
Recommendation System Middleware
Zhenyuan Zhang, Pansheng Fang, Dehao Li

1. Introduction
Nowadays, recommendation services are becoming increasingly important in people’s

life. There are multiple types of recommendation applications based on different content. For
example, people might turn to restaurant recommendation applications when they are planning
for a family dinner. They might also need to take a look at the top (recommended) choices when
they want to buy a specific kind of product. There are also destination recommendation
applications[9] and E-commerce recommendation applications[10]. A recommendation system
middleware application can perfectly meet the requirements for providing recommendation
information of all kinds of these scenarios.

As a recommendation system middleware can contain many modules providing different
recommendation services for different items, we intend to bu ild a workable sub-module, a
movie recommendation system(or API) as a showcase. Watching movies, however, is now a
significant off-work activity for people. The movie/video recommendation system provided by
YouTube is a good example[7]. But there are not many services that are recommending movies
based on movies’ information and viewing status, especially those adding in local and global
features. [8] proposed a thought of using local and global features for recommending items so
that providers can provide more customized services. Thus, we want to design a movie
recommendation system as our project in an order to provide most viewed movies within a
specific range of locations, so that people can get to know the most popular and heated movies
that are around. Also, we implement the function of giving recommendations based on different
labels, which can provide more customized services for different clients. In our project, we use
Java to do the movie data statistics and recommending, Python for building a Web server, and
Spark as middleware to calculate the recommendation results. More information will be
introduced in the coming parts.

2. Related work

Nowadays when software engineers want to develop specific products, it is nearly a
must to consider dealing with data within large scale. When executing tasks with such huge
datasets, it is a trend to make use of distributed calculating platforms and tools such as
MapReduce[1]. Basically, it consists of master nodes and worker nodes. Master nodes get the
input data(called the Map operation) and the worker nodes are responsible for computing their
assigned tasks. The master results will then combine the computing results, with data stored in
distributed ways using Hadoop Distributed File System(HDFS)[2]. In recent years, Spark is
widely used in distributed computing for its better performance in computing speed, high
compatibility with distributed computing modules such as HDFS, and rich API for users to
develop well-structured architectures[3]. Spark is a keyword search engine on relational
databases, which perfectly solves insufficient flexibilities and capabilities problems.The technical
challenge lies in how to find a general-purpose and effective ranking method for the search
results while optimizing the search within a potentially huge search space. In [1], the problem is
handled by proposing a novel ranking method that takes into several important ranking factors.

With their algorithms, the query processing speed could be up to two orders of magnitude faster
than alternative methods. As a result, the Spark system consists of these kinds of speed-up
systems.

Like other well-designed projects and architectures, our project, which aims to design a
recommendation system middleware, utilizes Spark’s good performance in big data analysis.
We intend to build a movie recommendation system as a showcase, which needs to deal with a
great deal of data to compute(might exceed the ability of a single machine). In the area of big
data, Apache Spark is a fastest and general-purpose engine for large-scale data processing,
which is achieved by In-memory computing. With this feature, Spark can query data much faster
compared to Hadoop and can offer a general execution model that can optimize an arbitrary
operator graph, which is supported by Spark[4]. The article also concludes that within the APIs
provided by Spark, it can well support the following services: 1. Top ten words tweeted during
the last specific period of time. 2. Top ten languages used to tweet during a specific period of
time. 3. A list of tweeted items matching a given search keyword. Our project includes the
modules that give ranking data of movies. Also, we need to calculate the labeled data
periodically. Last but not least, we are using Java to construct each module and use Maven to
manage the whole project, which is also perfectly supported by Spark and its cluster computing
modules. So, we believe that Spark is a powerful tool that can enhance the system
performance in our project.

As we plan to deploy our project environment based on a cloud platform like AWS, we
need to consider the management of Hadoop in the cloud platform. In paper[5], the author
presents and develops an android-based mobile for Hadoop environment management. The
structure described in the paper greatly inspires our project design. Compared to the paper, the
middleware that we used in our recommendation system would not involve in Android related
interactions(of course it could be designed and implemented but due to limited time we would
not consider to make it, maybe in future work to complete). Also, we simply use the windows’
website as the frontend things rather than the Android they use. In this case, we need to realize
the interactions between website and server which makes us consider to use python as the core
language to code the middleware. Besides, due to the special structure we designed which has
two kinds of HDFS(local and cloud) that cannot directly interact with each other, the middleware
part also needs to take responsibility to help the local HDFS and the cloud HDFS doing the
interaction. Equally importantly, according to this paper, two proper SSH connections seems to
be an effective way to handle the requirement.

