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1. Introduction 

Edge computing is a paradigm where the data and information computation is performed at the 

local edge node itself. With the increase in the computing powers of mobile units as well as the rise in 

popularity of IoT, a strategy to take advantage of these edge resources has been getting a lot of attention. 

No matter how load-resilient a server farm can become, there are bottlenecks that occur in a classical 

network of server-client systems. Instead, if the network architecture was modified so that computation 

can be offloaded to non-centralized servers, the bottleneck would be relieved and the quality of service 

would increase. The vision to offload the computation to the edge of the network has already grabbed the 

research and the industrial communities, and many projects have been proposed if not already 

implemented. Taleb et al proposes a smart city application of Mobile Edge Computing (MEC) where 

tourists will see a significant decrease in latency in accessing tourist videos by storing the videos on the 

edge [3]. Since the videos will only be accessed on devices near the tourist attraction, a local edge 

network is perfect for the application. Another example of unique, successful projects in edge computing 

is Hyrax. Hyrax is attempting to create an edge-only network that can be especially helpful in rescue 

emergency scenarios, extending the network reachability via peer-to-peer like scheme [4]. 

The advantages in adopting an edge computing architecture continues to be realized in different 

research efforts, but the difficulty in managing these edge networks still remains to be cumbersome. As 

Varghese et al mentions, challenges like security, efficient discovery of edge nodes, partitioning tasks, 

and offloading tasks are all deterrents to the ability to widely adopt edge computing networks [6]. There 

are countlessly many configurations and environments to manage given the sheer variability in available 

devices and the endlessly unique set of network requirements based on the problem at hand. 

To manage these problems, many different platforms have been developed to streamline the 

development of edge computing networks. Open Networking Foundation developed an IoT management 

platform called CORD, and University of Wisconsin - Madison has developed their own, called 

ParaDrop. Besides these, there are many other variants like EdgeX, Edgegent, Firework, and Link Edge 

IoT. However, out of all these services, two of them are growing to be an industry standard: Amazon’s 

AWS Greengrass IoT and Microsoft Azure IoT. 

 In our project, we have benchmarked the two platforms, AWS Greengrass and Microsoft Azure 

IoT, placing the edge device in a detection environment to classify and label images, followed by sending 

the data to the Cloud. We developed an edge to cloud architecture that classifies whether a supposed 

screenshot of a traffic footage contains an automobile or not. Then the classified results will be sent to the 

cloud to be stored in a centralized repository. With this architecture, we imagine that the system could be 
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implemented as a traffic-load sensor with minimal cost and low latency. Furthermore, to compare and 

contrast the differences between AWS Greengrass and MS Azure IoT, we measured some baseline 

statistics like end-to-end latency, resource utilization, and bandwidth usage. Note that the edge devices 

were selected to be a group of Raspberry Pis, because they are often used as a standard for low resource 

devices.   

 

2. Related Work 

While surveying the literature, we came across a large number of papers that aimed to check and 

perform comparative edge computing evaluations. [3], [4] and [5], which gives us edge compute 

motivations, a middleware architecture and edge compute scenario envisionings respectively, are all 

relevant to our edge computing implementation but too generalized to allow for a significant direct impact 

that aids our project. 

Among the sources surveyed, papers that we found most pertinent to our project were [1] and [2]. 

The publication release [1], entitled “Towards a Methodology for Benchmarking Edge Processing 

Frameworks” offers a preliminary benchmark methodology for any given edge processing platform. This 

aids us in creating relevant evaluation criteria, benchmark objectives, and an edge workflow for our 

project. The authors in [1] provide an open source benchmark tool, called ‘Edgebench’, to compute and 

compare performance characteristics for different edge processing platforms. The list of tested 

frameworks includes Microsoft Azure Edge IoT and Amazon AWS Greengrass IoT. This work is also 

complemented by the authors own list of evaluation metrics.  

In our project, we have utilized parts of the Edgebench test suite/tool to evaluate our own setup 

keeping in mind our project scenario needs. We have also tweaked the underlying code for metrics 

display to match our evaluation and performance requirements, in addition to using our own custom 

hardware and dataset for object classification. The Edgebench system tool is available for any interested 

third party to use, through a GitHub public repo. In our project, we have utilized this framework to test 

the edge processing /edge computation aspect of the system and omitted the testing of the cloud-only 

performance aspects of the suite due to time constraints. This, however, could be addressed by including 

it in future project iterations. 

 

 

 

 

3. Goals & Methodology  

a. Goals 
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Our project scenario envisions the edge device present in a traffic scenario where it will be used 

as a sensory device to monitor the number of vehicles on the road.  Immediately, the setting calls for not 

only a limited set of computing resources but also a wide-spread scalability if we were to adopt an edge 

device on every intersection of a city, for example. Seeing these requirements, we found Raspberry Pi as 

the computing edge node would be suitable, because it has low energy requirements along with powerful 

enough computing power to identify automobiles from a feed of images.  

