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Motivation - Edge Computing 

- For many IoT scenarios, a framework for data processing and data 

computation with as little latency and  bandwidth utilization as possible, is 

required.

- To this end, edge computing offers a possible solution. Edge Computing 

reduces latency by offloading computation, to be performed on the edge itself. 

- In our scenario, we require an edge device (Raspberry Pi) to run a machine 

learning object recognition model to detect traffic and perform the 

classifications on the device itself.

- This enables the system to reduce response time and improve resource 

utilization, which are both critical in real-time IoT environments.



Goals

- Our goal is to test and benchmark two edge computing platforms - Microsoft 

Azure IoT and Amazon AWS Greengrass, using the same configuration and 

resources.

- Both these platforms function by enabling computation to be offloaded to the 

edge device, rather than sending it to the cloud to perform the computation, 

just to send it back again to the device.

- We aim to test and evaluate the performance of these processing frameworks 

(Azure IoT Edge, Greengrass IoT) and aim to extrapolate the performance in 

classifying the image dataset (In our case CIFAR10 dataset) for each 

instance.



Related Work

- The paper entitled “Towards a Methodology for Benchmarking Edge 

Processing Frameworks” offers a preliminary benchmark methodology for any 

given edge processing platform. This aids us in creating evaluation criterion, 

benchmark objectives and an edge workflow.

- “EdgeBench: Benchmarking Edge Computing Platforms” offers an open-

source benchmark tool to compute and compare performance parameters for 

Azure and Greengrass. We will utilize parts of this system tool to evaluate our 

own setup but with a different application scenario in mind, as well as our own 

custom hardware resources and image dataset.



System Design Specifics (Azure)

- Both architectures are quite similar. We have an edge device locally 

performing computations. It can then send the data results to the cloud.

- The cloud can then send the results to the device or any other storage unit. 

(T1,T2, T3 - timestamps at each stage used for performance correlation /  evaluation)



System Design Specifics (Greengrass)

-

( T1 , T2, T3 are the timestamps at each stage used for performance correlation / evaluation)



Predictive Model - MXNet 

The image recognition / classification task will be done by employing Apache MXNet. 

This library is useful for running many ML and Deep Learning tasks. In our case, we 

will generate class labels for the objects in each of the sampled image(s).

The MXNet Classification Flow on the Raspberry Pi is as follows:   

Step 1: Feed each of the 32x32 CIFAR10 image set as input.

Step 2: Recognition of the image object by MXNet Machine Learning Model.

Step 3: Generation of a class label for each image (Note CIFAR 10 uses mutually exclusive classes so 

we should not run into intersecting class labels.)

Step 4: Classify the images and send it to the cloud for analysis and eventual knowledge gain.



Dataset - CIFAR10

Due to our requirements for the module to 

be lightweight and images to be size 

conscious, we will be using the CIFAR 10 

image dataset. CIFAR10 is a publicly 

available dataset that contains 10 classes.

Size of Each Image         : 32 x 32

Total Number of Images : 60000

Number of Classes         : 10

Images Per Class            : 6000

Training Batch Size         : 50000

Test Batch Size                : 10000



Evaluation / Metrics  Plan 

1. Total Compute Time ( Cedge)

We plan to use a number of metrics during evaluation. 

The first is the total compute time. It is the total 

processing time for an image in the Raspberry Pi. 

2. Propagation Time (Dprop)

TIme taken to reach the hub after it is sent from the 

device.

3. Response time(Tresp.)

The time taken after processing the request and 

outputting a response.   

4. End-to-End Latency (Tlat )

This is the total time taken, starting from the point of 

registering an input image (CIFAR10) to the time when 

the results are finally available in the  storage unit.

.

5. Resource Utilization

We also plan to calculate average memory and CPU                                                                             

utilization for our setup on each platform.
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