The last but not least part in our project is the Hadoop Distributed File System(HDFS). It
provides a self-implemented component for distributed data storage for developers[6]. [6]
introduces the architecture and mechanism of HDFS in detail. Basically, it stores file system
metadata and application data separately. HDFS stores metadata on a dedicated server,
called the NameNode. Application data are stored on other servers called
DataNodes. All servers are fully connected and communicate with each other using
TCP-based protocols. In HDFS, the namespace is a hierarchy of files and
directories and is kept in RAM. The NameNode maintains the namespace tree
and the mapping of file blocks to DataNodes. Clients who want to access the files in HDFS can
access the NameNode through a TCP-based connection, then get the data from DataNode

assigned by the system. Also, for clients(such as applications) who want to access the file
system using HDFS, they can operate through a code library that exports the HDFS interface
called HDFS client. In the paper, the high throughput of HDFS when dealing with large scale of
data.

3. Approach, methods and technique

Basic architecture is shown below:

3.1 Using tags and distributed system to realize simplified version of personalized
recommendation

We divided the file system into two parts, central system and edge systems. The central
system was in charge of collecting the amount of related visits of things that were stored in the
system(in our system it should be movies). And edge systems recorded the related visits of
things that were divided by specific tags(in our system it was simplified to be the first char of the
movies’ title). When a pure new visitor(or new user if we expanded to have a register and login
system) and request to see the list of the most popular things(in our system it was the played
movie), the rank stored in the central system would be provided. But if the visitor has requested
to see the thing with specific tags, this operation would be recorded and used to decide which
group the visitor belongs to(similar to giving a mark or a tag to this visitor). At this time, when
visitors request to see the list of the most popular things, the edge system(s) that are related to
that group or tags would provide the rank information. The frames that show how the watch
movie function(data record) work and how the rank system work are shown below.

Figure 1 How watching movie function work

Figure 2 How ranking(recommendation) system work

3.2 Frequency count
Basically, we are doing a frequency count job. In the backend, we are gathering up the

appearance of items that appear in the system into multiple files. These files are txt files, which
should be located in the “input” directory. Then, we put these files into the Spark file system,
and make the Spark do the frequency count job.

3.3 Spark on AWS

Using EMR, we can easily create a cluster with Spark installed and configured. Our
cloud cluster consists of one master node and two worker nodes. For the hardware type, we
select m5.xlarge option which is the basic hardware provided by AWS. This option makes sure
that the hardware is not specifically optimized for storage performance or any specific type of
computation.

We deploy our frequency count job on Spark as a jar file. Then, we use Spark on AWS
to run this count job. It basically retrieves the result and writes it to Spark HDFS file system.

3.4 Cloud’s Input and output management

Basically we build our application using Java on our laptop. It is really important for us to
communicate with Spark on AWS.

There are multiple things we need to do. First, we need to think about how to send input
files to Spark on AWS. Second, AWS needs to be manipulated by our Java code once its Spark
has received our input files. As a result, our Java code has the responsibility to send commands
to AWS so that it can control Spark to do what we want. Third, we need to retrieve the result
from AWS.

In general, we use JSCH, Java Secure Channel, to finish this part. JSch is a pure Java
implementation of SSH2. JSch allows us to connect to an ssh server and use port forwarding,
X11 forwarding, file transfer, etc., and we can integrate its functionality into our own Java
programs. JSch is licensed under BSD style license.

The whole process of cloud operation is not difficult. In the beginning, it needs to build a
session with certain credentials such as .pem files and the correct ip address. Then, using this
session, the application uses SCP command to send the files to the input directory.

It is then our application sends several commands to manipulate the frequency count
process in Spark. Firstly, the input directory is copied into Spark’s HDFS file system so that all
files that are needed to be processed can be seen by Spark. Secondly, by using the jar file we

deployed previously, Spark can do frequency analysis on all the files in the directory. Thirdly,
the instance retrieves the output files from Spark’s HDFS file system and merges them into a
single file name “result”. This single result file name “file” is ready to be fetched by our local
machines.

Furthermore, we use the SCP command again to download the result file for further use.

3.5 Renew algorithm for central DFS and edge DFS
Since the whole system is not reading only(DFS need to collect the count of times of movies are
played), the server(middleware) needs to decide when the data collected by the web server
should be transferred to DFS and do the calculation(mapreduce) to get the new rank which then
be transferred back to replace the old rank. We simply called this process the renewal of the
rank of movies. For central DFS, we assumed it to have a huge amount of data which should
not be renewed frequently, so we set it to be renewed periodically with comparatively long
period(due to the property of the project and the comparatively small data volume we used, we
set it to be five minutes). For edge DFS, we assume it to need to be renewed frequently so we
record the total number of times of movies played, when this number reach the threshold we
set(due to the property of the project and the comparatively small data volume we used, we set
it to be 10) the edge DFS would do the renewal operation.

