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1 Introduction

Throughout the past few decades two primary constraint processing schemes emerge - those based
on conditioningor search, and those based oninferenceor derivation. Search in constraint sat-
isfaction takes the form of depth-first backtracking, while inference is performed by variable-
elimination and tree-clustering algorithms, or by bounded local consistency enforcing. Compared
to human problem solving techniques, conditioning is analogous to guessing (a value of a vari-
able), or reasoning by assumption. The problem is then divided into subproblems, conditioned on
the instantiation of a subset of variables, each of which should be solved. On the other hand, infer-
ence corresponds to reinterpreting or making deduction from the problem at hand. Inference-based
algorithms derive and record new information, generating equivalent problem representations that
facilitate an easier solution.

Search and inference algorithms have their relative advantages and disadvantages. Inference-
based algorithms are better at exploiting the independencies captured by the underlying constraint
graph. They therefore provide a superior worst-case time-guarantee as a function of graph-based
parameters. Unfortunately, any method that is time-exponential in the tree-width is alsospace-
exponential in the tree-width and, therefore, not practical for dense problems.

Brute-force Search algorithms are structure-blind. They traverse the network’s search space
where each path represents a partial or a full solution. The linear structure of these search spaces
hide the structural independencies displayed in the constraint graph and therefore, algorithms
which explore these search spaces, may not be as effective. In particular they lack useful per-
formance guarantees. On the other hand search algorithms are flexible in their memory needs
and can even operate with linear memory. Also search often exhibits a much better average per-
formance than their worst-case bounds, when augmented with various heuristics and especially
when looking for a single solution. Given their complementary properties, combining inference-
based and conditioning-based algorithms may better utilize the benefit of each scheme and allow
improved performance guarantees, reduced space complexity and improved average performance.

∗This chapter is based in parts on chapters 9 and 10 of [12] and on [32]
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This chapter focuses on structure-driven constraint processing algorithms. We will start with
inference algorithms and show that their performance is controlled by graph parameters such as
tree-width, induced-width and hypertree width. We then show that hybrids of search and inference
can be controlled by graph-based parameters such as cycle-cutset, and w-cutset and separator-size.
Finally, we present the notion of AND/OR search spaces for exploiting independencies displayed
in the constraint graph during search, which, similar to inference, leads to graph-based performance
bounds using parameters such as the depth of the pseudo-tree, path-width and tree-width.

1.1 Constraint Networks and Tasks

A constraint problem is defined in terms of a set of variables taking values on finite domains
and a set of functions defined over these variables. We denote variables or subsets of variables
by uppercase letters (e.g., X, Y, Z, S, R . . .) and values of variables by lower case letters (e.g.,
x, y, z, s). An assignment (X1 = x1, . . . , Xn = xn) can be abbreviated asx = (〈X1, x1〉, . . . ,
〈Xn, xn〉) or x = (x1, . . . , xn). For a subset of variablesS, DS denotes the Cartesian product of
the domains of variables inS. xS andx[S] are both used as the projection ofx = (x1, . . . , xn)
over a subsetS. We denote functions by lettersf , g, h etc., and the scope (set of arguments) of the
functionf by scope(f).

A constraint networkR consists of a finite set ofvariablesX = {X1, . . . , Xn}, each asso-
ciated with adomainof discrete values,D1, . . . , Dn and a set ofconstraints, {C1, . . . , Ct}. Each
of the constraints is expressed as a relation, defined on some subset of variables, whose tuples
are all the simultaneous value assignments to the members of this variable subset that, as far as
this constraint alone is concerned, are legal.1 Formally, a constraintCi has two parts: (1) the
subset of variablesSi = {Xi1 , . . . , Xij(i)}, on which it is defined, called aconstraint-scope, and
(2) a relation, Ri defined overSi : Ri ⊆ Di1 × · · · × Dij(i) . The relation denotes all com-
patible tuples ofDSi

allowed by the constraint. Thus a constraint networkR can be viewed as
the tripletR = (X, D, C). The schemeof a constraint network is its set of scopes, namely,
scheme(R) = {S1, S2, . . . , St}, Si ⊆ X.

