
CS237 Group 7 Project Report:
Coupon Distribution System

Jiaqi Xiao #57047762
Yinhao He #14721976

Ananth Gottumukkala #37164068

Introduction
Online shopping has become one of the most frequent activities in our daily life. Merchants
would provide some coupons for consumers to promote sales like Black Friday. Using coupons
to stimulate consumption has become a common method for current businesses. However, it is
not easy for normal consumers to manage all these coupons. In this project, we would like to
develop a Coupon Distribution Platform for both consumers and merchants. Customers can
easily get and manage their coupons on this platform. Merchants can directly distribute
coupons.

The coupon distribution platform is based on the pub/sub messaging system which enables the
users to subscribe to a certain type of coupons they would like to receive. In order to determine
which pub/sub messaging system should be used, we did some research about the pub/sub
messaging systems. We present the architecture of our system in this report. Also, we talked
about how we used Kafka in our system. Multiple test results are shown at the end of this report.

We made an assumption that many customers rush to get a limited number of coupons at a
certain time. In order to achieve that, we implemented the following features.

● Use Kafka to solve the problem of high-throughput data processing of a very large scale
of messages.

● Use HBase to implement the storage of customers and coupons' information to ensure
the read and write efficiency.

● After the implementation of our platform, use PostMan to test APIs.

Related Work
We have done research on multiple messaging platforms such as Kafka, RabbitMQ, ActiveMQ,
Redis, etc. RabbitMQ and Kafka have a persistent and good throughput, while ActiveMQ is well
suited for enterprise-level applications (Dobbelaere, 2017), while Redis is really fast. A study of
various technologies, in particular RabbitMQ and Kafka, addressed the problem of increasing
technology to use for our prototype. ​(​Magnoni, 2015)

Back to our idea, Kafka might not be the most effective or the most practical one for us, but it's
the most suitable one for now. After contrasting it with so many other message queue

structures, we have come to the realization that there are many explanations why we eventually
chose Kafka. First of all, Kafka is a message queue system. In some time-limited activities, the
application will generally be suspended due to a sudden increase in traffic and the application
can not be processed. Second, Kafka can handle multiple producers seamlessly, whether they
use multiple themes or the same subject. This makes the system ideal for platforms such as our
coupon distribution platforms. It will be useful to retain Kafka's long-lasting message in our
project. Messages are committed to the disk and will be stored under configurable retention
rules. Flexible scalability and a wide variety of configuration choices in Kafka may be used to
conduct several performance comparison tests to assess the specific results of various
partitions and topic configurations. (Kreps, 2011) Finally, Kafka is the best option for our idea.
Fast persistence, high throughput, replication mechanisms, and so on could provide massive
support to the coupon distribution platform. Also, Kafka 's high scalability enables us to perform
some extra performance tests after the platform has been developed.

Design
In this section, the structure of the Coupon Distribution System is introduced, including
Merchant Subsystem and Customer Subsystem.

Merchant Subsystem
The main functions of the Merchant Subsystem are the management of Merchant Information
and the distribution of CouponTemplate. The basic information of Merchants is stored in
MySQL. The Merchant can distribute any number of CouponTemplates to each Kafka topic.
Some CouponTemplates require Token Verification, so the Merchant needs to upload Token
FIles in advance. These Token Files would be stored in Redis as a Set that is an unordered
collection of Strings. Redis can provide high-speed read and write when a large number of
coupons are consumed in a short period of time.

Customer Subsystem
The Customer Subsystem is responsible for all the services for customers. Customers can
operate coupons and check their status. Also, there’s a function for customers to feedback their
comments on both coupons and the Distribution System.

When a customer is created, besides the basic information, UserId would be generated by
joining the current total number of customers and a 5-digit random number. Customers can
submit feedback on coupons and the system through Feedback Service.

With the annotation of ‘@KafkaListener’, ConsumeCouponTemplate Service will keep listening
to the Kafka topics and consume the coming messages of CouponTemplate. After receiving the
CouponTemplate, it will be transmitted to a value object in Java for further processing.
HBaseCoupon Service will persist all these CouponTemplate in HBase. Customers can check
all the available CouponTemplate by Inventory Service. According to the title of
CouponTemplate in the response of Inventory Service, customers can request that coupon with
GetCouponTemplate Service. For a normal CouponTemplate, a row of data that contains the
CouponTemplate and customer information will be inserted into the ‘cp: coupon’ table in HBase
after verification of validate time and number limitation. However, if the CouponTemplate
requires a token, then the token stored in Redis must be popped and verified. Each time one
this kind of CouponTemplate is obtained, one token will be used and eliminated. When the
tokens for a CouponTemplate are empty then the CouponTemplate is no longer available.

