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Abstract. The paper presents and evaluates the power of a new framéarork
constraint optimization, based on the concept of AND/ORdetrees. The virtue
of the AND/OR search tree representation is that its size beagmaller than
that of a traditional OR search tree. We introduce a new ggioerof depth first
Branch-and-Bound algorithms that traverse an AND/OR $espace and use the
Mini-Bucket approximation scheme to generate heuristicguide the search.
Our preliminary experimental work shows that the new apginga competitive
and in many cases superior to state of the art systematichsalyorithms that
explore the regular OR space.

1 Introduction

Constraint Satisfaction Problems (CSPs) provide a fosmafor formulating many in-
teresting real world problems as an assignment of valueariahles, subject to a set
of constraints. In Constraint Optimization Problems (CYpBsme constraints (called
soff) are cost functions indicating preferences. The task @frést is to find a com-
plete assignment satisfying all hard constraints and maiitg the global cost. Solving
constraint problems is NP-hard. Therefore, general dlgos are likely to require ex-
ponential time in the worst case.

Most complete algorithms for solving constraint problegsdally fall within one
of the following two categoriesearchanddynamic programmingSearch algorithms
transform a problem into a set of subproblems by selectingriaie and considering
the assignment of each of its domain values. The subproldeensolved in sequence
applying recursively the same transformation rule (oftefiemred to asonditioning.
These algorithms have a time complexity which is exponémtithe number of vari-
ables, but can operate in polynomial space. Dynamic prognamalgorithms solve a
problem by a sequence of transformations that reduce theenosize, while preserv-
ing the solution space of the problem. The time and space lexitpof these methods
is exponential in a topological parameter caledth (always less than or equal to the
number of variables). Due to their high space requiremariten the width is large, the
latter methods are often impractical.

In this paper we focus on search. We adopt a new perspecti&lBfOR search
space [17] that allows exploiting the problem structureésrsh algorithms and in par-
ticular by depth first Branch and Bound (BnB) algorithms. Blreicture of a problem
can dramatically influence the performance of a search igthgor Whereas topologi-
cal properties of the problem cannot be incorporated ingoleg OR search trees, we



recently showed that they are naturally captured by an ANDA&Rarch tree [9, 10].
Within the AND/OR framework, AND nodes generally root in@eglent subproblems
that can be solved separately. For simplicity we developveark for weightedCSP
(WCSP) problems, where costs are natural numbers and globt are computed by
summing partial costs. The extension to other soft-comgtfeameworks is straight-
forward. We introduce a new generation agpth firstAND/OR Branch and Bound
algorithms that traverse the AND/OR search tree and extemd/ini-Bucket approx-
imation scheme for computing a heuristic evaluation fuorctd guide the search [10,
12,16].

The Mini-Bucket approximation uses a controlling paramethich allows ad-
justable levels of accuracy and efficiency. Rather than edimg and recording func-
tions on many variables as is often required by variable inhtion algorithms, the
Mini-Bucket scheme partitions function computations istdbsets of bounded number
of variables,i (the so-called-bound), and records several smaller functions, instead.
It can be shown that it outputslawer bound(resp.upper boundon the desired op-
timal value for the desired minimization (resp. maximiaa)i task. This is a flexible
scheme that can trade off complexity for accuracy; asitheund increases, both the
complexity (which is expf)) and the accuracy increase (for details see [7]).

We experiment with random binary/non-binary CSPs as wedl asmber of real-
world benchmarks. Our results show that indeed in many daseBranch and Bound
over the AND/OR space takes advantage of the structurabptiep of the problem and
significantly improves over the traditional BnB. Impresstime savings are exhibited,
especially for small-bounds when all algorithms rely primarily on search, rathan
on pruning. However, if largei-bounds are possible, the AND/OR algorithms using
pre-compiled heuristic information are overall superior.

The paper is organized as follows. Section 2 provides piesines and background
on the Mini-Bucket algorithms, generic depth first Branck &ound strategy and the
Mini-Bucket based heuristics. In Section 3 we introducetée paradigm of AND/OR
search spaces. Section 4 is devoted to the depth first AND/@RcB and Bound strat-
egy. Section 5 presents empirical evaluation, Sectiondeglprevious work and Sec-
tion 7 concludes.

2 Preliminaries

2.1 Notations and Definitions

Constraint Networkgprovide a framework for formulating real-world problemsaeset
of constraints between variables. They are graphicallsesgmted by nodes correspond-
ing to variables and undirected edges corresponding tdreomis between variables.

Definition 1 (Constraint Satifaction Problem). A Constraint Satisfaction Problem
(CSP) is defined by a set of variablés = {X;, ..., X,,}, associated with a set of
discrete-valued domaing) = {D;, ..., D,,}, and a set of constraints = {C1, ..., C,,, }.
Each constrainC; is a pair (S;, R;), whereR; is arelationR; C D;; X...x D;;, defined
on a subset of variable$; = { X1, ..., X;x } called the scope af;;, consisting of all tu-
ples of values fof X1, ..., X, } which are compatible with each othercanstraint net-
work can be represented by a constraint graph that contains a fiadeach variable,



and an arc between two nodes iff the corresponding variapéetcipate in the same
constraint. Asolutionis an assignment of values to variables- (x4, ...,z ), x; € D;,
such that each constraint is satisfied. A problem that hadwisa is termedsatisfiable
or consistent

Definition 2 (Constraint Optimization Problem). A finite Constraint Optimization
Problemis defined by a triplé X', D, F), whereX andD are as in the CSP case, and
F is a set ofcost functions? = {f1, ..., fm. } Which denote preferences among tuples.
A cost functionf is defined over its scopeur(f) and returns for each tuple a non-
negative cost. The objective function, also called gkabal cost functions the sum

of all individual cost functionsF'(X) = >, fi(X). Thesolutionis the complete
assignment that minimizes/maximiZ&sy).

