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Abstract. Memory has emerged as a primary bottleneck for emerging
embedded platforms that integrate heterogeneous compute units, and
where the demands for balance between performance and energy effi-
ciency become challenging. In the face of dynamic workloads, there are
many opportunities to manage the memory subsystem efficiently at run-
time to save energy without compromising quality. Previous works have
used memory bandwidth utilization to determine memory requirements
and develop runtime policies to configure system knobs (e.g., memory
controller frequency) accordingly. However, bandwidth utilization as a
singular metric is not always sufficient: policies for a range of workload
scenarios require insight into an application’s memory access pattern and
working set size. Alternatively, memory profilers provide fine-grained in-
formation such as the memory access pattern for the entire virtual ad-
dress space, and the load/store density of different regions of the memory.
However, parsing this detailed information frequently at runtime induces
excessive overhead. In this work, we propose a runtime profiling mecha-
nism that considers both (1) the working set size of running workloads
and (2) memory bandwidth utilization and computes the WBP (Working
Set Size-Bandwidth Product). WBP can be estimated with low overhead,
and the combined metrics provide insights which runtime policies can use
to decide the system configuration for specific workload scenarios. Our
early results show that a static configuration devised with this metric
yields an optimal memory controller frequency for 8 out of 10 PARSEC
workloads, demonstrating the promise of this approach.

Keywords: Main Memory · Memory bandwidth · Runtime Memory
Management.

1 Introduction

Contemporary embedded systems are equipped with heterogeneous compute
units with shared main memory to meet the varying memory capacity and band-
width requirements of modern applications (e.g., Nvidia Tegra, Nvidia Xavier,
AMD Accelerated Processing Unit). All computational resources (e.g., CPU,
GPU, DSP, on-chip accelerator) share the main memory, resulting in memory
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continuing to be the major performance and energy bottleneck for emerging em-
bedded system platforms. To address this bottleneck, application developers use
memory profilers to understand the runtime requirements of applications and
attempt to reduce their memory footprint through code optimization.

At runtime, resource managers monitor the system state and implement poli-
cies to update the configuration (i.e., knobs) to meet the system’s goals (e.g.,
maximize performance-per-unit-power). Traditionally, policies that target mem-
ory exploit memory bandwidth under-utilization at runtime by dynamically scal-
ing the memory controller frequency in order to reduce power without compro-
mising quality. However, embedded systems commonly support many hardware
and software knobs which: (1) schedule applications differently, (2) set the fre-
quency of heterogeneous compute units, and (3) set the degree of parallelism
by changing the number of threads; all of which can affect the time required to
process application data and, in turn, energy consumption.

Although memory profilers report the number of memory accesses (load/stores)
and generate heatmaps (i.e., memory access density) for the profiled application,
it is difficult for policies to manage the overhead of parsing this information at
runtime. Furthermore, the virtual address space is huge and must refer to the
page map to understand the physical location of data accesses. The overhead of
analyzing the information from memory profilers makes the information imprac-
tical to consider for high-frequency runtime decision making. Thus, it becomes
essential to monitor a coarse-grained metric(s), which can assist the runtime
resource managers in efficiently determining the ideal system configuration.

To address these challenges, we propose a memory-driven application classi-
fication based on multiple dimensions in order to assist in developing policies for
resource allocation strategies, specifically for DRAM. We combine (a) the size of
memory required (in MBs) of the working set of applications, and (b) the runtime
DRAM bandwidth requirement (last-level cache miss rate) to classify an appli-
cation’s memory requirement. Both measurements can be made with minimal
overhead and can be used at runtime to evaluate the dynamic requirements of
applications. In this work, this classification is used to determine static memory
controller frequency to minimize the Energy-Delay Product (EDP). However,
this classification can be further used to develop policies which decide the sys-
tem configuration based on the classes of the application currently running on
the system.