DEFINITION 1 ((operations on constraints))LetR be a relation on a setS of variables, letY ⊆
S be a subset of the variables. We denote byπY (R) the projection of the relationR on the subset
Y ; that is, a tuple overY appears inπY (R) if and only if it can be extended to a full tuple inR.
LetRS1 be a relation on a set of variablesS1 and letRS2 be a relation on a set of variablesS2. We
denote byRS1 1 RS2 the natural join of the two relations. The join ofRS1 andRS2 is a relation
defined overS1 ∪ S2 containing all the tuplest, satisfyingt[S1] ∈ RS1 andt[S2] ∈ RS2.

An assignment of a unique domain value to each member of some subset of variables is called
an instantiation. An instantiation is said to satisfy a given constraintCi if the partial assignment
specified by the instantiation does not violateCi. An instantiation is said to belegal or locally
consistentif it satisfiesall the (relevant) constraints of the network. A consistent instantiation
of all the variables of a constraint network is called asolutionof the network, and the set of all

1This does not mean that the actual representation of any constraint is necessarily in the form of its defining relation,
but that the relation can, in principle, be generated using the constraint’s specification without the need to consult other
constraints in the network.
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Figure 1: A crossword puzzle and its CN representation.

solutions is a relation,ρ, defined on the set of all variables. This relation is said to berepresented
by the constraint network. Formally,

ρ = {x = (x1, . . . , xn) | ∀ Si ∈ scheme, πSi
x ∈ Ri}.

It can also be expressed as the join over all relations asρ =1Ri∈C Ri.

Example 1: Figure 1a presents a simplified version of a crossword puzzle (seecon-
straint satisfaction). The variables areX1 (1, horizontal), X2 (2, vertical), X3 (3, ver-
tical), X4 (4, horizontal), andX5 (5, horizontal). The scheme of this problem is
{{X1, X2}, {X1, X3}, {X4, X2}, {X4, X3}, {X5, X2}}. (We will sometime abuse notation and
denote a scope such as{X,Y } or asXY . ) The domains and some constraints are specified
in Figure 1b. A tuple in the relation associated with this puzzle is the solution: (X1 = sheet,X2 =
earn,X3 = ten,X4 = aron, X5 = no).

Typical tasks defined in connection with constraint networks are to determine whether a solu-
tion exists, to find one or all of the solutions, to count solutions or, when the problem is inconsistent,
to find a solution that satisfies the maximum number of constraints (Max-CSP). Sometime, given a
set of preferences over solutions defined via a cost function, the task is to find a consistent solution
having maximum cost.

1.2 Graphical representations

Graphical properties of constraint networks were initially investigated through the class ofbinary
constraint networks[23]. A binary constraint networkis one in which everyconstraint scope
involves at most two variables. In this case the network can be associated with a constraint graph,
where each node represents a variable, and the arcs connect nodes whose variables are explicitly
constrained. Figure 2 shows the constraint graph associated with the crossword puzzle in Figure 1.

A graphical representation of higher order networks can be provided byhypergraphs, where
again, nodes represent the variables, andhyperarcsor hyperedges(drawn as regions) group vari-
ables that belong to the same scope. Two variations of this representation that can be used to
facilitate structure-driven algorithms areprimal-constraint graphanddual-constraint graph. A
Primal-constraint graph(a generalization of the binary constraint graph) represents variables by
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Figure 3: (a)Hyper, (b)Primal, (c)Dual and (d)Join-tree constraint graphs of a CSP.

nodes and associates an arc with any two nodes residing in the same constraint. Adual-constraint-
graphrepresents each scope by a node (also called ac-variable) and associates a labeled arc with
any two nodes whose scopes share variables. The arcs are labeled by the shared variables.

