U c I University of
California, Irvine

Effect of Caching in a
Content-Based Pub/Sub
System using Kafka

Distributed Restaurant and Customer
Publish/Subscribe System

Mason Nienaber, Radhit Dedania, Tarun Sai Ganesh Nerella

Motivation

e Most distributed service oriented systems use the traditional
client-server architecture
o Every client request handled by remote server, resulting In
significant latencies

e Servers typically employ persistent storage techniques for
client information in the form of database
o Database access results in additional significant
delay/latency

Objectives

e Implement content-based pub/sub system over Kafka
e (Cache messages at broker architecture
o Due to limited capacity, employ various caching strategies
e Analyze and compare various online cache policies
o Latency, throughput, hit rate, etc.
e Employ two trivial caching strategies
o NO caching, unlimited caching
e Employ three novel cache policies
o Based on number of subscribers to record
o Threshold, batched average, buffered

Related Works

e Notification System
o Thialfi
o Siena
e Pub/Sub Systems
o SpiderCast
o PolderCast
o PADRES
o Cluster-based Pub/Sub
o Hermes
e Cache Eviction Policy
o Utility-driven: Maximizing overall sum of utilities(objective
function) across subscribers
o TTL based: sets an expiration time on each object

System Diagram

System Broker

Kafka Broker

Restaurants :{ Publication Log

A

Database Log

Cache Logs

4>‘ Customers
Subscription Log |«

Broker Management | |
Module Database

e 2

Database Log

1 23] 5[7]10]1]112]|=—

Subscription Log
Publication Log

Broker
Management
Module

Sub ID + Seq No.(Key):
Message(Value)

Consumer 1 Log

Consumer 2 Log

Consumer 3 Log

7
3 Sub ID + Seq No.(K%

R
N

Database
(Key-Value
Store)

2

RN\
Poller ° Cache
L~ Controller —
5) ¢ t (14
Hash Database [
Tables (11 /Connector o

AQI\Essage(Value) u
13

Consumer 1

Consumer 2

Consumer 3

Publication Record

Pub ID: Message

Consumption Record

Seq No: Message

N~

Database Log Record

Sub ID: Seq No.

Data Structures & Representation

Bitmap(key)

Subscribers(value)

Subscribers(key)

Bitmap(value)

10001

S0,52

SO

10001

00110

S1

S1

00110

Forward Hash Table

RO — Restaurant 0 = Dominos
R1 — Restaurant 1 = PizzaHut
R2 — Restaurant 2 = McDonald’s
R3 — Restaurant 3 = Taco Bell
FO — Food item O = Burger

F1 — Food item 1 = Pizza

DO — Discount type 0 = 70% discount
D1 — Discount type 1 = 30% discount
D2 — Discount type 2 = 50% discount

S2

10001

Reverse Hash Table

Bitmap Meaning
10001 R2,F0,D1
00110 RO,F1,D2

BitMap Representation

Bitmap 10001 => R2, F0, D1 => McDonald’s, Burger, 30% Discount

How Matching occurs

Subscriber 0

-~

Sends publication to

Publication log Subscriber 0

publishes "10001" /
Polls and gets™0001”
>
v

-

'/'/l“’l /

/ -
/ _~Sends publication to
/ > Subscriber 2

Producer .
'.‘ o
/ .‘/‘ //
4 s
Y
/

Forward Hash Table

Broker Management module

Caching Policies

e Threshold Policy

Final Decision

Processing Order

u = utility value of current record = no. of subscribers
A=0.5
n=0.5

if u > threshold:

send to cache

Update threshold < threshold +A * u
else :

send to database

Update threshold < threshold - u* u

v ..
Caching Policies cont...

e Mean Policy

= Processing
“ u = current record utility value = no of subscribers

batch_size =3

H Final Decision batch_sum <« batch_sum + u

4 whenever iteration = {batch_size, 2*batch_size, }

update threshold < (batch_sum/batch_size)
if (u > threshold)
send to cache

else

send to database

Caching Policies cont...

e Buffering Policy

-
-

Final Decision

Processing Order

u = current record utility value = no. of subscribers
u_prev = utility value of previous record
y=0.7,a=0.3

set threshold <y * u+a * u_prev
if u > threshold
send to cache
else
send to database

setu_prev «<u

Testing & Evaluation

e Seven experiments
o Four caching metrics
m Input publication size benchmarks
e 500,800,1000,2000,5000,10000
m Cache hit rate, duplication factor, end-to-end latency,
throughput
o Three novel caching policy parameter optimizations
m Threshold (lambda/mu), Mean (batch size), Buffering
(alpha/gamma)

Cache Hit Rate vs. Benchmarks

Cache Hit Rate by Policy

nnnnnnnnn

BBBBBBB

Buffer policy consistently best cache hit rate (excluding unlimited
caching) across all policies.

v
Duplication Factor vs. Benchmarks

Duplication Factor By Policy

Duplication Factor

eeeeee

Threshold and Mean policy consistently maintain similar and
maximum values across all benchmarks.

Latency vs. Benchmarks

End-to-end Latency

Laten

Latency at maximum in no caching, most evident at higher
publication size. Negligible latency at low publication size.

Throughput vs. Benchmarks

Throughput by Policy

M no caching
50u W treshold policy
M mean policy
W buffer policy
M unlimited caching
00y

Throughput
[=] 5 w
£ € €

w
o
=

5000

Throughput at maximum in unlimited caching, most
evident at higher publication size.

Threshold Policy Optimization

if u > threshold:
send to cache
Update threshold < threshold + A * u

Threshold Policy Latency Parameterization

else :

send to database
Update threshold « threshold - u* u

70M

60M

end-to-end latency
& w
[=] o
= =

w
=]
=

20

=

10

=

(mu,lambda) parameterization

The latency is minimized when mu >> lambda and
Increases as lambda >> mu.

Mean Policy Optimization

batch_sum « batch_sum +u
whenever iteration = {batch_size, 2*batch_size, }
update threshold « (batch_sum/batch_size)
Batch Size Policy Optimization batch sum <0
if (u > threshold)
55 send to cache

else
send to database
20M
SM I
0
0=20 1=30 2=50

3=100

end-to-end latency
o
Z

=
Z

Batch Size

Latency decreases as batch size increases, implies
higher cache hit rate.

Buffering Policy Optlmlzatlon

set threshold «y *
f > threshold
end to cache

Buffer Policy Parametrization Optimizatio
else

(gamma,1-gamma) tuple

end to database

set u_prev «u

Latency is comparably less when threshold update includes a
small portion of previous value(subscriber count) which results in

end-to-end Iatency

variance reduction

Future Work

Dynamic Addition/Removal of Publishers & Consumers
Enrichment of Publication Content

Modification of Subscriptions over time

Cache Size Aware Caching Policies

Making Subscriptions Persistent

Conclusion

Content-Based Pub/Sub over Kafka

Highlight the benefits of caching at broker for QoS
purposes

Design of three novel caching policies

Performance comparison across policies

Scalability with respect to Publishers

High availability & Fault tolerance (inherently provided by
Kafka)

Questions?

Thank you