2 Motivation

In 1965 Gordon E. Moore predicted that manufacturers would keep doubling the
number of transistors on a chip almost every two years [11]. The developments
of the semiconductor industry by leaps and bounds have introduced billions of
transistors on tiny dies. The law has also set the pace for software running on the
underlying hardware. Small computers which are present in most households de-
vices (e.g., Smartwatches, Smart-lights, Mobile devices) and personal computers
are now equipped more resources than can be powered. With the growth in em-
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Fig. 1. Total energy consumed as memory controller frequency is varied statically from
800MHz to 1866MHz for PARSEC workloads on the Jetson TX2. The optimal fre-
quency which results in the minimum energy spent is not always the lowest (800MHz).

bedded compute resources, applications have now become extremely demanding.
Applications generate data at a rate which poses challenges to the main memory
latency and bandwidth. Thus, the performance and energy bottleneck in today’s
embedded system platforms is no longer the compute resource itself, but pro-
cessing the data efficiently. One current challenge for computing systems is that
the processing of data is performed far away from the data [9, 7].

Although caching is traditionally applied to address this challenge, the work-
ing set size of applications may be significant enough to exceed the cache ca-
pacity. The growth in working set size leads to cache misses and requires main
memory accesses to fetch data for the processor. The movement of data from
the DRAM to the processor consumes 19% of total system power [3] and cache
miss takes more than 50% of the cycles [7]. Previous works have used memory
bandwidth utilization to determine memory requirements and develop runtime
policies to address the issue of memory energy consumed. [3] proposes to set the
memory controller frequency at the lowest frequency (i.e., 800MHz) when the
memory is lightly loaded (memory bandwidth is under 2000 MB/s).

Figure 1 shows the effect of memory controller frequency on total energy con-
sumption for a variety of benchmarks executing on a contemporary embebedded
platform, the Jetson TX2. A single instance of 10 workloads from the PAR-
SEC benchmark suite [2] is executed on the Jetson TX2 [1] with fixed memory
controller frequency at various levels, and a runtime system calculates the to-
tal energy spent. The first observation we make about the workloads executed
in Figure 1 is the memory bandwidth utilization is low: it never exceeds 430
MB/s. According to the previously described policy, one would expect the low-
est frequency to be the best configuration for the system. However, the lowest
frequency leads to the minimum energy consumption for only 2 out of 10 work-
loads. When operating at the lowest frequency, although the power consumption
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is minimal, the extended execution time results in increased energy consump-
tion in 8 out of 10 cases. Even from this simple instance we can conclude that
in order to account for additional energy consumption due to excess latency, we
must consider more than just bandwidth when a policy decides on the frequency
to be assigned for the embedded platform.

3 Diversity of working set size in embedded applications

Denning defines the working set of an application as a collection of recently
referenced pages of an application’s virtual address space[5]. Working set is an
efficient tool to measure the memory demands of an application. A similar metric,
the resident set, is defined as the subset of an application’s segments which is
present in the main memory at a given time. In 2015, Kanev et. al. [7] analyzed
all of Google’s Data Center workloads, and the results show that working set
sizes for applications are growing rapidly and this results in a negative impact on
the application’s performance. Large working set sizes lead to expensive cache
misses, and thus provides a good insight into the applications memory footprint
at runtime.

3.1 PARSEC benchmark suite

The PARSEC benchmark suite [2] is a popular suite for evaluating multiprocessor-
based embedded platforms. It consists of 12 workloads (nine applications and
three kernels) from recognition, mining, and synthesis (RMS) domain, as well
as representative system applications. The workloads compose a diverse repre-
sentative of working set size, degree of parallelism, off-chip traffic, data-sharing
that can be representative of the diverse workloads executed on emerging em-
bedded platforms. Based on the working set, two broad classes of workloads are
distinguished:

1. Working set smaller than 16MB: These applications have limited re-
quirement for large cache size, and the working set can fit in the last level
shared cache. Example applications are bodytrack and swaptions.

2. Working set larger than 16MB: These applications have a very large
working set. Even with large caches cannot meet the requirements for this
group without off-chip memory access to the DRAM. Example applications
are canneal, ferret, facesim, fluidanimate. When the input size grows,
the working set can even reach gigabytes due to algorithms that operate on
large amounts of collected data.

Note as the number of cores increases with the degree parallelism, so does
the bandwidth requirement. bodytrack makes off-chip memory accesses in short,
but bandwidth-intensive bursts. When several instances of the same application
execute concurrently, these short bursts limit the scalability.

