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Introduction
Our applications lets users watch videos together on youtube from over the internet. It 
features high accuracy video content streaming among the clients aiming at providing a 
seamless group-watching experience for the users of the application. 

Design
With simplicity and high performance functionality in mind, we chose to leverage the simplicity 
of the client-server architecture. This architecture choice allows us to have more 
fine-grained control over the video playback speeds at the application client. To offload the 
large number of responsibilities at the server, we create multiple server instances and utilize a 
load balancer to distribute the requests across the servers. To facilitate the distributed 
operations at the server, we use a publish/subscribe architecture between the multiple 
servers and use websocket topics to guide server-specific information to the rightful client. 



Architecture

Fig 1: Architecture diagram detailing the different components



Sync Clients
● Clients have the ability to either create a room or join an existing room.

● Each client has control over a youtube video player and can specify the video URL 
used to play in the application.

● The sync clients communicate with the sync manager via websocket connections. 

● A Websocket topic is created per room and the clients subscribe to their room topic.

● The possible playback events generated by a client are as follows: 
○ PAUSE
○ PLAY
○ SEEK (change video position)
○ CHANGE VIDEO URL

● The video content viewed by the users is provided by the YouTube application. 
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Sync Client GUI



Sync Manager
The sync manager module runs on a cluster of servers. It’s functionality includes: 

● Servicing client requests to create a room, join/leave a room and maintain state information 
about each room. 

● Onboards a new client to an existing room by fetching the information from storage(Redis). 

● Receive video playback events generated by clients (pause, seek and play) and relay it other 
clients in the same room. 

● Periodically calculates the ideal video position for the clients in each room. 

● Persists the current state and periodic timing information received from the clients to storage 
(Redis).



Redis Cluster

● Multiple sync manager (server) applications receive information from different clients 
and store them in the in-memory data structures provided by the Redis cluster. 

● Using the publish/subscribe feature provided by Redis, a channel is shared by all the 
sync manager servers to share the event information among themselves. 

● The servers in-turn relays these events to the corresponding Websocket topics of the 
clients.



Scalability
● HAProxy is used as a load balancer for the Websocket connections to the sync 

manager servers. 
● The load-balancer is configured to route new requests to the least loaded server.
● Once a Websocket connection is established between the client and server via 

HAProxy, the same connection is used for the subsequent communication 
between the client and server. 

● Seamless integration of new servers to handle increased loads through HAProxy.



Failover

● When a Sync manager server goes down, all the associated clients (with that 
server) re-establish a new Websocket connection to the available servers 
through the load-balancer. 

● When a server receives a reconnect event, it adds this new client information 
to its current clients list and uses this new connection for subsequent 
communication. 



Implementation Details

● A javascript based frontend application is provided as GUI for the clients. 

● SpringBoot (v2.0.0.RELEASE), built on the Spring framework, is used to 
deploy the server with WebSocket support in Java. 

● A Redis cluster is used by the multiple sync managers to persist and receive 
client updates on a room currently serviced by the sync manager. 



Operation - Joining an existing room 
● Each client sends a request to join an existing room by entering a room name. 
● The message gets forwarded to any of the available servers through the load balancer.
● The server persists the client information to Redis and sends back information which includes 

the client ID, current video URL and the video position to start streaming from. 
● The client plays the video based on the received information. 
● The client periodically sends its playback position to the server to sync across all clients. 
● The server persists the periodic video information received from the client to Redis.
● The server then uses the received client updates to periodically calculate the ideal video 

position across all clients and relays the ideal position to the respective clients.
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