Problems with soft constraints can naturally be formulag€OPs. Observe that,
without loss of generality, hard constraints can also beesqed in this model as func-
tions returning two values: O for allowed tuples axdor forbidden ones. In particular,
the Max-CSP problem can be formulated as a COP using onlyddrdtiaints.

2.2 Bucket and Mini-Bucket Elimination Algorithms

Bucket EliminationBE) [6] is an algorithm for global optimization. Roughlye al-
gorithm starts by partitioning the set of constraints intdbuckets, one per variable.
Then variables are eliminated one by one. For each varisible new constrainf; is
computed using the functions in its bucket, summarizingeffiect of X; on the rest
of the problem.f; is then placed in the bucket of the latest variable in its scdpme
cost of the best solution to the problem is obtained aftecgssing the last bucket. The
bucket-elimination algorithm is time and space exponéirtithe induced-width of the
constraint graph.

Mini-Bucket Elimination(MBE) [7] is an approximation of BE that mitigates its
high time and space complexity. When processing variahlets bucket is partitioned
into mini buckets Each mini-bucket is processed independently, producmgded
arity functions that are cheaper to compute and store.

2.3 Solving COP

Branch and BoundBnB) is a generasearchschema for solving constraint optimiza-
tion tasks [15]. It traverses the search tree defined by thislgm, where internal nodes
represent partial assignments and leaf nodes denote cengples, which may or may
not be optimal. During the traversal, which is usualigpth first BnB maintains the
cost of the best solution found so far. In a minimization peatothis is arupper bound
(ub) on the problem’s optimal cost. At each internal node, deffipg its current par-
tial assignment,,, the algorithm computes lwer bound functior(lb(z,)), which
underestimates the cost of the best solution that can belfoyextendingz,. When
ub < 1b(zp), the current best cost cannot be improved by extendjngnd the algo-
rithm backtrackgruning the subtree belaw,. Otherwise, the algorithm moves forward
and tries to instantiate the next variable in the ordering.



2.4 Using Bounded Inference to Guide Search

In general, the effectiveness of Branch and Bound greathedds on the quality of
the lower bound functions. Naturally, more accurate lowarus imply a higher com-
putational effort, hence the right trade-off between theapotational overhead at each
search tree node and the pruning power exhibited duringis@aay be hard to predict.
In the following, we overview a scheme for generating heieres/aluation functions of
varying strengths using the Mini-Bucket approximation [7]

Static Mini-Bucket Heuristics. The idea was first introduced in [12] and showed
that the functions recorded by the Mini-Bucket algorithnm ¢ee used to assemble a
heuristic function that estimates the cost of the comphetitany partial assignment to
a full solution, and therefore can serve as an evaluatioctimmthat can guide search.
Briefly, given an ordered set of augmented buckets genelatelde Mini-Bucket al-
gorithm and any partial assignmeny, the heuristic functiork(z,) is defined as the
combination (i.e. summation or multiplication) of all thenictions that were generated
in buckets + 1 throughn and reside in bucketisthroughp.

Dynamic Mini-Bucket Heuristics. This idea of partitioning-based heuristics can
be pushed one step further. Rather than pre-compiling thélmicket heuristic infor-
mation, it is possible to generate it during search. Spediicgiven a set of ordered
buckets and any partial assignmenyt the heuristic functiorh(z,,) is defined as the
bound (i.e. lower-bound for minimization, upper-bound feaximization) computed
by the Mini-Bucket algorithm (MBEX) algorithm subject to the current assignment,
restricted to buckets throughn.

3 AND/OR Search Trees Framework

We now move away from the traditional representation of #sreh space and intro-
duce a family of depth first Branch and Bound algorithms ovezcently introduced
AND/OR search space paradigm for graphical models [9]. imgbction we will give
an overview of the main idea and in the next section we withidtice the new AND/OR
Branch and Bound algorithm.

The classical way to do search (hereafter cal&searchis to instantiate variables
following a static/dynamic linear ordering. This procesdites a search tree, whose
nodes represent states in a the space of partial assignrireatsitrast with inference
algorithms, the OR search space does not capture any oftlitstl properties of the
model. One way to capture such independencies is to inted@IN® nodes into the OR
search space, which will decompose the problem into sepaudproblems.

The AND/OR search spade a well known problem solving approach developed in
the area of heuristic search [17, 18], that accommodatddgrodecomposition. The
states of the AND/OR space are of two types: OR states whigtesent alternative
ways of solving the problem, and AND states which usuallyrespnt problem de-
composition into independent subproblems, all of whichdnee solved. We will next
formally define the AND/OR search tree that applies for c@iist networks.

The definition of an AND/OR search tree is guided by a treectiine that spans
the original constraint graph. We can use a simple DFS spgrinée. However, the
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Fig. 1. OR vs. AND/OR search trees.

construction of the AND/OR tree can use a larger collectibspanning trees, called
pseudo-treefl1], which includes in particular the DFS spanning treeqséudo-tree

of a graph has the property that any arc of the graph that isardgtined in the pseudo-
tree is aback-arc(i.e. it connects a node to an ancestor in the tree).

