
Video-helper

Abhishek Mangla,
Faramarz Munshi,
Yuzhou Guo

Motivation & Goal
Goal: Video playback in the presence of overwhelming network
congestion!

Technical contributions:

- “Parallel” downloading (faster)
- Application of meshes for synchronization of group view
- Decreasing network congestion near server

Most Important Related Work
● YuTube: A Scalable Distributed Video-streaming System

○ Idea of using “Meshes” for synchronized group views of global state.
○ Use mesh to map public IP and port to the machine’s private IP behind the

router, get the incoming video port, and available disk space (in bytes).

Example of our mesh:

{"98.164.242.11-64680":
{

"disk": 15762563072,
"private_ip": "192.168.0.203",
"sender_vid_port": 64681
“server_rtt”: 0.102353

},
}

Most Important Related Work
● Distributed Video Streaming Over Internet

○ Receive-driven protocol for multi streaming
○ Control Packet: Sent by receiver to synchronize over multi senders,

essential for Partition Algorithm
○ Congestion Control: Rate control by specifying the sending rate of

multiple senders in order to reduce jitter
○ Partition Algorithm: Decide which sender to send at a specific time based

on faster sender gets the turn

Current Architecture EC2 Video server
1. Civ5.mp4 (2GB)
2. Whatever.mp4 (100MB)
3. Samp.txt (10KB)

Server.py

client.py

client.py

client.py

Each client sends “connect” request to
server.

Then each client sends a “mesh” of its
machine attributes:
{"98.164.242.11-64680":

{
"disk": 15762563072,
"private_ip": "192.168.0.203",
"sender_vid_port": 64681
“server_rtt”: 0.102353

},
}

MESH

Current Architecture EC2 Video server
1. Civ5.mp4 (2GB)
2. Whatever.mp4 (100MB)
3. Samp.txt (10KB)

Server.py

client.py

client.py

client.py

Each client sends “connect” request to
server.

Then each client sends a “mesh” of its
machine attributes:
{"98.164.242.11-64680":

{
"disk": 15762563072,
"private_ip": "192.168.0.203",
"sender_vid_port": 64681
“server_rtt”: 0.102353

},
}

MESH

Current Architecture EC2 Video server
1. Civ5.mp4 (2GB)
2. Whatever.mp4 (100MB)
3. Samp.txt (10KB)

Server.py

Client.py
98.164.242.11-64684

client.py
98.164.242.11-64680

The server broadcast its view of the
“mesh” of each machine attributes. This is
the ground truth.

{
"98.164.242.11-64680": {. . . .},
"98.164.242.11-64682": {. . . .},
“98.164.242.11-64684": {. . . .},

}

client.py
98.164.242.11-64682

Current Architecture EC2 Video server
1. Civ5.mp4 (2GB)
2. Whatever.mp4 (100MB)
3. Samp.txt (10KB)

Server.py

client.py

client.py

client.py

A client send request of a video
to the server by specifying
filename

CURRENT_FILENAME set.

Send filename request +
MY_PRIVATE_IP

Request samp.txt

LOCAL STATE:
REQUIRED_PARTS = -1
ACQUIRED_PARTS = 0
CURRENT_FILENAME = ""
MY_NETWORK_MESH

Current Architecture EC2 Video server
1. Civ5.mp4 (2GB)
2. Whatever.mp4 (100MB)
3. Samp.txt (10KB)

Server.py

client.py

client.py

client.py

Server tells all connected clients what parts of the
video to obtain with a VID_REQUEST object:
 {

"vid_filename": “samp.txt”,
"Requester_ip": 172.0.0.10,
"Requester_port": 23421,
"start": 0,
"length": fair_length | rtt_length | disk_length
"pfilename": samp_0.txt,
"allfilenames":

172.0.0.1→ samp_1.txt,
172.0.0.4→ samp_2.txt,

}
Set REQUIRED_PARTS

LOCAL STATE:
REQUIRED_PARTS = 3
ACQUIRED_PARTS = 0
CURRENT_FILENAME = samp.txt
MY_NETWORK_MESH

Current Architecture EC2 Video server
1. Civ5.mp4 (2GB)
2. Whatever.mp4 (100MB)
3. Samp.txt (10KB)

Server.py

client.py

client.py

client.py

Clients request video server for
chunks they need using REST
GET protocol.

Chunk 2

Chunk 0

Chunk 3

LOCAL STATE:
REQUIRED_PARTS = 3
ACQUIRED_PARTS = 0
CURRENT_FILENAME = samp.txt
MY_NETWORK_MESH

Current Architecture EC2 Video server
1. Civ5.mp4 (2GB)
2. Whatever.mp4 (100MB)
3. Samp.txt (10KB)

Server.py

client.py

client.py

client.py

Video server sends chunks to
each client.

LOCAL STATE:
REQUIRED_PARTS = 3
ACQUIRED_PARTS = 0
CURRENT_FILENAME = samp.txt
MY_NETWORK_MESH

Current Architecture EC2 Video server
1. Civ5.mp4 (2GB)
2. Whatever.mp4 (100MB)
3. Samp.txt (10KB)

Server.py

client.py

client.py

client.py

Each helper client sends their chunk to original
requesting client on to their open video port.

If REQUIRED_PARTS == ACQUIRED_PARTS:
merge_chunks()

LOCAL STATE:
REQUIRED_PARTS = 3
ACQUIRED_PARTS = 3
CURRENT_FILENAME = samp.txt
MY_NETWORK_MESH

Chunk 3

Chunk 2

Evaluation plan
● Plan to evaluate in multiple stages for multiple different scenarios:

○ Experiment 1: The Naive Experiments (Fair Partitions) on LAN
■ partition video into equal size of chunks and send to each helpers

○ Experiment 2: The Dynamic Experiments (Unfair Partitions) on LAN
■ partition video dynamically and send to each helpers

■ Partition video based on RTT and available memory

○ Experiment 3: K-Hops Experiment (on WAN)
■ The definition of ‘neighbor’ extends to nodes that is within k-hop distance from the

receiver