We pose this vehicle detection problem as an image classification problem. We hope to deploy a 

machine learning model to the edge nodes so that they will be able to identify whether a vehicle is 

detected on the image feed, and send that information to a central server. The model we believe that we 

chose was Apache  MXNET. This model is able to detect and generate many different class labels, but 

adapted with a simple filtering mechanism, it will be able to detect automobiles. We will then feed the 

label and class information characteristics to the cloud which then performs an analysis of the received 

info to take the next step. We want to identify the overall latency overhead for Microsoft Azure IoT 

system and compare it to AWS Greengrass system in this image classification application. Thus, we also 

measure a few performance metrics such as response time, propagation time, and overall latency (for each 

platform).  

To do so, we extended an existing benchmarking platform, EdgeBench, created by Anirban et al 

in 2018 [1]. EdgeBench benchmarks AWS GreenGrass and Amazon Azure IoT in two different network 

schemes. The first is an edge network where the computation is getting done locally at the end devices 

(Raspberry Pi 3B) and then the result is sent to the cloud, as shown in Figure 1 and 2. The second is an 

architecture where the computation is done on the cloud, but this is not a part of our project. 

b. Devices 

As we mentioned earlier, we used the Raspberry Pi 3B model as end devices. All devices are 

connected to the internet via a wireless router. To have them communicate via AWS Greengrass all 

devices had AWS IoT SDK installed and will run Greengrass core software so they can be managed and 

modified through the AWS console website. For Azure, we have an Iot EdgeAgent and IoT Hub installed 

on the RPi that communicates to the cloud, where the collected messages can be accessed through 

Azure’s web interface. Greengrass authorizes and secures all the communication through the MQTT 

protocol.  For MS Azure IoT, Docker compatible containers were installed for all edge modules so they 

can be managed and modified using Azure IoT Edge API. To keep our setup comparable to EdgeBench 

[1], we make use of their GitHub repo code base. 
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Fig. 1 GreenGrass Architecture 

 

Fig. 2  Azure IoT Edge Architecture 

 

c. Application and Input Data 

 The image classification application is the same that was deployed in the Edgebench project with 

a few adjustments to fit our new dataset. In the original project, Edgebench used a raw image set collected 

from the ImageNet project. They consisted of variegated sizes of images that were crawled from the 

internet. However, to keep the scope of the project pinpointed, we needed a dataset that included images 

of automobiles. Hence, we use the CIFAR-10 dataset. CIFAR-10 dataset includes ten different categories 

of images, of which automobile is one. To fit this dataset to the project pipeline, we made adjustments 

accordingly. 

 First, the original project has a preprocessing step that resizes the images into 224 x 224 x 3. 

However, our dataset is in the form of 32 x 32 x 3, which does not require further subsampling for the 

image classification model. So we eliminate this step. Second, we use SqueezeNet architecture from the 

MXNet library [9]. This particular architecture is the reason why this application can be run in our edge 

node, Raspberry Pi, because SqueezeNet requires less than 0.5 MB for the model size [10]. Also note that 

the model is a pre-trained model of SqueezeNet, which allows us to focus on the deployment of the 

classification, rather than the training of a new model from scratch.  

 

4. Evaluation and Result Metrics  

 To evaluate the performance of the automobile identification task we measured 4 different 

statistics, similar to the EdgeBench project. The first measure will be the total compute time. This will 

strictly indicate the computing power of the Raspberry Pi. Second and the third measure is the 

propagation and response time from the cloud layer. This will indicate the network speed for the image 

and the response label to travel in and out of the central repository. The fourth measure is the end-to-end 

latency. This is simply the summation of all the measures one to three. This measure will be strictly 

correlated to the quality of service observed by the end users, and therefore, is the key indicator of the 

system performance. Lastly, we have the payload size as well, but since we are using a standardized 

image size of 32 pixels by 32 pixels, we observed that all payload sizes were on average the same. These 
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four different measures will not only be an important identifier for this benchmark but also to compare 

objectively between the two platforms Azure IoT and AWS Greengrass. 

 Microsoft Azure IoT AWS Greengrass 

Compute Time (ms) 13.71 13.542 

Propagation Time (ms) 0.182 0.283 

Response Time (ms) 0.132 0.130 

Total End-to-End Time (ms) 14.024 13.956 

Figure 2. The Performance Measures for each Platform 

  

Note that the measurements between the two platforms are very similar. The compute time for both 

platforms is about 13 ms, which is expected since both classification tasks were carried out on a 

Raspberry Pi. However, it is also surprising to see that the propagation and the response time are similar 

as well. We would expect that the difference in communication mechanism would cause significant 

differences. For example, Azure uses a docker container that runs Azure EdgeAgent application to 

communicate between the device and the cloud, whereas AWS Greengrass uses its own client application 

running on the Lambda engine. Therefore, both systems appear to be equally efficient in carrying out 

image classification tasks.                            

Figure 3:  Comparison of Performance Characteristics between Azure, Greengrass 

5.  Conclusion and Future Work  

 In conclusion, we find that both AWS Greengrass and Microsoft Azure IoT are equally efficient 

in the image classification task on our dataset. Both systems performed very similar results in all three 
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measurements we collected, and it appears that the communication protocol does not have much bearing 

on the system performance. For future work, we want to experiment with different architecture 

configurations in these two environments. One possibility is by introducing a fog layer between the edge 

Raspberry Pi and the cloud. Another consideration might be to try to relocate the computation to the 

cloud, and force more communication overhead by requiring to send image files instead of simple 

classification results.  
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