetes cluster manager are installed.
● AWS - EKS (Elastic Kubernetes Service) cluster is provisioned with the details from

the empty stack previously created.
● A stack for the worker nodes is created using cloud formation. For the purpose of the

project, a single instance is enough to hold multiple docker containers. The steps are
visualized in Figure 3.

Fig 3. Exposing Docker Containers as Service through URLs

5. Experiment

This section explains the experimental setup for the implementation scenario described in
the above section. Broker nodes as Docker containers are deployed as a replica set of three.
In order for us to access the docker containers, the same must be extended as a service.
The service is the load balancer, which will balance the load on the docker containers
depending on the user access. The load balancer can be extended to various options of
Route53 [15] in AWS such as latency, weighted, geographical routing, etc. With limitations
on the AWS account access, this has not experimented.

5.1 Experiment Design

● Using one of the AWS - EC2 instances the docker images are built. We chose to
utilize the Google Cloud Platform (Docker container registry) to house our docker
images. The platform is authenticated by an SDK and the docker images are pushed
as and when they are built.

● The deployments and services are executed as .yaml files which include the
specifications such as replica set, docker image URL, the port on which the docker
container should run, port exposed to the outside world, type of service, and node
selector.

5.2 Experiment Results

The snippet of the deployments and services
It demonstrates the implementation of BCS as the Load Balancer and the port on which it is
running along with the protocol used. The next line illustrates that the brokers are managed
as a Kubernetes cluster with the IP 10.100.0.1: 443.

The snippet of the deployed Broker Nodes
It shows the status of the deployed broker nodes that are running as Docker Containers.

The snippet of the running replica set of three docker containers
It shows details of each running replica set of the 3 docker containers with the names of the
containers, their creation time, their status, and on which port are they running, etc.

Accessing the load balancer will direct the traffic to one of the docker containers
provisioned.

Fault-Tolerance

Killing one of the docker containers in a kubernetes cluster will automatically initiate another
docker container with zero downtime supported from the elastic load balancer as well. The
following snippet demonstrates this where the terminating node (52m) immediately leads to
the spawning of the new broker deployment (15s).

Load Balancer metrics:

The following snippet shows the load balancer with the number of brokers and their states.
This information is critical in the event of any failure since it will be required to spawn another
broker.

a. Unhealthy Hosts: The number of unhealthy instances registered with the load

balancer. An instance is considered unhealthy after it exceeds the unhealthy
threshold configured for health checks.

b. Healthy Hosts: The number of healthy instances registered with the load balancer.
(passing the timely health check)

c. Average Latency: The total time elapsed, in seconds, from the time the load balancer
sent the request to a registered instance until the instance started to send the
response headers.

d. Requests: The number of requests completed or connections made during the
specified interval (1 or 5 minutes).

EC2 Instance metrics:

The figure shows a snippet of the performance metrics such as CPU utilization, disk
operations, and network utilization of the chosen EC2 instance for deployment.

6. Conclusion and Future work

In this project, we explored how a distributed broker node can make use of cloud services to
become more available and scalable. Our project focused on two parts: conversion of the
broker nodes into docker containers and how they can be deployed and managed as
Kubernetes clusters. This project allowed us to explore the various important metrics of
distributed systems such as availability, scalability, and load-balancing. We consider the
following as a possible future work:

a. Migrate Asterix Database from its traditional deployment into AWS.
b. Explore other functions such as failover handling, migration handling, and handoff

mechanisms among brokers.
c. Implement a decentralized intelligent handling mechanism that could predict failure

and take necessary migrations and failover handling.

References

[1] Dr. Dothang Truong, “How Cloud Computing Enhances Competitive Advantages: A
Research Model for Small Businesses”, The Business Review, Cambridge, 2010.
[2] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. In
Proceedings of the 6th Conference on Symposium on Operating Systems Design &
Implementation - Volume 6, OSDI’04, pages 10–10, Berkeley, CA, USA, 2004. USENIX
Association.
[3] D. DeWitt and J. Gray. Parallel database systems: The future of high-performance
database systems. Commun. ACM, 35(6):85–98, June 1992.
[4] V. Borkar, M. J. Carey, and C. Li. Inside ”Big Data Management”: Ogres, onions, or
parfaits? In Proceedings of the 15th International Conference on Extending Database
Technology, EDBT ’12, pages 3–14, New York, NY, USA, 2012. ACM.

[5] S. Goel and R. Buyya. Data replication strategies in wide area distributed systems,
enterprise service computing: From concept to deployment. In Robin G. Qiu (ed), ISBN
1-599044181-2, Idea Group Inc, pages 211–241, 2006.
[6] H.-I. Hsiao and D. J. DeWitt. A performance study of three high availability data
replication strategies. Distrib. Parallel Databases, 1(1):53–80, Jan. 1993.
[7] S. A. Moiz, S. P., V. G., and S. N. Pal. Article: “Database replication: A survey of open
source and commercial tools”. International Journal of Computer Applications, 13(6):1–8,
January 2011. Full text available.
[8] Al Hubail, M. M. (2016). Data Replication and Fault Tolerance in AsterixDB. UC Irvine.
ProQuest ID: AlHubail_uci_0030M_13967. Merritt ID: ark:/13030/m57m4wrw. Retrieved from
https://escholarship.org/uc/item/6pn1f8nj.
[9] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The log-structured merge-tree (LSMtree).
Acta Informatica, 33(4):351–385.
[10] A. Javed, Container-based IoT Sensor Node on Raspberry Pi and the Kubernetes
Cluster Framework, 2016.
[11] Jacobs, S. (2018). A BAD Thesis: The Vision, Creation, and Evaluation of a Big Active
Data Platform. UC Riverside. ProQuest ID: Jacobs_ucr_0032D_13462. Merritt ID:
ark:/13030/m55q9t2d. Retrieved from https://escholarship.org/uc/item/47g680h1.
[12] Przemyslaw Pawluk, Bradley Simmons, Michael Smit, Marin Litoiu, “Introducing
STRATOS: A Cloud Broker Service”, IEEE Fifth International Conference on Cloud
Computing (2012):891-898.
[13] “Kubernetes Homepage” [Online]. Available: https://kubernetes.io/ .[Accessed:
09-June-2019].
[14] “Kubernetes vs Docker: A Primer” [Online]. Available:
https://containerjournal.com/2019/01/14/kubernetes-vs-docker-a-primer/ . [Accessed:
09-June-2019].
[15] “Amazon Route 53: Highly Available and Scalable Domain Name Server”. Available:
https://aws.amazon.com/route53/ . Accessed: 14-June-2019

https://escholarship.org/uc/item/6pn1f8nj
https://kubernetes.io/
https://containerjournal.com/2019/01/14/kubernetes-vs-docker-a-primer/
https://aws.amazon.com/route53/