For example, Figure 3 depicts thehypergraph(a),primal (b), and thedual(c) representations of
a network with variablesA, B, C, D, E, F and constraints on the scopes (ABC),(AEF ), (CDE)
and (ACE). The constraints themselves are symbolically given by the inequalities:A + B ≤ C,
A + E ≤ F , C + D ≤ E, A + C ≤ E, where the domains of each variable are the integers
[2, 3, 4, 5, 6].
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The dual constraint graph can be viewed as a transformation of a nonbinary network into a
special type ofbinarynetwork: the domain of the c-variables ranges over all possible value combi-
nations permitted by the corresponding constraints, and any two adjacent c-variables must obey the
restriction that their shared variables should have the same values (i.e., the c-variables are bounded
by equality constraints). For instance, the domain of thec-variableABC is {224, 225, 226, 235,
236, 325, 326, 246, 426, 336} and the binary constraint betweenABC andCDE is given by the
relation:RABC,CDE = {(224, 415), (224, 426)}. Viewed in this way, any network can be solved
by binary networks’ techniques. Next we summarize the above graph concepts.

DEFINITION 2 (graph,hypergraph) Agraphis a pairG = {V, E}, whereV = {X1, . . . , Xn} is a
set of vertices, andE = {(Xi, Xj)|Xi, Xj ∈ V } is the set of edges (arcs). The degree of a variable
is the number of arcs incident to it. Ahyper-graphis a pairH = (V, S) whereS = {S1, ..., St} is
a set of subsets ofV , called hyperedges or simple edges.

DEFINITION 3 (primal graph, dual graph) Theprimal graphof a hyper-graphH = (V, S) is an
undirected graphG = (V, E) such that there is an edge(u, v) ∈ E for any two verticesu, v ∈ V
that appear in the same hyperedge (namely, there existsSi, s.t.,u, v ∈ Si). Thedual graphof a
hypergraphH = (V, S) is an undirected graphG = (S, E) that has a vertex for each hyperedge,
and there is an edge(Si, Sj) ∈ E when the corresponding hyper-edges share a vertex (Si∩Sj 6= ∅).

2 Structure-based tractability in Inference

Almost all the known structure-based techniques rely on the observation thatbinary constraint
networks whose constraint graph is atreecan be solved in linear time [23, 36, 15] in the number
of variables. The solution of tree-structured networks are discussed next, and later it is shown how
they can be used to facilitate the solution of a general constraint network.

2.1 Solving Tree-Networks

Given a tree-network overn variables (Fig. 5), the first step of thetree-algorithmis to generate
a rooted-directedtree. Each node in this tree (excluding the root) has oneparent nodedirected
toward it and may have severalchild nodes, directed away from it. Nodes with nochildren are
called leaves. An ordering,d = X1, X2, . . . , Xn, is then enforced such that a parent always
precedes its children. In the second step, the algorithm processes each arc and its associated
constraint from leaves to root, in an orderly layered fashion. For each directed arc fromXi to Xj it
removes a value from the domain ofXi if it has no consistent matchin the domain ofXj. Finally,
after the root is processed, a backtracking algorithm is used to find a solution along the orderingd.

It can be shown that the algorithm is linear in the number of variables. In particular, backtrack-
ing search, which in general is an exponential procedure, is guaranteed to find a solution without
facing any dead-ends.

The tree algorithm is sketched in Figure 4. Thereviseprocedure revise(Xj, Xi) remove any
value from the domain ofXj that has no match in the domain ofXi. The complexity of thetree-
solvingalgorithm is bounded byO(nk2) steps wherek bounds the domain size, because therevise
procedure, which is bounded byk2 steps, is executed at mostn times.
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Tree-solving
Input : A tree networkT = (X, D,C).
Output: A backtrack-free network along an orderingd.
1. generate a width-1 ordering,d = X1, . . . , Xn.
2. let Xp(i) denote the parent ofXi in the rooted ordered tree.
3. for i = n to 1 do
4. Revise((Xp(i)), Xi);
5. if the domain ofXp(i) is empty, exit (no solution exists).
6. endfor

Figure 4: Tree-solving algorithm
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Figure 5: A tree network

THEOREM 1 [37] A binary tree constraint problem can be solved inO(nk2) whenn is the number
of variables andk bounds the domain size.

2.2 Acyclic Networks

The notion of constraint trees can be extended beyond binary constraints to problems having scope
higher than 2, using the notions of hypergraphs and hypertrees, leading to the creation of a class of
acyclic constraint networks.