4. Evaluation plan and evaluation result
4.1 Evaluation plan
Since the main target is not to build a real useful system but help us understand some
principles, we do not need to focus on the performance or abilities like to handle the high
concurrency of the request or too much fault tolerance. We would just simply simulate two
functions for visitors: (1)play specific movies(in a simulated way) (2)show the rank of the most
played movies. And the evaluation would just base on these two functions by requesting to play
specific tagged movies several times and play other movies several times. Besides, during the
play of the movie, request to see the rank of the movies. After getting the renewal from the
central DFS and the edge DFS, also request to see the rank of the movies.

4.2 Evaluation result
Doing the request to see the rank of movies before playing any movie, the system would
successfully show the rank from central DFS as long as the first time map/reduce in central DFS
is finished. After we played specific tagged movies, the request to see the rank of movies got
the rank from edge DFS. After the times of playing the specific tagged movies reaching the
threshold, the edge DFS collected the count of times of playing specific movies and successfully
completed the calculation and returned the rank to the web server. Then we used the visitor
marked as preferring the specific tagged movies to request to see the rank, and the new rank
from edge DFS was shown correctly. And since we set the central DFS to collect the count of
played movies and do the calculation periodically, after the specific periodical time which we set
to be 5 mins, the central DFS successfully collected the data and completed the calculation.
Then we used the untagged visitor to request the rank which had nothing wrong.

5 Conclusions and possible extensions
5.1 Conclusion
Using a distributed system makes it easier to realize data distribution and personalized
recommendation. Spark is an easy use tool that can realize complicated multi-step map-reduce
calculation with only one time read I\O, and this property makes it more practical in
recommendation kinds of systems even could allow systems to be real time collecting and do
real time recommendation with the collected data. We conduct experiments to simulate possible
user behaviors and see whether the server can compute and output the recommendation
results. We use a frontend web page to: (1)play specific movies(in a simulated way) (2)show
the rank of the most played movies. The result shows that the system can successfully show the
movie ranking and update the movie ranking properly.

5.2 Possible extensions

Since we simplified some structure related design and ignored some details to make the
system more realizable in limited time. There are truly many extensions we could do to make
the system more close to the real-life system.

5.2.1 More complicated multi-tags based system

Currently, we only based our recommended results on single, specific tags. In the future,
we wish to extend our system into a multi-tagged one. In other words, we need to construct the
system to categorize users with multiple tags, so that the system can provide more accurate
services for users.

5.2.2 Real data and have ability to deal with high concurrency

As we are constructing the system in a rather simple way, there are still many aspects in
the system that can be better implemented. To be more specific, considering high concurrent
scenarios, we should design load balancing functionality to handle concurrent visits to the
server. Normally, this can be achieved by setting multiple master nodes, dividing read-write
functions in different servers and so on. Also, setting cache using tools like Redis can greatly
enhance the ability of handling multiple requests.

Reference
[1]. Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: a flexible data processing tool."
Communications of the ACM 53.1 (2010): 72-77.
[2]. Karun, A. K., & Chitharanjan, K. (2013, April). A review on hadoop—HDFS infrastructure
extensions. In 2013 IEEE conference on information & communication technologies (pp.
132-137). IEEE.
[3]. Yi Luo, Wei Wang, Xuemin Lin, “SPARK: A Keyword Search Engine on Relational
Databases”.
[4]. Abdul Ghaffar Shoro, Tariq Rahim Soomro, “Big Data Analysis: Apache Spark Perspective”.

[5]. Feng-Qi Cheng, I-Ching Hsu*, “Hadoop environment management App based on mobile
cloud computing”.
[6] Shvachko, Konstantin, et al. "The hadoop distributed file system." 2010 IEEE 26th
symposium on mass storage systems and technologies (MSST) . Ieee, 2010.
[7]. Davidson, James, et al. "The YouTube video recommendation system." Proceedings of the
fourth ACM conference on Recommender systems. 2010.
[8]. Maruyama, Takuma, Yoshiyuki Kawano, and Keiji Yanai. "Real-time mobile recipe
recommendation system using food ingredient recognition." Proceedings of the 2nd ACM
international workshop on Interactive multimedia on mobile and portable devices. 2012.
[9]. Fesenmaier, D. R., Wöber, K. W., & Werthner, H. (Eds.). (2006). Destination
recommendation systems: Behavioral foundations and applications. Cabi.
[10]. Schafer, J. Ben, Joseph A. Konstan, and John Riedl. "E-commerce recommendation
applications." Data mining and knowledge discovery 5, no. 1-2 (2001): 115-153.