The sampling of benchmarks from PARSEC demonstrate highly variable mem-
ory requirements that depend on multiple factors. The number of load/store
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operations, size of the last-level cache, and the number of parallel threads are
some of the factors that affect the bandwidth. These various sources of memory
bottleneck provide opportunities for resource managers to address the bottleneck
at runtime for unpredictable workloads. Working set can effectively represent
some of these dynamics, and we show that when combining the working set size
information along with the memory bandwidth at runtime can lead to efficient
system configurations.

4 Related work

Current runtime memory management techniques which contribute to the run-
time decision making are discussed in this section.

4.1 Runtime policies using Memory Bandwidth Utilization

As emerging embedded systems move towards multiple heterogeneous compute
units sharing the main memory, the memory subsystem continues to dominate as
the major performance and energy bottleneck. Several techniques have been em-
ployed to address this bottleneck, and Dynamic Voltage and Frequency Scaling
(DVFS) of the memory controller is a primary one[4]. Higher frequency yields
higher throughput but consumes more power. DVFS can reduce the memory
power by 10.4% on average, 20.5% maximum for the SPEC 2006 benchmarks as
shown in [3] without compromising on quality. [8] uses an approximation equa-
tion (called MAR-CSE) based on the correlation of the memory access rate and
the critical speed for the minimum energy consumption. The memory access rate
is the ratio of the total number of cache misses (including both instruction and
data cache misses) to the number of instructions executed. MAR-CSE predicts
the voltage and frequency at runtime. Although this technique does not mea-
sure the memory bandwidth directly, the memory access rate is also an indirect
measure of the memory bandwidth.

4.2 Runtime policies using Workload information

Recent work [10] looked into the combined effect of application compute/memory-
intensity, thread synchronization contention, and nonuniform memory accesses
pattern to develop a runtime energy management technique by performing DVFS
on CPU cores. However, they do not consider memory bandwidth utilization and
do not change the memory controller frequency.

4.3 Runtime policies using reflection or prediction

Most compute units are configurable to run at different frequencies. At runtime,
based on the current resource requirement, the manager needs to decide the
optimal operating point to meet the goals of the system. CPU DVFS has been
explored extensively in literature [13] and most systems use it to meet system
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goals. Linux provides several governors to manage the CPU frequency at runtime
(e.g. ondemand, performance, powersave). Recent work uses reflective system
model to predict the system behavior when different frequencies are selected[6],
[12].

4.4 Runtime policies using Task Mapping

The Operating System scheduler has a responsibility of (1) Deciding the schedule
of running applications and (2) Deciding which threads run on which cores.
Modern systems provide heterogeneous compute resources which have different
power/performance. The smaller cores are more power efficient but have less
computational capacity than the bigger cores. Task mapping has shown [14]
energy saving of up to 51% when combined with DVFS.

5 Evaluation

5.1 Methodology

The proposed approach combines the Working Set Size and memory bandwidth
by calculating their product (WBP). The objective is to find the operating fre-
quency, which leads to the lowest Energy-Delay Product (EDP). Results show
that applications belong to one of three classes.
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Fig. 2. Change in average EDP (Energy-Delay Product) of PARSEC workloads across
frequencies at different values of WBP (Working Set Size - Bandwidth Product).

We conduct experiments to observe the correlation between WBP and EDP.
10 PARSEC benchmarks are executed with different memory controller frequen-
cies. At regular intervals (sensing windows) of 200ms, the following metrics are
recorded:
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1. Working Set Size: Linux versions 4.3 introduced idle page flags to track
memory utilization. Once a process starts, the idle bits corresponding to all
the virtual pages in that process are set to 1 to indicate that they have not
been referenced. Whenever the process issues memory read/write requests,
the idle bit corresponding to the virtual page is set to 0 by Linux kernel. A
0 implies that the page is not idle. We selected the window size as 200ms,
however exploring more window durations and feasibility of adaptive win-
dows remain as future work. Every 200ms, the number of 0 bits in the idle
page flags are read and used to calculate the working set size as 0 as follows:

WorkingSetSize = Number of active pages × Size of each page

2. Memory Bandwidth: ARM cores include logic to gather various statistics
on the operation of the processor and memory system during runtime based
on a Performance Monitoring Unit (PMU). PMU provides hardware counters
for different events, which is used to profile application behavior. The counter
values of L2 CACHE REFILL and MEM ACCESS on each core is monitored to
understand the memory traffic at runtime every 200ms (Sensing Window
Length = 0.2s). Since the L2 is the last level shared cache on the Jetson, the
memory bandwidth can be calculated using these values as:

MemoryBandwidth =

∑activeCores
i=1 L2 CACHE REFILLCore i ×DataBusSize

SensingWindowLength

3. Memory Power and System Power: Nvidia drivers read the power mea-
surements from onboard sensors connected by I2C. The separate domains
for system power and memory powers help understand the energy consumed
by the memory separate from the rest of the system.

4. Latency/Delay: The amount of time that the workload took to complete
is indicative of the compute and memory latency. The CPU governor is set
to ‘userspace’ and the frequency of all CPU cores is set to maximum for
all the experiments. Thus, changes in memory latency due to the change in
memory controller frequency is reflected in the total execution time.

Our objective is to find the operating frequency, which leads to the lowest
Energy-Delay Product (EDP). To that effect, we are interested in finding changes
in EDP across frequencies at different values of WBP (Working Set Size - Mem-
ory Bandwidth Product). EDP changes for PARSEC workloads across different
frequencies are presented in Figure 2. At low WBP, the EDP is not affected by
different frequencies. This is because the working set size of the application is
small, and the memory requests are served from cache. Thus, operating at lower
frequency does not have any effect on the EDP. As the WBP increases, memory
requirement increases, and higher frequencies perform better. Frequencies lower
than 1066 MHz (e.g., 800 MHz) have a very high latency whereas frequencies
higher than 1333 MHz (e.g., 1866 MHz) consume too much power during the ex-
ecution. Thus, they never obtain optimal EDP for any of the workloads. Hence,
frequencies 800 MHz and 1866 MHz are not included in Figure 2.
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Table 1. Classification of PARSEC workloads based on average WBP (Working Set
Size - Memory Bandwidth Product) during runtime.

Workload WBP (in MB2/s) Class EMC Frequency

dedup 2100 C1 1066 MHz

swaptions 3000 C1 1066 MHz

bodytrack 3600 C2 1333 MHz

ferret 3700 C2 1333 MHz

blackscholes 5100 C2 1333 MHz

vips 9700 C2 1333 MHz

fluidanimate 16000 C2 1333 MHz

canneal 22000 C3 1666 MHz

facesim 62222 C3 1666 MHz

streamcluster 119000 C3 1666 MHz

An approach which classifies applications based on their WBP profile is pro-
posed. For each class, the goal is to select a memory controller frequency, which
leads to the minimum EDP. Two thresholds for WBP are selected based on
their EDP profile at different frequencies. In this work, the operating frequency
is determined statically based on the average WBP profile of workloads. How-
ever, we acknowledge the possibility of a runtime policy which checks the WBP
at regular intervals to change the frequency during application execution. The
classification and thresholds proposed are:

1. C1 (Small memory footprint): 0MB2/s <= WBP < 3500MB2/s These
applications have a low working set size and a low memory bandwidth. The
size of L2 cache is large enough to accommodate most of the requests to the
memory which the working set references for this class of application. When
running C1 applications, the system is configured at 1066 MHz.

2. C2 (Medium memory footprint): 3500MB2/s <= WBP < 22000MB2/s
These applications have moderate memory requirement. The L2 cache can-
not accommodate all the requests to the memory. The working set size is
also considerable and generates requests which need to go to main memory
due to limited last level cache. When running C2 applications, the system
is configured at 1333 MHz.

