
 

Synchronized YouTube video playback application(Group 2) 
 

              Apoorva Muthineni                Chukka Bhargav                 Tanvi Gupta 
            amuthine    bhargavc                             guptat2 

 
1. Introduction  
 
Social interactions over the internet have become an integral part of our lives. Sophisticated use               
of internet protocols and high-speed network connections surpassed large geographical          
distances and provided its users with quick access to a wide range of resources like text files,                 
video, and audio files. This coupled with attractive user interfaces and feature-rich user             
browsing capabilities accelerated the sharing and wide-scale interactions between the users. 

To enable this high interactivity, developers aim at creating applications that provide            
users with an almost in-person like experience. Such a goal is difficult to realize because               
despite the network having high carrying capacity there is an upper-bound to the achievable              
speeds over public internets and thus needs to be optimized in the application level with               
intelligent design and performance metric usage. Along those principles we designed and            
created a group YouTube video viewing application. It features high accuracy video content             
streaming among the group of users aiming at providing a seamless group-watching experience             
over the internet.  
 
2. Related work  
 
The real-time media sharing applications are supported through well-known distributed          
computing architectures and underlying networking protocols. Synchronized maestro schemes         
(SMS) proposed in [1] uses a centralized client-server architecture where a server entity             
monitors the client side multimedia synchronization. Inter Destination Multimedia         
Synchronization (IDMS) [3] is built upon the existing SMS schemes and provides            
synchronization support by adding an underlying network protocol known as RTSP (Real Time             
Streaming protocol) [2]. This enables clients to send out streaming feedback messages which             
serve as a separate feedback channel from the client allowing the server to gauge the               
client-side bandwidth and adjust the multimedia transmission rates accordingly. The proposed           
architecture consists of several key components namely, media server, sync client and the sync              
manager. Such an architecture separates out the roles of the media content distribution from the               
media synchronization and allows them to function and interact with clients independent of each              
other. In our project, we closely follow the design choice of separating out media management               
and synchronization entities and make use of a client based feedback allowing to keep the               
clients in sync. However, we eliminate the possibility of the server being a single point of failure                 
by extending this fine-grain control by distributing the server functionality across multiple            
servers. This serves to provide resilience in the case of application failure and solves the               
problem of overwhelming a single server with heavy requests. Our solution uses a load balancer               
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to route requests from the client to the server and utilize a distributed in-memory database [5] to                 
maintain communication and consistency between the multiple servers. 

Another commonly used architecture in multimedia synchronization is the peer-to-peer          
communication where information is disseminated over an overlay network. Applications such           
as Splitstream [6], built on top of Pastry [7], divides data into “stripes” and disseminates over a                 
forest of multicast trees. The architecture supports synchronization and timing guarantees by            
balancing the load among participating nodes. In pursuit of a peer-to-peer application            
deployment, we evaluated the APIs provided by the WebRTC [8] framework which enables             
distributed communication features for web applications. However, this framework supports          
one-to-one communication between clients and is not robust enough to support group            
communication and synchronization.  
 
3. Architecture  

 
3.1.  Overview of the architecture: 
 

 
Figure 1: Architecture Diagram 
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In our architecture, we mainly have three components, Sync Clients, Sync Manager, and Load              
Balancer. The video content is streamed from the Youtube application. Sync clients are the              
clients who are interested in consuming the video content in a synchronized fashion. All the               
clients who are interested in the same content are expected to join the same room. Sync                
Managers are the servers responsible for ensuring the synchronized streaming experience for            
the clients of each room. We use web sockets[9] to enable two-way communication between              
sync clients and sync managers. Sync Managers publish the pause/play/buffer events that            
originate from one of the clients to all the clients belonging to that room. They also receive the                  
current timing positions sent periodically by all the clients of each room and periodically              
calculate the ideal timing position for all the clients. Additionally, the load balancer is used to                
route the web socket requests from clients to the least loaded server.  
 
3.1. Sync clients: 
 
Sync clients represent the client side of the application. They have the ability to either create a                 
new room or join an existing room. All the clients belonging to a particular room have control                 
over the video being played. The Youtube application is integrated into the GUI of our               
application using an iframe. This way, clients have the controls like           
pause/play/forward/backward/change videos which are available in the typical Youtube         
application.  

When clients create/join a room, they first establish a web socket connection with one of               
the Sync Manager servers via a load balancer. This connection remains persistent throughout             
the client’s session. At the server end, a web socket topic is created per room to which all the                   
clients of that room subscribe. Whenever a client pauses, plays, or uses any other video               
controls, it sends a message to the server using the pre-established WebSocket connection.             
The server then publishes the event to other clients of that room which in turn mimic the controls                  
at their end to stay in sync with the other clients. Additionally, clients also send their individual                 
video timing positions to the server periodically. They also receive the periodical ideal timing              
positions sent by the server and adjust their playback position to the received ideal time plus the                 
estimated time lag between the client and server.  
 