Given a constraint graph and its pseudo-tree arrangemeiné associated AND/OR
tree is defined as follows. The AND/GCgearch treehas alternating levels of AND and
OR nodes. The OR nodes are labelédcorresponding to variables. The AND nodes
are labeled X;, v) and correspond to valuesassigned to variabl&’;. The structure
of an AND/OR search tree is based on the underlying psewsddFtr The root of the
AND/OR search tree is an OR node, labeled with the rodt.ofhe children of an OR
nodeX; are AND nodes labeled with its possible value assignmgXifsv) which are
consistent along the path from the root. The children of albDAMde(X;, v) are OR
nodes labeled with the children of variablg in the pseudo-tre&'. A solutionof an
AND/OR search treé€ is not a path, but aubtreeS which: (1) contains the root node
of G; (2) if n € S is an OR node then it contains one of its child node&riand if
n € Sis an AND node it contains all its children @.

Example 1.For illustration, consider the simple tree constraint reetin Figure 1(a),
over domaing1,2,3} which represents a graph coloring problem. In this caserdee t
rooted atX will also serve as the pseudo-tree arrangement (it is alde&itiee). Once
variableX is assigned value 1, the search space it roots correspotvas todependent
subproblems, one rooted By (contains variabled”, 7', R) and another one rooted
by Z (contains variablesZ, L, M). These two subspaces do not interact. This can
be captured by viewing the assignmédi, 1) as an AND state, having variables Y
and Z as descendants. The same decomposition can be appdithett assignments of
X. Applying the decomposition recursively 6 and Z and the rest of the variables,
yields the AND/OR search tree in Figure 1(c). Notice thatladssignment of values
to variables in the AND/OR search space is not a path, butimesilA solution subtree
is highlighted in Figure 1(c).



4 AND/OR Tree Search for COP

The virtue of the AND/OR search tree representation is tatize can be far smaller
than the traditional OR tree representation (compare thebeuw of states in Figure 1(b)
with that in 1(c)). It is bounded exponentially by the depththe pseudo tree associated
with the original constraint graph. Therefore, any aldoritthat traverses the AND/OR
search tree in a depth first manner is guaranteed to have &dumel exponential in the
depth of the pseudo-tree only and can operate in linear space

At a certain stage of the search, the current partial salutiat is pursued is rep-
resented by a partial solution subtr8elr of the underlying AND/OR search tree
St. Since we can only explor8r by repeated node expansions starting from the
root s, Solr must be connected, must contairand will have afrontier containing
all those nodes generated but not yet expanded. MoreSwér, also contains aac-
tive path P from the root, which corresponds to the current partialgassients; =
(X1,v1), ..., (X4, v;). Each search tree nodeis characterized by node valuev(n),
which represents the cost of the optimal solution to the sallipm associated with the
subtree rooted at, subject to the current variable instantiation along th@vagath
from root ton. Each AND node: = (X, v) is associated with Ebell(n), represent-
ing the sum of all the cost functions for which variabieis contained in their scope
and whose scope is contained in the active path from root Based on the values of
its successors, the value of a node can be computed redysiviollows:

Definition 3. For every node in the search treeST we define itwalueas follows:

I(n) if nis terminal AND node
v(n) = MiNycsucen)v(n) if nis OR node
1(n) + 3 e auce(my v(n') if Nis AND node

wheresucc(n)are the successors afin the search tree anign) is thelabelof noden.

Therefore, for any given nodein Sy, it is possible to compute its valugn) by
evaluating the subtree rootedrafrom the bottom up, as follows. The value of a leaf
(terminal) AND node is equal to its label. The value of aniingéd OR node is obtained
by minimizing the values of its successors. The value of &rial AND node is the
sum of its own label and the values backed up by its successors

Proposition 1. Given an AND/OR search tregr, the valuev(n) of a noden € Sr
represents the minimal cost solution to the subproblenegatn, subject to the current
variable instantiation along the path tofrom the root. Ifn is the root ofSy, thenv(n)
represents the minimal cost solution to the initial problem

A depth firstAND/OR tree search algorithm (hereafter called DF-AO) exjsaal-
ternating levels of OR and AND nodes, starting from the rddf oWhen an OR node,
n = X; is expanded, its successors are AND nodes represented tgltlesy in vari-
able X;'s domain. The algorithm associates each of the child nodes, (X, v) with
its labell(n’). The label is calculated as the sum of the cost functiod(i; ), subject
to the instantiation along its path.(X;) denotes théucketof variable X; (for details



see [6]). In other words, given the path= (X1, v1), ..., (X;,v;), noden’ = (X, v;)

is labeled byi(n') = 3" ;cp(x,) f(:). If B(X;) is empty,/(n’) is set to 0. When an
AND node,n = (X;,v) is expanded, its successors are OR nodes represented by the
children of X; in T'. There is no label associated with OR nodes.

At any search step, the algorithm attempts to evaluate thkcexed portion of the
search space. This is typically triggered by a node whoseetelants are all evaluated,
namely their values are already determined. An internal @fRerminimizes the values
propagated back from its children, while an internal AND aabmputes the value
function by summing the label of the node, with the valuekbdaip by its children.
The algorithm terminates when the root node is evaluated.

Since the DF-AQO algorithm explores each node in the AND/O&detree in a
depth first manner, exactly once, it follows that:

Theorem 1. Algorithm DF-AQ is sound and complete for constraint optiation. The
complexity of DF-AQ is linear space and timEnk™), wherem is the depth of the
pseudo tree arrangement of the constraint graph [9].

4.1 Specializing the AND/OR Tree Search Algorithm

The DF-AO algorithm must explore the entire AND/OR seardcgto find the optimal
solution and this may be prohibitive in practice. In thedaling we describe a way of
overcoming this problem by avoiding the exploration of wpising portions of the
search space, using a depth first AND/OR Branch and Bounditigo
For this purpose, each nodein the AND/OR search tree is assigned a heuristic

estimateh(n), which underestimates the cost of the optimal solution efstibproblem
rooted at:, namelyv(n). During search, the OR nodes maintapper boundsn their
valuesv(n), while the AND nodes are associated withiver boundf v(n). We start

by defining theinsiddousidecontext of the active pat® during search. Without loss
of generality, we assume th&tstarts at the root and terminates with an AND node.