As noted, any constraint networkR = (X,D,C), whereC = {RS1 , ..., RSt} can be associated
with a hypergraphHR = (X, H), whereX is the set of nodes (variables), andH is the set of scopes
of the constraints inC, namelyH = {S1, ..., St}. The dual graph of a constraint hypergraph
associates a node with each constraint scope (or a hyperedge) and has an arc for each two nodes
sharing variables. As noted before, this association facilitates the transformation of a non-binary
constraint problem into a binary one, called thedual problem. Therefore, if a problem’s dual
graph happens to be a tree, it means that the dual constraint problem, can be efficiently solved by
the tree-solving algorithm.
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It turns out, however, that sometimes, even when the dual graph does not look like a tree,
it is in fact a tree, if some of its arcs (and their associated constraints) areredundantand can
be removed, leaving behind a tree structure. A constraint is considered redundant if its removal
from the constraint network does not change the set of all solutions. It is not normally easy to
recognize redundant constraints. In the dual representation, however, some redundancies are easy
to identify: since all the constraints in the dual network enforce equalities (over shared variables),
a constraint and its corresponding arc can be deleted if the variables labeling the arc are shared by
every arc along analternatepath between the two end points. This is because the alternate path (of
constraints) already enforces that equality. Removing such constraints does not alter the problem.

Example 1 Looking again at Figure 3, we see that the arc between (AEF ) and (ABC) in Figure
3(c) is redundant because variableA also appears along the alternative path(ABC) − AC −
(ACE) − AE − (AEF ). A consistent assignment toA is thereby ensured by these constraints
even if the constraint betweenAEF andABC is removed. Likewise, the arcs labeledE andC are
also redundant, and their removal yields the graph in 3(d).

We call the property that ensures such legitimate arc removal therunning intersection property
or connectednessproperty. The running intersection property can be defined over hypergraphs or
over their dual graphs, and is used to characterize equivalent concepts such asjoin-trees(defined
over dual graphs) orhypertrees(defined over hypergraphs). Anarc subgraphof a graph contains
the same set of nodes as the graph, and a subset of its arcs.

DEFINITION 4 (connectedness, join-trees, hypertrees and acyclic networks)Given a dual
graph of a hypergraph, an arc subgraph of the dual graph satisfies theconnectednessproperty iff
for each two nodes that share a variable, there is at least one path of labeled arcs, each containing
the shared variables. An arc subgraph of the dual graph that satisfies the connectedness property
is called a join-graph. A join-graph that is a tree is called ajoin-tree. A hypergraph whose
dual-graph has a join-tree is called ahypertree. A constraint network whose hypergrpah is a
hypertree is called anacyclic network.

Example 2 Considering again the graphs in Figure 3, we can see that the join-tree in Figure 3(d)
satisfies the connectedness property. That is, the hypergraph in Figure 3(a) has a join-tree and is
therefore a hypertree.

An acyclic constraint network can be solved efficiently. Because the constraint problem has
a join-tree, its dual problem is a tree of binary constraints and can therefore be solved by the
tree-solving algorithm. Note that the domains of variables in the dual problem are bounded by the
number of tuples in the input constraints. In Figure 6, we reformulate the tree algorithm for solving
acyclic problems.

Example 3 Consider the tree dual problem in Figure 3(d) and assume that the constraints
are given by: RABC = RAEF = RCDE = {(0, 0, 1)(0, 1, 0)(1, 0, 0)} and RACE =
{(1, 1, 0)(0, 1, 1)(1, 0, 1)}. Assume the orderingd = (RACE, RCDE, RAEF , RABC). When pro-
cessingRABC , its parent relation isRACE; we therefore generateπACE(RACE 1 RABC), yield-
ing the revised relationRACE = {(0, 1, 1)(1, 0, 1)}. Next, processingRAEF (likewise connected
to RACE) we generate relationRACE = πACE(RACE 1 RAEF ) = {(0, 1, 1)}. Note that the
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revised relationRACE is now being processed. Subsequently, processingRCDE we generate:
RACE = πACE(RACE 1 RCDE) = {(0, 1, 1)}. A solution can then be generated by picking
the only allowed tuple forRACE, A = 0, C = 1, E = 1, extending it with a value forD that
satisfiesRCDE, which is onlyD = 0, and then similarly extending the assignment toF = 0 and
B = 0, to satisfyRAEF andRABC .