3.2. Load Balancer: 
 
We use HAProxy[4], an open-source high availability load balancer to route the web socket              
connection requests from the clients to the appropriate servers. It is configured to route the new                
requests to the server with the least connections. Unlike HTTP connections which are stateless,              
web socket connections remain persistent throughout the session. That means, once the client             
establishes a web socket connection with a particular server(via load balancer) initially, it always              
sends and receives further messages from the same server whereas the HTTP requests from              
the clients can be routed to any of the available servers.  

Moreover, the load balancer is mainly used to make the application scalable and             
fault-tolerant. Whenever the application load increases, new sync manager servers can be            
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seamlessly integrated into the cluster with a simple configuration file change in the HAproxy.              
Moreover, in case of server failures, all the clients connected to that server re-establish web               
socket connections with any of the available servers through the load balancer. Thus, the load               
balancer facilitates scaling and gracefully handling the server failures in the application. 

 
3.3. Sync Manager: 
 
As introduced earlier, the sync manager serves the sync client requests to create or join a room,                 
periodically relays the ideal timing position to all clients through a WebSocket connection,             
forwards the sync client events like pause/buffer/play videos to the other sync clients in a room.                
Considering the scalability and reliability of the system, the sync manager’s responsibility is             
distributed to a cluster of servers.  

Through the load balancer, the sync clients belonging to a room can establish a              
WebSocket connection with any of the sync manager servers. From the use cases mentioned              
before, we can infer that the servers should communicate among themselves for forwarding             
information to all sync clients in a room. Moreover, we need a storage system to store all room                  
information and status, sync client’s timing updates. 

With distributed servers in place, it is a good practice to have a distributed storage               
system to avoid a single point of failure. In order to achieve highly synchronized playout, the                
servers should be able to compute the ideal timing position of each room and publish it to the                  
sync clients in frequent intervals. For that, we need a storage system that guarantees low               
latency query times. Also, our application doesn’t have high memory requirements and the             
information stored for inactive rooms can be purged after a timeout. Redis [5] is an appropriate                
choice for the required specifications. Since it stores most of the data in memory, query latency                
is low. Redis also provides a publish-subscribe based messaging feature which is used as a               
communication channel among the sync manager servers. Through this channel, the sync            
servers relay user action events to other servers.  

Each server is responsible to update the ideal timing position of the room to              
connected(WebSocket) sync clients. A scheduler runs at each server to update the room timing              
positions to these sync clients. In this process, the server gets the room information of all the                 
sync clients it is responsible for, from Redis. The server checks whether each room's ideal               
timing position has been computed in the last ‘x’(configurable) minutes. If not updated, the              
server takes the responsibility of computing the ideal timing position for the room. Each server               
maintains a set of rooms that it is responsible to compute timing position. The ideal timing for                 
these rooms is periodically computed by the server and persisted to Redis. This enables other               
servers to get the latest ideal timing position for the room and also ensures continuity for the                 
newly joined clients of the room. This procedure also ensures that the task of computing the                
ideal timing position for all rooms is distributed among the servers. 
 
3.3.1. Algorithm for Ideal Timing Position: 
 
Sync clients in a room would periodically send their current position (timing event) and sync               
managers periodically send computed ideal timing positions to their clients. Each client sends             
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the timing position of the playout and the recorded time when this timing position was sampled.                
This information is persisted to Redis as room client information. The scheduled job at the               
server, responsible for computing the ideal timing of a room, queries the room client information               
stored in Redis. The server then estimates the current position of each room client. The average                
of the current position of all the clients of a room is computed as the ideal timing position at the                    
time of computation. This ideal timing position and time of computation is persisted to redis as                
room’s information. The sync servers query the room information from Redis to forward it to               
sync clients. 

A pause or break in the video playout at the client for some duration introduces faulty                
estimation of the client current position by the sync server. This is because the computed               
current position of playout also includes the paused duration. To overcome this scenario, the              
server sends the ideal timing position only when the video is being played. The sync clients also                 
send the timing events on receiving a play event. It is to be noted that the server only considers                   
the sync clients whose position sample time is greater than the latest play event time, for                
computing ideal timing position.  

Our algorithm is tightly coupled with the physical clock synchronization between sync            
clients and sync servers which is achieved through ntp protocol[10]. Here we are not using the                
physical timestamp to determine the causal dependency of events. Therefore, the few            
milliseconds of physical timestamp differences between the various endpoints would not affect            
our algorithm. 
 