Definition 4 (Inside/Outside of Active Path).Given the current partial solution sub-
tree Solr and its active pathP, the inside context of Pdenotedn(P), contains all
the OR nodes that are evaluated and are children of AND nottexya®. Similarly,
theouside context of PFdenotedut(P) contains all those OR nodes that belong to the
frontier of Solr and are children of the AND nodes aloiity

Definition 5 (Upper Bound). Given the active patt® of the current partial solution
subtree and an OR node € P, we definaub(n)to be theupper boundn the cost of
the best solution of the subproblem rootecdhalnitially ub(n) is co and then, as search
progresses, it is reduced by the values that are succegirefyagated back from the
AND children ofn.

For illustration, consider the AND/OR tree fragment in Hig2. Initially, the upper
bound at the OR node = X is ub(n) = oo. After exploring the subtree rooted at
n' = (X, 0), the valuev(n’) is available and:b(n) becomesnin (oo, v(n')) = v(n’).
Similarly, after exploring the second subtree rooted’at= (X, 1), the upper bound
ub(n) is updated tonin(v(n'), v(n")).



Fig. 2. Upper/Lower bounds computation

Definition 6 (Lower Bound). Given the active patt® of the current partial solution
subtree and an AND node< P, thelower bound Ib(n)pn the cost of the best solution
of the problem rooted at is:

Ib(n) — h(n) if nis terminal AND node
(n) = maz(h(n),1(n) + 3 coueo(m €(n') if Nis non-terminal AND node

wheresucc(n)are the successors of I(n) is the label of noda, h(n) stands for the
heuristic estimate of the valugn). For any of the OR successai$ € succ(n), e(n’)
is either: 1) the valuex(n’) if n’ € in(P), or 2) the estimaté(n’) if n € out(P), or
3) the lower boundb(n"), wheren” is the AND successor af on the active path.

In other words, for any given AND node along the active patl# (that is a non-
terminal AND node), it is possible to compute a lower boub(eh) on the cost of the
solution rooted at, bottom up, starting at the heuristic estimate associatédthe tip
node of P (that is a terminal AND node) and working upward along thépantil the
desired lower bound is computedrat

At any stage of the lower bound propagation, a test could beuwcted to find out
if the current partial solution subtree can be extendedgitsractive pathP to a better
solution. Specifically, if the lower bound(n) computed at some AND nodealong
the active path is greater than or equal to the current uppardub(m) maintained at
its OR parentn, then the active path is guaranteed not to lead to a betteticoland
the search can be safely discontinued below the tip node of

Theorem 2 (Pruning Rule).Let P be the current active path such that it starts at the
root nodes = X; and ends at some AND node= (X, v;). Letn = (X;,v,) be an
arbitrary AND node on the path and Iet = X; be its OR parent.

1. The valuéb(n) is a lower bound on the cost of the solution rootedrat
2. Iflb(n) > ub(m) then it is safe to prune the subtree rooted at the tip node

Example 2.Figure 2 shows a portion of an AND/OR search tree rooted afThe
CLOSED list contains the shaded nodes and the AND rd@ld) is currently at the
top of the OPEN list. The active pathis highlighted. The current upper bound at node
Bisub(B) = v({B,0)). Similarly, the upper bound at nodé is ub(X) = v({X, 0)).
The tip node/B, 1) and the subtree below it can be pruned if eitté(B, 1)) > ub(B)

or ib((X, 1)) > ub(X). First we calculatéb(({B, 1)) = h({B,1)). If the pruning test



ALGORITHM : dynamicAOMB(C, T)

Input: A cost networkC = (X, D, F). A pseudo-tred” rooted atX;. Bucket data structu
along a depth-first traversal @f. v denotes the partial instantiation on the path from root &

current AND node.
Output: Minimal cost solution.
(1) Initialize OPEN«— {X;} (X; is an OR node); CLOSEB- ¢
(2) Getthe first node in OPEN
(3) Expand node:, generating all its immediate successars;c(n), as follows:
(@)if (nis an OR node, i.en = X;) then
suce(n) — {n' = (X;,v)|v € domain(X;)}
foreach (n’ € succ(n)) do
I(n') = ZfeB(Xi) £ (@) (initialize local information)
h(n') = MBE(X;,v) (assign heuristic estimates)
h(n) = min, csuce(myh(n')
ub(n) = oo (initialize upper bound)
(b) if (n is an AND node, i.en = (X;,v)) then
foreach (na € ancestors(n)) do
if (nq is an AND noden, = (Xj,v;)) then
Evaluatelb(n, ) using Definition 6 and let: be the OR parent oi,
if (Ib(ne) > ub(m)) then
Removen from OPEN (prune a subtree)
goto Step (2)
succ(n) «+ {n' =Y|Y € Childrenr(X;)}
(c) Add succ(n) on top of OPEN
(d) Removen from OPEN and place it on CLOSED
(4) Propagate bottom-up node values, as follows:
(a) For aterminal AND node = (X, v), v(n) = I(n)
(b) For a non-terminal OR node = X, such thatucc(n) are all evaluated:
'U(Tl) = minn’Esucc(n)U(n/)
(c) For a non-terminal AND node = (X, v) such thatsucc(n) are all evaluated:
'U(Tl) = l(n) + Z'rL’Esucc(n) U(n,)
ub(m) = min(ub(m),v(n)) (update the upper bound at the OR parnentf n)
(d) If the root node has been evaluategturn v(X1)
(e) Remove portion of CLOSED that is not relevant
(5) gotoStep (2)

D

D th

Fig. 3. dynamicAOMB algorithm for Constraint Optimization

at nodeB fails, we move upward along the active path and calculateX, 1)) =

maz(h((X,1)),1((X, 1)) + v(A4) + h(C) + 1b((B, 1))).