As soon as the user gets some valid coupons, the usable coupon information is available
through UserCoupon Service. When a customer uses a coupon, UseCoupon Service will find
the coupon by UserID and CouponTemplateID then updates the information in ‘cp:coupon’ to
set it as used. Customers’ all coupons could be viewed by two status, used or unused.

Kafka
We used Kafka in this project as the service which allows merchants and customers to
exchange coupon data. A Kafka template is used to publish messages (coupon data populated
by the merchant) to a specific topic corresponding to for example the type of coupon. A Kafka
listener is configured to consume messages from the corresponding Kafka topic. Our
implementation used a Kafka listener to consume coupon data and relay it to HBase for data
persistence.

In addition to the HBase listener (GetCouponTemplateService), we also implemented additional
listeners for each customer so that they can consume coupons in different topics
asynchronously directly from Kafka. Unlike the HBase listener, which keeps listening and
consuming data from Kafka topics, the customer listeners consume data from the appropriate
topic only when the User specifically requests/uses a coupon. The coupon transaction history as
well as the coupon validation and verification information is also stored locally by each User. In
terms of implementation, the customer listeners are still a work in process (as of writing this
report) and are being debugged so for now we have the customers consuming data from HBase
since the implementation was simpler to get working end to end.

Results
We design a whole experiment to test the functionality of our Coupon Distribution System. We
use Postman to test all the APIs in our system with HTTP requests. Click ​here to watch the
testing video.

Create New Merchant
When the new merchant is created, it will generate an id that is auto-incremented in MySQL.

https://www.youtube.com/watch?v=9LcMUzSSPcU

Get Merchant Information with Merchant ID

Merchant Distribute CouponTemplate

Upload Token File
The Token File contains several lines of tokens. Every time when a customer needs to get a
coupon that requires a token in the inventory, one line token in Token File will be consumed.
Check if the Token File is in Redis

Create New Customer

Get Inventory Information​ (Available CouponTemplate for Customers)

Customer Get Coupon

Get Customer’s Current Coupons Information

Customer Use Coupon
A Customer can use a coupon with the CouponTemplate ID

Customer Current Coupon becomes empty and it would be available in Customer Used Coupon

Conclusion and Future Work
For distributed systems, Kafka has been developed to collect and distribute massive messages.
It is a distributed high-throughput messaging system. In Kafka, the messages are persistent and
Kafka can easily scale-out. A lot of businesses have already successfully used Kafka in
production (Z. Wang 2015). In this project, we implemented an integrated coupon distribution
system. The functionality of the system is comprehensive and robust. Merchants are able to
distribute coupons and customers can consume coupons from Kafka. All the operations will also
be logged for rollback when it comes across an error. Also, all the functions are tested by
Postman by HTTP request.

However, there’s still something we need to do for this project. Currently, our system is
deployed on a personal computer, which means all the distributed functions are implemented by
pseudo-distribution. The next step is that we need to deploy it on several AWS EC2 instances to

implement the real distribution. We can make use of JMeter to do the pressure and performance
test which could be used to simulate a large number of merchants and customers using the
system simultaneously. We can also improve built-in monitoring service which is useful as
cluster size increases. There are many mistakes that are found just as we scale. Incorporated
monitoring service on sample data service can aid early detection of errors. A distributed system
must be coordinated. If some event occurs, system nodes must react in an organized manner.
Finally, someone has to determine how the cluster should respond and order the brokers to do
something (K. Stanislav 2018). These are some of the planned changes to the current project.

Reference
Ali, A. Abdullah, M. (2018) ​Recent Trends in Distributed Online Stream Processing Platform for
Big Data: Survey

Apache Kafka​, ​https://kafka.apache.org/

Apache Kafka wikipedia​ ​https://en.wikipedia.org/wiki/Apache_Kafka

Dobbelaere, P. Esmaili, K. (2017) ​Kafka versus RabbitMQ

Kreps, J. Narkhede, N. Rao, J. (2011) ​Kafka: a Distributed Messaging System for Log
Processing

Magnoni, L. "​Modern messaging for distributed systems.​" Journal of Physics: Conference
Series. Vol. 608. No. 1. IOP Publishing, 2015.

Noac'h, P. Costan, A. (2017) ​A performance evaluation of Apache Kafka in support of big data
streaming applications

Palino, T​. ​(2015)​ Running Kafka At Scale

Sharma, A. (2014) ​Apache Kafka: Next Generation Distributed Messaging System

Stanislav, K. (2018), “​Keeping chaos at bay in the distributed world, one cluster at a time​”

Z. Wang et al., "​Kafka and Its Using in High-throughput and Reliable Message Distribution​,"
2015 8th International Conference on Intelligent Networks and Intelligent Systems (ICINIS),
Tianjin, 2015, pp. 117-120, doi: 10.1109/ICINIS.2015.53.

https://kafka.apache.org/
https://en.wikipedia.org/wiki/Apache_Kafka