3.4. Scenario : Client sends a request to join a room:  
 

 
Figure 2: Sequence diagram depicting the series of events that take place when a client creates a room 

 
● A client interacts with the GUI and enters a room name which then generates an HTTP                

post request containing the room name (r_name). 
● The load balancer relays the client request to a particular Sync Manager server which              

then persists the created room information on the Redis cluster.  
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(Note: The design follows a DAO(data acquisition object) architecture where a           
RoomDAO provides high level APIs to interface with Redis abstracting away the details             
from Redis) 

● A Room object is associated with each room in which the following information is              
maintained: 

○ Video url for the current video being played in the room  
○ Video status indicates if the video has been paused or it is currently playing 
○ Video position indicates the latest received position of the video from the client             

event updates.  
○ A timestamp to record when the last video status update was received or relayed. 
○ A timestamp to record the latest time at which the ideal video position was              

calculated and sent to the client.  
● When a room is created, the Room object is initialized to default values.  
● Servers share the responsibility of servicing the rooms and they keep track of the rooms               

they are currently servicing by maintaining their own current room lists.  
● The server then creates a unique client ID to identify the client in a room and passes this                  

along with the room name to persist to the associated room Hash Set in Redis. 
● Subsequently, the server sends a RESPONSE message to the HTTP post request of the              

client with the server-created client ID and the Room object containing default            
configurations as the payload.  

 
4. Evaluation 
 
In this section, we present the experimental setup for each of the components from the               
architecture described above. For the sake of simplicity, we ran our experiments with two Sync               
Manager servers as a cluster and accessed the application from multiple clients.  
 

Figure 3: A screenshot of GUI of the application Figure 4: A picture depicting the working application 
accessed from multiple devices 
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Figure 3 is a screenshot of the GUI of the application. As explained in the previous sections,                 
users have the option to create/join a room, change video and can also access              
pause/play/forward/backward controls on the Youtube video iframe. Figure 4 demonstrates the           
working application accessed from multiple devices where all three devices are connected to a              
common room. This scenario can be seen as three sync clients accessing the application from               
different places using the internet. We can see that all three devices are able to stream the                 
same video, perfectly in synchronisation.  

 
Figure 5 is a snapshot of      
the console logs from the     
GUI. We can see the Web      
socket message  
exchanging between the   
client and the server.    
Particularly, we see clients    
sending the play event to     
the server which inturn    
publishes the message to    
all the clients of that room.      
Also, the client is    
periodically sending its   
current video position to    
the server and also    
receiving the ideal video    
position sent by the sync     
manager server. 
  

Figure 5: A screenshot of the UI console log showing the websocket message exchange 
 
The below Figure 6 shows the UI dashboard of the HAProxy load balancer. The two backend                
servers are denoted as ‘srv1’ and ‘srv2’ having 2 and 3 connections each. The green               
background of the servers indicate the health status of the servers as up and running.  

 
Figure 6: A screenshot of the HAProxy stats dashboard 
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4.1.  Redis Statistics: 

 
          Figure 7: Redis Commands per Second Statistics                    Figure 8: Redis Memory usage Statistics 
 
Figure 7 depicts the frequency of commands per second on the Redis cluster. The spikes are                
because of the schedule job that is triggered at Sync Server. We can see a sequence of low                  
spikes and high spikes in the graph. This is observed because when the rooms are               
inactive(video paused or video ended), the Sync Server will not compute the ideal timing              
position. Otherwise when the rooms are active, to compute the ideal timing position, the Sync               
Server queries video position information of all the sync clients. So when rooms are active the                
number of commands to Redis cluster are high. 

In Figure 8 the blue plot represents the memory allocated by Redis. The increase in               
memory usage is because of creating 6 new sync clients and 3 new rooms. The average                
memory usage for each sync client is significantly low. Since we are only storing current status                
of room clients and rooms, the memory usage increases only when new clients or rooms are                
created. This observation supports that our application is not a memory intensive application             
and strengthens the design choice of using Redis as the storage system. 
 
5. Conclusion 

 
In this project, we aim at designing and creating a seamless video viewing experience among               
users connected over the internet by implementing fine-grained synchronization among the           
viewing clients. We achieved this by carrying out a thorough analysis of the available solutions               
and supported architectures which would best suit the features of our application. We found that               
fine grained control was best achieved through a centralized architecture and we built our              
application with a Sync Manager communicating synchronization parameters across all clients           
and rooms. To address the bottleneck resulting from a centralized architecture, we create a              
cluster of servers which service the client requests and augment the distribution by using a load                
balancer. The synchronization calculation is expansive taking into consideration the presence of            
any slow clients and moderating the synchronization rate among multiple servers by keeping an              
account of the latest update times.  
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6. Future Work 
We plan to further offload the responsibilities of the sync manager component to a              

separate component similar to a microservices architecture. In terms of applicability, we would             
like to enrich the application with a group chat and group audio/video calling feature by applying                
similar synchronization mechanisms. Our design is robust and we would like to include similar              
synchronization mechanisms to support other popularly used streaming websites like Netflix,           
Prime Video, Hulu, etc by enabling authentication.  
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