Figure 3 describes a specialized version of an AND/OR traeckealgorithm that
uses partitioning-based heuristic functions to guide #zech. The algorithm, hereafter
refered to aglynamic-AOMB traverses the AND/OR search tree in a depth first man-
ner, starting from the root node= X. A list OPEN simulates the recursion stack. The
list CLOSED maintains the search frontier ang:c denotes the set of successors of a
node in the search tree. When expanding an OR modeX; (Step 3a), the algorithm



calculates a heuristic estimakg-) for each of the possible value extensiokis = v
and orders the corresponding AND successors in decreasiigg of their estimates
(value ordering). For this purpose, we use the Mini-Buclgiraximation, restricted to
the subproblem rooted &f; (i.e. dynamic mini-bucket heuristigsut any other lower
bounding function can be applied. Pruning occurs when thersthm attempts to ex-
pand an AND node: = (X;,v) (Step 3b). The lower bound functidh(.) of » and
all of its AND ancestors along the active pathis revised from the bottom up, using
Definition 6. Search is discontinued belewas soon ash(n,) > ub(m), wheren, is
some AND ancestor of (includingn) andm is its OR parent. In Step 4, when the algo-
rithm moves backward, propagating the nodes values, itigdgates the upper bounds
maintained at the OR nodes, according to Definition 5 (Stgp 4c

The static mini-bucket heuristicsan also be incorporated within the AND/OR
search algorithm presented in Figure 3, yielding a new #lyor, calledstatic-AOMB.
It is possible to show that the independencies captured dpseudo-tree associated
with the network’s graph are also present in the augmentekidbistructure generated
by the mini-bucket algorithm. As a consequence, those foimgican be used to create
heuristic estimates in a similar manner they were used imghelar OR search space
(more details in [12, 8, 16]).

5 Empirical Evaluation

We have evaluated the performance of our AND/OR algorithmnsélving the Max-
CSP task on over-constrained binary random CSP. A binadararCSP class is char-
acterized by(N, K, C, T, whereN is the number of variabledy is the number of
values per variable,' is the number of constraints afitis the constraintightnessle-
fined as the ratio of forbidden value pairs. The constrairsgbles and the forbidden
value pairs are randomly selected. Using this model, we kested on connectivity
regions where non-degenerated pseudo-trees (e.g. chaird)be constructed. Specif-
ically, we have experimented on the following problem atss&0, 5, 100, t) (medium
connectivity) and 50, 5, 80, t) (sparse problems). For each problem class and each pa-
rameter setting we generated samples of 20 instances.

Each problem is solved by four algorithms using partitignbased heuristic in-
formation:s-BBMB, d-BBMB, s-AOMB andd-AOMB. s-BBMB [12] uses static MB
heuristics and is restricted to a static variable orde@rBBMB is our new depth first
Branch and Bound algorithm that uses dynamic MB heuristieaeh node of the search
space. ltis also restricted to a static variable orderihgsE two algorithms explore the
traditional OR space-AOMB/d-AOMB use static/dynamic MB heuristics and explore
a static AND/OR search tree.

The pseudo-tree was computed as follows. We usedih€ill heuristic for com-
puting the induced graph. It places variables with the szs#lll set (i.e. the number of
induced edges that need be added to fully connect the naigloba node) at the end
of the ordering, connects all of its neighbors, removes #réaable from the graph and
repeats the whole procedure. Thseudo-treassociated with the induced graph was
created as a DFS traversal of the induced graph, startitgtidtvariable that initiated
themin-fill ordering, always preferring as successor of a node theestaldjacent node



s-AOMB s-AOMB s-AOMB s-AOMB PFC-RDAC
d-AOMB d-AOMB d-AOMB d-AOMB PFC-MRDAC
s-BBMB s-BBMB s-BBMB s-BBMB PFC-MPRDAC
d-BBMB d-BBMB d-BBMB d-BBMB
i=2 i=4 i=6 i=8
% / time / nodes| % /time / nodes| % /time / nodes| % /time / nodes
N=20, K=5, C=100, T=40%, w*=12, H=15.15

40/152.2/2.4M
100/12.62 / 14K]|
20/158.9/6.2M
100/12.68 / 38K|

100/53.32/ 1.4N
100/14.3/1.8K
100/26.31/1.4N
100/16.3/4.9K

f

f

100/8.138/ 250K
100/41.69 /299
100/3.126 / 181K
100/48.21/714

100/3.657 /29K
70/119.8/73
100/ 3.135/ 30K]
70/121.6/106

100/0.316/ 36.3H
100/0.284/ 21K
100/0.318 /21K

N=20, K=5,

C=100, T=60%, w*=12, H=15.4

0/1807/2.4M

95/61.5/72K

0/180/6.3M
100/53.62 / 180K

30/150.374M
100/ 26.88 / 3.3K
95/82.63/4.1M|
100/20.82/6.6H

95/53.31/1.8M
95/70.56 /481

100/ 7.508 / 424K
100/69.1/1K

100/9.742 ] 200K
60/146.3/81
100/3.874 /74K

35/153.9/129

100/1.249/137H
100/1.101/79.7H
100/1.18/79.7K

Table 1. MAX-CSP (medium connectivity). Each table entry reports #iverage percentage of
exactly solved instances (%), average CPU time in secoimds)(and average number of search
tree nodes expanded (nodes). 180 seconds time limit.

