
Using Peer-to-peer networks
for mission critical data
communication

Group #7
Satish Kotti

Siddhant Sonkar
Venkatesh SGS

Introduction

● Peer-to-peer based approach for data transmission in mission critical systems like disaster

response systems.

● Properties:
○ Large number of recipients
○ Disseminate as fast as possible
○ Reach maximum number of nodes
○ Heterogeneous network
○ Fault Tolerance

● Applications:
○ Disaster Response Systems
○ Emergency Alert Systems

Related Work

● Various methodologies can be employed to solve the problem of flash dissemination.

● Conventional centralized client server setting

● Single point of failure

● Can be optimized for performance and improved latency

 Reliable Multicast

● Application Layer Multicast

● Core of the algorithm is to build a spanning tree.

● Trade off Stretch for Stress.

● Various approaches that use this paradigm .
○ Scalable Application layer multicast
○ Farecast
○ Overcast

● Not suitable for high volume of topology changes

● Not as scalable as P2P

● Need dedicated infrastructure

● P2P is more reliable

● Not as fault tolerant as P2P

● P2P is more cost-effective

Tree-based Multicast

● Need information of network topology

● Constant changes to topology need to re-estimate the tree continuously

● Failure of nodes within the tree structures impacts the performance of the network

Peer to Peer approaches

● Randomized approaches. E.g. Gossip, Random Walk etc.

● Decentralized algorithm

● Prefer redundancy and reliability over scalability.

● Under the assumption that our content is not very huge, gossip protocols are well suited for our

use case.

● Flash dissemination scenarios are unpredictable and may contain heterogeneous networks,

randomized approaches tackle this scenario better.

● Operate with local knowledge.

● Heuristics for obtaining global knowledge can help improve the performance and reduce

dissemination time.

Project Simulation

● Centralized Architecture

● Gossip Network

● Random-walk based Gossip Network

Centralized Architecture Gossip-based Architecture

Centralized Architecture

● Source node informs the cloud

● Cloud publishes the message to a message queue (ZeroMQ)

● All subscribers to the broadcasting topic receive information

Gossip Network

● Connection handshake with the bootstrapper node.

● Socket information exchanged. Used for subsequent message transmission.

● Connection details added to connection pool, happens asynchronously in different processes.

● All live nodes establish connection with bootstrapper node.

● A new connection at bootstrapper is informed about previous connections.

● Nodes use this data to identify peers and establish connection.

● Messages are broadcasted to all the members of connection pool.

● Every node receiving the message, broadcasts the message to the neighbours other than the

source.

Random-walk Gossip Networks

● Messages are broadcasted to randomly chosen subset of connections.

● Helps with controlling flooding in the network

● Not suitable for small networks. Can cause starvation for few nodes.

DEMO

Evaluation

● Number of nodes = { 3, 5, 8, 10, 15, 20, 30 }

● Used 4 laptops and 1 android device to simulate 5 nodes

● Repeated the experiment multiple times to generate a pool of average latency values

● Used these values for further simulation (delay time + code snippet run time)

Results

● Nearly same values for centralized architecture

● RPC consuming more time

● Sockets are quick

● Flooding in gossip started causing delay quickly

● Surprisingly, gossip and random-walk got nearly

same results

● Scaling to 100 nodes can clearly signify

importance of random-walk.

Future Work

● Varying Content Size

● Heterogeneous content - images, video, text

● Varying Network Bandwidth

● Modeling Network Topology
○ Rapid Packet Loss
○ Network Partitions
○ Failing nodes and links
○ High network churn rate

Supporting tools for future work

● Network Simulation
○ ModelNet
○ Planet Lab
○ NS-3

● Protocol Simulation
○ Cooja Contiki
○ CupCarbon

Challenges & learnings

● Challenges
○ Network Simulation at scale with tools
○ Realistic simulation - Google Cloud, Kubernetes
○ No good documentation for available implementations

● Learnings
○ Low level socket programming
○ Protocol implementation and simulation
○ Understanding necessity for multi-threaded implementations in such systems - maintaining mutex locks on

connection pools, spawning a process for each activity, importance of asynchronous behaviour

Thank you!

