
Effect of Caching in a
Content-Based Pub/Sub

System using Kafka
Distributed Restaurant and Customer

Publish/Subscribe System

Mason Nienaber, Radhit Dedania, Tarun Sai Ganesh Nerella

Motivation
● Most distributed service oriented systems use the traditional

client-server architecture
○ Every client request handled by remote server, resulting in

significant latencies
● Servers typically employ persistent storage techniques for

client information in the form of database
○ Database access results in additional significant

delay/latency

Objectives
● Implement content-based pub/sub system over Kafka
● Cache messages at broker architecture

○ Due to limited capacity, employ various caching strategies
● Analyze and compare various online cache policies

○ Latency, throughput, hit rate, etc.
● Employ two trivial caching strategies

○ NO caching, unlimited caching
● Employ three novel cache policies

○ Based on number of subscribers to record
○ Threshold, batched average, buffered

Related Works
● Notification System

○ Thialfi
○ Siena

● Pub/Sub Systems
○ SpiderCast
○ PolderCast
○ PADRES
○ Cluster-based Pub/Sub
○ Hermes

● Cache Eviction Policy
○ Utility-driven: Maximizing overall sum of utilities(objective

function) across subscribers
○ TTL based: sets an expiration time on each object

System Diagram

Workflow Diagram

Consumer 1 Log

Consumer 2 Log

Consumer 3 Log

1 2 3 5 7 10 11 12

1 2 3 4 6 7 9 10

1 3 4 5 6 8 9 10

2 4 5 6 7 8 8 9
Database Log

P
ub

lic
at

io
n

Lo
g

Poller Cache
Controller

Hash
Tables

Broker
Management

Module

Consumer 3

Consumer 2

Consumer 1

Database
(Key-Value

Store)

Sub ID + Seq No.(Key):
Message(Value)

Sub ID + Seq No.(Key)

Message(Value)

4

5

6
7

7

8

9

10

11
12

14

13

Database
Connector

15

Pub ID: Message

Seq No: Message

Publication Record

Database Log Record

Sub ID: Seq No.

Consumption Record

S
ub

sc
rip

tio
n

Lo
g

Consumers Producers

3
1

2

Data Structures & Representation

Forward Hash Table

Reverse Hash Table

BitMap Representation

R0 → Restaurant 0 = Dominos
R1 → Restaurant 1 = PizzaHut
R2 → Restaurant 2 = McDonald’s
R3 → Restaurant 3 = Taco Bell
F0 → Food item 0 = Burger
F1 → Food item 1 = Pizza
D0 → Discount type 0 = 70% discount
D1 → Discount type 1 = 30% discount
D2 → Discount type 2 = 50% discount

Bitmap 10001 => R2, F0, D1 => McDonald’s, Burger, 30% Discount

How Matching occurs

Caching Policies
● Threshold Policy

Caching Policies cont...
● Mean Policy

Caching Policies cont...
● Buffering Policy

Testing & Evaluation
● Seven experiments

○ Four caching metrics
■ Input publication size benchmarks

● 500,800,1000,2000,5000,10000
■ Cache hit rate, duplication factor, end-to-end latency,

throughput
○ Three novel caching policy parameter optimizations

■ Threshold (lambda/mu), Mean (batch size), Buffering
(alpha/gamma)

Cache Hit Rate vs. Benchmarks

Buffer policy consistently best cache hit rate (excluding unlimited
caching) across all policies.

Duplication Factor vs. Benchmarks

Threshold and Mean policy consistently maintain similar and
maximum values across all benchmarks.

Latency vs. Benchmarks

Latency at maximum in no caching, most evident at higher
publication size. Negligible latency at low publication size.

Throughput vs. Benchmarks

Throughput at maximum in unlimited caching, most
evident at higher publication size.

Threshold Policy Optimization

The latency is minimized when mu >> lambda and
increases as lambda >> mu.

Mean Policy Optimization

Latency decreases as batch size increases, implies
higher cache hit rate.

Buffering Policy Optimization

Latency is comparably less when threshold update includes a
small portion of previous value(subscriber count) which results in
variance reduction

Future Work
● Dynamic Addition/Removal of Publishers & Consumers
● Enrichment of Publication Content
● Modification of Subscriptions over time
● Cache Size Aware Caching Policies
● Making Subscriptions Persistent

Conclusion
● Content-Based Pub/Sub over Kafka
● Highlight the benefits of caching at broker for QoS

purposes
● Design of three novel caching policies
● Performance comparison across policies
● Scalability with respect to Publishers
● High availability & Fault tolerance (inherently provided by

Kafka)

Questions?

Thank you