s-AOMB
d-AOMB
s-BBMB
d-BBMB
i=2
% / time / nodes|

s-AOMB
d-AOMB
s-BBMB
d-BBMB
i=4
% / time / nodes

s-AOMB
d-AOMB
s-BBMB
d-BBMB
i=6
% / time / nodes

s-AOMB
d-AOMB
s-BBMB
d-BBMB
i=8
% / time / nodes|

PFC-RDAC
PFC-MRDAC
PFC-MPRDAC

N=50, K=5, C=80, T=60%, w*=7.75, H=15.5

70/88.65/1.2M
100/4.17/10.7H

0/180/6.5M
75174.32 | 444H4

100/3.093 /76K
100/0.791 /250
75/68.19/2.8M
100/1.788/1.2H

100/0.131/2.44
100/0.838/80
100/2.743 / 146K
100/0.634 /80

100/0.731/87
100/1.717/53
£100/0.744 / 1.1H
100/1.673/50

100/3.142/227H
100/1.849/ 92K|
100/ 2.307 / 92K

N=50, K=5, C=80, T=80%, w*=7.65, H=15.8

5/176.6/3.4M
95/28.37 /56K
0/180/6.1M

45/117.1/636H

100/ 12.81/ 310K
100/1.327/ 287
70/82.23/3.9M
100/1.776 /902

100/0.716/ 18K
100/1.152/ 101
95/23.01/1.1M
100/1.113/115

100/0.632/491 100/17.87 /1M
100/1.713/55|100/10.87 / 422}
100/0.686 / 4.8K100 / 13.21 / 422H

100/1.441/55

Table 2. MAX-CSP (sparse problems). Each table entry reports theagegercentage of exactly
solved instances (%), average CPU time in seconds (timepaehge number of search tree
nodes expanded (nodes). 180 seconds time limit.

in the induced graph. The variable ordering used by the #lgos (except the ones
that have dynamic variable ordering) was the one resultad & DFS traversal of the
pseudo-tree arrangement.

Tables 1 and 2 show results for experiments with two clasépsoblems. Each ta-
ble contains two horizontal blocks, each correspondinggaréicular constraint tight-
ness (T). For each class we also report the average induakl (w*) and the av-
erage height of the pseudo-tree (H). In each column, indéyetthe i-bound of the
mini-bucket heuristic, we have results fetAOMB(i), d-AOMB(i), s-BBMB(3), d-
BBMB(3), as well as for three algorithms based on PFC [13]. Eacly émtthe table
gives the percentage of problems that were solved exacthjma time bound, the av-
erage CPU time in seconds required for solving these prahlamwell as the average
number of search tree nodes expanded (we only report ANDsfadteAOMB). We
have highlighted the best performance point in each row ae@ch column.

We observe that for the first problem class (Table 1), therdlyos based on the
AND/OR search tree are inferior to those exploring the rag@R space. This, we



d-AOMB d-AOMB d-AOMB | d-AOMB | d-AOMB | d-AOMB s-AOMB
d-BBMB d-BBMB d-BBMB d-BBMB | d-BBMB | d-BBMB s-BBMB
network (N,CJw* | H i=2 i=4 i=6 i=8 i=10 i=12 i=16
time / nodes| time / nodeg time / nodes{time / nodegtime / nodestime / nodeg{ time / nodeq
54b (31,144)11{20[6.922/15.4K1.359/1.8K 0.625/346] 0.157/47| 0.14/31 | 0.188/31 -
8.485/28.2K 0.406 / 836| 0.562/445|0.453/148 0.141/31| 0.203/31
404 (100,610)19(41] 3.156 / 4.8K]| 0.281/303| 0.328/257{0.125/100 0.141/100 0.172 /114
-/5.7M |234.8/3.3M23.22/26.5K 4.234 / 3K|1.219/ 774 1.906 / 1K
503b (99,390) 8 [35[116.3/2.9M[5.406 /9.1K| 0.813/1.5K]| 0.156 / 149 0.062 /99| 0.063 /99
-/ 9M 8.969/8.8K 2.718/2.5K| 0.094/99| 0.094 /99| 0.109/99 -
505 (240,200p22]67 - - - - - - 225.17/5.8
| S I N O M e

Table 3. Results for SPOT5 benchmarks. 1 hour time limit.

speculate, is because the expected gain H=15 vs. N=20 i$ anthidoes not offset
the overhead in AND nodes in the AND/OR space. The best pedoce is offered
by the PFC class of algorithms. However, for the second ¢lEsle 2) the AND/OR
algorithms clearly pay off, offering the best performanoe autperforming the PFC
class. Here, the induced-width is low, so the performandhk large: is likely to be
similar to Bucket Elimination.

Our real-life domain consists of several problem instafficas the SPOT5 bench-
mark [3]. These are over-constrained real scheduling problfor Earth observing
satellites. The original problem formulation associatgsoaitive real-valued weight
with each variable. The task is to find a partial feasiblegassient (i.e. meets all rele-
vant constraints) which maximizes the sum of the weightsvéi@r, for our purpose,
we only consider a Max-CSP variant, namely finding a commstégnment to vari-
ables that violates the least number of constraints. Fdrgaxblem instance we provide
the name (model), the size as number of variables (N) and acafilconstraints (C), the
induced width of the constraint graph (w*) and the heightef torresponding pseudo-
tree arrangement (H). Table 3 compares primarily the dyoamrisions of AOMB and
BBMB on several hard enough instances, whereas the lastnoobf the table com-
pares the static versions of those two algorither8OMB and s-BBMB respectively.
We observe a clear dominance of the AND/OR algorithms overdégular OR ones.
For instance, when solving problem instance 4BAOMB(2) required only 3.156 sec-
onds wheread-BBMB(2) exceeded its time limit of one hour. The same obaton
can be made for the static case, whe##OMB(16) is superior tas-BBMB(16) on the
most difficult problem instance (i.e. 505). We did not congpatith PFC algorithms
because the problem instances involve both binary andriecoastraints.