3. C3 (Large memory footprint): WBP > 22000MB2/s These applications
have a high memory requirement. Operating the system at 1600 MHz clearly
gives the lowest EDP. The working set size for this class of application is
large and spread out to different regions in the memory. This incurs a lot of
cache misses and generates requests to the main memory. When running C3

applications, the system is configured at 1600 MHz.
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5.2 Experimental Setup

We use Jetson TX2 [1] from Nvidia, an embedded System-On-Chip (SOC) plat-
form to evaluate our proposed technique. The Jetson has heterogeneous compute
cores (quad-core ARM Cortex A57 and dual-core Nvidia Denver2) distributed
in two clusters along with an onboard 256-core Pascal GPU. Each of the clusters
has separate frequency domains. Jetson has a shared memory architecture, and
all the resources (CPU clusters, GPU) share the main memory. Jetson TX2 has
an 8GB 128-bit LPDDR4 memory and a 32GB eMMC 5.1 for onboard storage.
The Cortex cores come with: 48KB L1 instruction cache (I-cache) per core; 32KB
L1 data cache (D-cache) per core. The Denver cores have 128KB L1 I-cache per
core; 64KB L1 D-cache per core. All the cores share an L2 Unified Cache of
2MB.

Jetson uses an External Memory Controller (EMC) to manage the off-chip
memory traffic. The EMC has different operating frequencies ranging from 4800KHz

to 1866MHz. The onboard ARM Cortex Real-time (R5) Boot and Power Man-
agement Processor (BPMP) changes the memory controller frequency through
kernel drivers. During all the experiments, the Denver cores are switched off,
and the Cortex A57 cores are configured at the highest frequency to isolate the
effect of the EMC operating frequency.
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5.3 Experimental results

Ten PARSEC benchmarks are classified into one of the three classes presented
in Section 5.1. Based on the proposed memory controller frequency for each
class, each benchmark is executed with a static configuration. The results are
presented in Figure 3. We expect to see lower EDP with the proposed approach
when compared to techniques which do not use the memory information when
deciding the EMC Frequency.

The average WBP (Working Set Size - Memory Bandwidth Product) at run-
time for PARSEC benchmarks are presented in Table 1. Every 200ms, the work-
ing set size and memory bandwidth are measured using the Linux idle page
tracker and L2 CACHE REFILL PMU event counter as described in Section 5.1.
The EDP values obtained with this configuration is compared with other static
configurations in Figure 3. From the results, we see that the proposed scheme
can find the optimal configuration for eight out of ten PARSEC workloads.
The proposed scheme can achieve on average 16.7% (max: 37.3%) reduction in
EDP when compared to the most aggressive memory controller frequency (1866
MHz). The results are compared with an optimal scheme obtained by executing
all workloads at all possible EMC frequencies and choosing the frequency that
yields minimum EDP. The optimal scheme can achieve an average reduction
of 17.1% (max: 39.3%) EDP when compared to the most aggressive memory
controller frequency (1866 MHz).
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Fig. 4. Runtime memory profile of blackscholes. Dynamic memory access pattern
calls for the exploration of a runtime policy.

6 Conclusion and Future Work

With the evolution of more heterogeneous embedded computing platforms that
share a common main memory, the traditional memory bottleneck becomes even
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more severe in the face of balancing performance/quality and energy efficiency.
In this work, we presented a profiling metric, WBP (Working Set Size - Memory
Bandwidth Product) that combines (1) memory bandwidth utilization and (2)
working set size of running workloads. Based on the changes of EDP (Energy-
Delay Product) with frequency at different WBP, we classify applications into
three categories of memory requirement. Each class has a separate system con-
figuration. Our initial results show that a static configuration correctly estimates
the optimal frequency for 8 out of 10 PARSEC workloads, demonstrating the
promise of our approach. The static scheme of setting memory controller fre-
quency for each class can save EDP by 16.7% on average (37.3% maximum).
However, benchmarks like blackscholes exhibit dynamic memory accesses pat-
terns, as shown in Figure 4. A static configuration is not sufficient to address
these bursts of memory accesses. Thus we are working on the next steps to
perform DVFS adaptively/dynamically during application execution. Although
the current work uses fixed sensing windows of 200ms, it may not be optimal,
and different window sizes require exploration. Adaptive sensing window size
along with runtime policies using the proposed classification technique remains
as future work.
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