
Distributed Broker Network System
in Cloud

Team 2: Sharad, Pratikshya, Lakshmipriyadarshini

Motivation
● In the last decade, cloud computing has been a major trend in the industry.

● Cloud Computing is a virtualized computer system that contains all software
and applications needed for businesses and enables users to access the
applications all over the world through a web browser.

● It provides a different model of operation in which the service providers are
liable for hardware resources, upgrade, maintenance, failover, backups,
security, etc.

● There are no extra investments on the server, Instead, users can only pay for
the services on demand.

Goals
● Our project’s main aim is to containerize the Distributed Brokers Nodes in a

highly scaled, PubSub based Emergency notification system and deploy them
on the cloud.

● This PubSub based Emergency notification system is based on Big Active
Data that uses BAD AsterixDB as its database. The broker Nodes are
connected with the users providing them notifications about various
emergencies based on their subscription.

● These Broker Nodes are managed as Kubernetes cluster to ensure
availability and load balancing.

Related Work
1. Research on Distributed Brokers

a. Stratos: Cloud Broker Service
i. Automatic provisioning based on decision making algorithms
ii. Has an application manager [Run time management] and cloud manager [BCS]

2. Research on Kubernetes
a. Container-based IoT Sensor Node on Raspberry Pi and the Kubernetes Cluster Framework

i. Develop a clustered system of five Raspberry Pi (RPi) embedded boards by utilizing
Docker containers and the Kubernetes cluster framework

3. Research on Asterisk Database
a. Data Replication and Fault Tolerance in AsterixDB
b. A BAD Thesis: The Vision, Creation, and Evaluation of a Big Active Data Platform

Motivation: Containerization of
Broker Nodes in Big Active Data
system and implementing them in
cloud.

Reason:
 - Kubernetes provides a

container-centric management
environment.

- Orchestrates computing,
networking, and storage
infrastructure on behalf of user
workloads.

- Ensures availability and load
balancing in the cloud cluster.

Architecture:

Design Flow of the Broker Network
- BCS and Asterix DB started first
- Brokers are created
- Broker Registration with BCS
- Clients contacts BCS for Broker URL
- BCS informs Broker URL
- Client logs into Broker
- (Un)Subscribes randomly
- BCS periodically updates load
- Excess load = Migration to a new broker
- Client logs out of current broker
- Client logs into new broker with URL from BCS

Design Specifics

● Broker nodes are provisioned as
separate docker containers
(deployment).

● These docker containers
collectively form the Kubernetes
cluster.

● The runtime of docker containers is
made available by exposing the
deployment (NodePort/Load
Balancer).

Deployment of Service and its access

Steps:

- Creation of Virtual Private Cloud (EKS
Cluster)

- Creation of subnets (different locations)
- Creation of Docker Containers
- Deployment of services
- Access Service via URLs

Experiment Design

Steps:

- AWS-EC2 instance was used to build the docker container and Google Cloud Platform (Docker
container registry) was used to house the docker images.

- Broker nodes as Docker containers are deployed as a replica set of three and are extended as
services.

- The service is a load balancer which balances the load on the docker containers depending on the
user access.

- Deployment and services are executed as .yaml files which include the specifications such as
replica set, docker image URL, the port on which the docker container should run, port exposed to
the outside world, type of service, and node selector.

Experiment Results

The BCS was first implemented as the Load Balancer. Using kubectl get service command we can get the port on which the load
balancer is running along with the protocol used. It also shows that the brokers are managed as a Kubernetes cluster with the IP
10.100.0.1: 443.

The deployed broker nodes status can be seen that are running as Docker Containers. We can see how long they have been running,
how many times they have restarted, etc.

Experiment Results Cont.

We can see the details of each running replica set of the 3 docker containers with
the names of the containers, their creation time, their status, and on which port are
they running, etc.

Experiment Results -Accessing the load balancer
and Fault tolerance

Killing one of the docker containers in a kubernetes
cluster will automatically initiate another docker
container with zero downtime supported from the
elastic load balancer as well. The following snippet
demonstrates this where the terminating node (52m)
immediately leads to the spawning of the new broker
deployment (15s).

Accessing the load balancer will direct the traffic to
one of the docker containers provisioned.

Experiment Results -Performance Metric

Load Balancing Metric:

a. Unhealthy Hosts: The number of unhealthy
(after exceeding unhealthy threshold) instances
registered with the load balancer.

b. Healthy Hosts: The number of healthy instances
registered with the load balancer. (passing the
timely health check)

c. Average Latency: The total time elapsed, in
seconds, from the time the load balancer sent
the request to a registered instance until the
instance started to send the response headers.

d. Requests: The number of requests completed
or connections made during the specified
interval (1 or 5 minutes).

Experiment Results -Performance Metric
The figure shows the performance metrics such as CPU utilization, disk operations, and network
utilization of the chosen EC2 instance for deployment.

Conclusion

In this project, We converted the broker nodes into docker containers and deployed and managed them
as Kubernetes clusters.

● We explored how a distributed broker node can make use of cloud services to become more
available and scalable.

● We also could implement load-balancing and fault tolerant among broker nodes.

We consider the following as a possible future work:

a. Migrate Asterix Database from its traditional deployment into AWS.

b. Explore other functions such as failover handling, migration handling, and handoff
mechanisms among brokers.

c. Implement a decentralized intelligent handling mechanism that could predict failure and
take necessary migrations and failover handling.

Future Work

Thank You