5.1 Belief Networks

We also experimented with optimization tasks defined ovietmetworks.Belief Net-
works (BN) [19] provide a formalism for reasoning about partialibis under condi-
tions of uncertainty. They are defined as directed acyciplgs over nodes representing
variables of interest. The arcs signify the existence addicausal influences between
linked variables. Formally, a BN is defined by a trigl&, D, P), whereX and D are
as in the CSP formalism, an8 is a set of functions. A functiop; = P(X;|pa;),
encodes aonditional probability distributiorof variable X; given its parents (in the
graph)pa;. The belief network represents a joint probability disitibn overX having



s-AOMB s-AOMB s-AOMB s-AOMB s-AOMB s-AOMB
d-AOMB d-AOMB d-AOMB d-AOMB d-AOMB d-AOMB
s-BBMB s-BBMB s-BBMB s-BBMB s-BBMB s-BBMB
d-BBMB d-BBMB d-BBMB d-BBMB d-BBMB d-BBMB
BBBT BBBT BBBT BBBT BBBT BBBT
i=2 i=4 i=6 i=8 i=10 i=12
% / time / nodes| % /time /nodes| % /time/nodes| % /time/nodes| %/time/nodes| % /time/nodes
N=100, K=2, P=2, C=90, w*=16.3, H=25.8

58/121.6/4M
100/9.583/29.3
1/179.9/9M
70/85.04/229K
41/136.2/29.4K

95/34.07/1.1

00/0.992/1.7HK

57/108.9/6.4

100/2.045/2.8H
98/31.71/ 6.4K]|

100/ 8.659 / 269H
100/0.520/ 731
96/24.19/1.6M
100/0.616/ 699
100/6.354 /1,05

£100/2.368/72.5
100/0.365/381
99/5.54/363K
100/0.467 /387
B 100/1.848/ 245

K100 /0.776 / 26.5K

100/0.382/225
100/2.606 / 179K
100/0.465/229
100/1.474/135

100/0.188/6.3K|
100/0.531/181
100/0.34/ 25K
100/0.653/191
100/1.623/112

N=100, K=2, P=2, C=98, w*=18.2, H=

27.7

26/162.2/5.1IM
100/25.77 / 63.1HK
0/180.0/8.9M

87/64.1972.1

100/ 2.673/4.1K

43/131.3/7,4

99/15.97 /481K
100/1.277/1.3K
85/47.36/2,8M

100/5.868 /172K
100/0.962 /615
95/18.22/1,2M

100/1.625/52K
100/ 1.044 /356
96/11.54/712K

100/0.689/ 22.6H
100/1.415/243
100/3.344/ 222H4

100/1.046 /360
99/7.392/298

100/1.462 /253
100/5.057 /144

100/1.016/631
99/11.07/848

100/4.774/ 8K
74180.59/14.2H

100/1.520/1.6H
97/23.53/ 3,264

70/80.48/ 215K
17/162.6 /33K

Table 4. MPE (medium connectivity): Average number of exactly sdlimstances (%), average
CPU time in seconds (time) and average number of search sdesrexpanded (nodes). 180
seconds time limit.

s-AOMB s-AOMB s-AOMB s-AOMB s-AOMB s-AOMB s-AOMB s-AOMB s-AOMB
Network d-AOMB d-AOMB d-AOMB d-AOMB d-AOMB d-AOMB d-AOMB d-AOMB d-AOMB
(#vars, w*|H| s-BBMB s-BBMB s-BBMB s-BBMB s-BBMB s-BBMB s-BBMB s-BBMB s-BBMB
avg dom, d-BBMB d-BBMB d-BBMB d-BBMB d-BBMB d-BBMB d-BBMB d-BBMB d-BBMB
max dom) i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10
time / nodes| time / nodes| time / nodes| time / nodes| time / nodes| time / nodes| time / nodes| time / nodeg time / node:
-/5.1M -110.7M -/11.4M | 266.1/5.4M[ 1.094/5.2K| 9.361/410
Barley | 7 |17| -/281.6K |144.9/39.9 13.60/976| 49.11/639| 49.28/122| 95.44/99
(48,8,67) -112.8M -/9M -16.8M 541.9/7.3M| 1.642/6.7K| 9.774/523
-/2.1M -/829.5K | 34.75/5.7K| -/56.8K 57.06/143| 107.1/100
479.1/5.1M[ 149.8/822K| 0.312/43
Mildew | 4 [15]|91.47/19.5K 36.73/1.7K| 1.781/35
(35,17,100| -17.9M | 31.72/282K| 0.297/76
152.9/64.94 42.83/3K 1.86/71
292.3/3.3M| 39.27 / 480K| 17.10/ 255K| 3.768 / 62.2K 2.549 / 39.1K 2.736 / 37.6K 2.361 / 11.3K 10.30/ 6.3K| 18.34 / 1.4K
Muninl | 11|24|78.31/223K| 15.42/9.7K| 12.49/2.3K| 14.51/802| 17.65/433| 44.04/349| 47.57/605| 77.45/387| 101.7 / 378|
(189,5,21) -12.9M -13.2M -14.3M -/13.7M -14M -/3.9M 105.4/376K|111.2 /366K 19.34 / 1.9K
-/311K -/327K - /185K 14.90/804 | 17.47/437| 43.11/352| 48.63/661| 78.50/427| 100.6 / 417|
-/11.9M -13.6M -/5.6M ]2.984/32.9K 0.906/7.4K[ 0.641/1K
Munin2 | 7 |35 -/3.1M -1952K -/270.1K | 48.47/3.9K| 35.11/1.1K| 6.203/1K
(1003,5,21 -1424K -/581K -/137K -/137.8K | -/135.1K -/170K
-/ 25K -/ 75K -/64.2K -/16.3K | 121.5/1.2K| 101.9/1K
-12.9M -/3.1M |5.844/53.84 0.64/6.8K | 0.61/5.3K [ 0.875/1K
Munin3 | 7 |25| -/2.3M 91.5/62.6K| 4.578/5.9K| 3.515/3.8K| 4.328/3.1K| 3.282/1K
(1044,5,21] -1371K -1405K -1172K -1432K -1364.9K 38.94/1K
-/25.2K -/82.4K -/38.3K -/23.7K | 166.8/3.1K| 49.89/1K

Table 5. Results for experiments with 5 real world belief networksn@ until completion (sec-
onds) and number of nodes. 600 seconds time limit.

the product formPg (X) = ]\, P(X;|pa;). One popular query over belief networks
is finding themost probable explanatiofMPE), that is finding a complete assignment
to all variables having maximum probability, given somedevicee: P(z1,...,z,) =
My, .. o, |11y Pz, epa;).

However, the classical MPE problem can be reformulated asst@int optimiza-
tion problem. Each original conditional probability tallk X; |pa;) is replaced by a
cost functionf; (X, pa;) = —log(P(X;|pa;)), defined over the same scope. The global
cost function that has to be maximized becorigx’) = >~ | fi(X).

We have evaluated the performance of our algorithms on rangitiform belief
networks. They were generated as in [16], using paraméer&’, C, P), where N is
the number of variables, K is the domain size, C is the numbemditional probability
tables (CPTs) and P is the number of parents in each CPT. [d8ides an extensive



empirical study of the BBMB/BBBT classes of algorithms, mlving the Bayesian
MPE problem. It was observed that over a wide range of prolslasses, both random
and real-world benchmarks, that BBMB/BBBT algorithms arpexior to a number of
state-of-the-art solvers. BBBT [8, 16] is a regular BnB aitjon that uses MBTE-based
heuristics, dynamically at each search node. Unlike the BRHss, it is not restricted
to a static variable ordering.

Table 4 shows experiments with random uniform networks fgalW=100, K=2,
P=2. The results are reported in a similar fashion. We olestry same trend as in the
previous experiments. AND/OR search algorithms are sap@withe OR algorithms,
for all reportedi-bounds. The time savings are again more dramatic for saallinds.
This may be significant because smalilounds require restricted space.

We also experimented with 5 real world belief networks friwe Bayesian Network
Repository. We ran one instance of each network in order to compute trst prob-
able explanation, without any evidence. Each algorithm alasved 10 minutes (600
secs) to prove optimality of the solution. Table 5 summarite results. We observe
again the same trend;AOMB is superior for small-bounds (e.g. Barley, Mildew,
Muninl, Munin3), whiles-AOMB dominates for largei-bounds. We conclude that
for the MPE domain and for medium connected and sparse hedteforks, the algo-
rithms based on the AND/OR tree representation of the segrabe provide the best
performance.

6 Related Work

The idea of exploiting structural properties of the problarorder to enhance the per-
formance of search algorithms in constraint satisfactsomat new. Freuder and Quinn
[11] introduced the concept of pseudo-tree arrangementohatraint graph as a way
of capturing independencies between subsets of variabssido-tree search [11] is
conducted over a pseudo-tree arrangement of the probleaimahows the detection of
independent subproblems that are solved separately. &&cgtaph-based backjump-
ing algorithm [5] uses a DFS spanning tree to extract knogdeabout dependencies
in the graph. The notion of DFS-based search was also usewlin €t al. [4] for

a distributed constraint satisfaction algorithm. Bayaadd Miranker [2] reformulated
the pseudo-tree search algorithm in terms of backjumpidghonwed that the depth of
a pseudo-tree arrangement is always within a logarithnuimfaoff the induced width
of the graph. Larrosa et al. [14] introduced BnB search thptadéts a pseudo-tree ar-
rangement of the constraint graph to boost the Russian Batth for WCSP.

7 Conclusions

The paper investigates the impact of the AND/OR search jmarafbr graphical mod-

els on Branch-and-Bound algorithms. Since the depth of aD/&NR search tree can
be shown to be smaller than the depth of an equivalent OR lséae, search algo-
rithms that explore an AND/OR space can exhibit expones#igings when compared

! http://www.cs.huiji.ac.il/labs/compbio/Repository



with their OR space counterparts. We propose two new algosis-AOMB and d-
AOMB, which extend recent schemes of Branch-and-Bound wmithi-bucket heuris-
tics, s-BBMB and d-BBMB, to the new AND/OR search framework. Our empirical
work was concentrated on the Max-CSP task in constraintgssiog and the MPE
problem in belief networks, and shows that for some problasses the new AND/OR
scheme improves dramatically over the regular OR spaceitgts, especially when
the structure of the problem facilitates the constructibpseudo-trees with relatively
small heights.

Our approach leaves room for future improvements, whichlikedy to make it
more effective in practice. For instance, it can be modifeedraverse an AND/OR
graph, rather than a tree, which would facilitate caching. 8 not study the effect
of the ordering in which the independent subproblems angedolSimilarly, we used a
rather simple scheme of generating pseudo-tree arranggnpeobably having highly
non-optimal height. All these issues represent out cuardtfuture work.
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