ALGORITHM ACYCLIC-SOLVING

Input: an acyclic constraint networkR = (X, D, C), C = {R1, ..., Rt}.
Si is the scope ofRi. A join-treeT of R.
Output: Determine consistency, and generate a solution.
1. d = (R1, ..., Rt) is an ordering such that every relation

appears before its descendent relations in the tree rooted atR1.
2. for j = t to 1, for edge (j,k) ,k < j, in the tree do

Rk ← πSk
(Rk 1 Rj)

if the empty relation is created, exit, the problem has no solution.
endfor

3. return: The updated relations and a solution:
Select a tuple inR1. After instantiatingR1, ..., Ri−1 select a tuple inRi

that is consistent with all previous assignments.

Figure 6: Acyclic-solving algorithm

Since the complexity of a tree-solving algorithm isO(nk2), wheren is the number of variables
andk bounds the domain size, the implied complexity of acyclic-solving isO(r · l2) if there are
r constraints, each allowing at mostl tuples. However, the complexity can be improved for this
special case. The join operation can be performed in time linear in the maximum number of tuples
of each relation, like so: projectRj on the variables shared byRj and its parent constraint,Rk, an
O(l) operation, and then prune any tuple inRk that has no match in that projection. If tuples are
ordered lexicographically, which requiresO(l · logl) steps, the join operator has a complexity of
O(l), yielding an overall complexity ofO(r · l · logl) steps [10]. For a more recent analysis see
[29]. In summary,

THEOREM 2 [10] [correctness and complexity] Algorithm acyclic-solving decides the consistency
of an acyclic constraint network, and its complexity is O(r · l · logl) steps, wherer is the number
of constraints andl bounds the number of tuples in each constraint relation .2

Several efficient procedures for identifying acyclic networks and for finding a representative
join-tree were developed in the area of relational databases [38]. One scheme that proved particu-
larly useful is based on the observation that a network is acyclic if, and only if, its primal graph is
bothchordalandconformal[5]. A graph ischordal if every cycle of a length of at least four has
a chord, i.e., an edge joining two nonconsecutive vertices along the cycle. A graph isconformalif
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each of its maximalcliques(i.e. subsets of nodes that are completely connected) corresponds to a
constraint scope in the original constraint networks. Thechordalityof a graph can be identified via
an ordering of the graph called themaximal cardinality ordering, (m-ordering); it always assigns
the next number to the node having the largest set of already numbered neighbors (breaking ties
arbitrarily).

It can be shown [46] that in anm-ordered chordal graph, the parent-set of each node, namely,its
earlier neighbors in the ordered graph, must be completely connected. If, in addition, the maximal
cliques coincide with the scopes of the originalR, both conditions for acyclicity would be satisfied.
Because for chordal graphs each node and its parent set constitutes a clique, the maximal cliques
can be identified in linear time, and then ajoin treecan be constructed by connecting each maximal
clique to an ancestor clique with which it shares the largest set of variables [16].

2.3 Tree-decompositions, tree-width and induced-width

Since acyclic constraint networks can be solved efficiently, we naturally aim at compiling an ar-
bitrary constraint network into an acyclic one. This can be achieved by grouping subsets of con-
straints into clusters, or subproblems, whose scopes constitute a hypertree, thus transforming a
constraint hypergraph into a constraint hypertree. Replacing each subproblem with its set of solu-
tions yields an acyclic constraint problem. If the transformation process is tractable the resulting
algorithm is polynomial. This compilation process is calledjoin-tree clustering.

The graphical input to the above scheme is the constraint hypergraphH = (X,H), whereH is
the set of scopes of the constraint network. Its output is a hypertreeS = (X,S) and a partition of
the original hyperedges into the new tree hyperedges defining the subproblems. Each subproblem
is then solved, and its set of solutions is a new constraint whose scope is the hyperedge. Therefore,
the result is a network having one constraint per hyperedge of the treeS, and, by construction, is
acyclic.

2.3.1 Join-tree clustering and processing

There are various specific methods that decompose a hypergraph into a hypertree. The aim is to
generate hypertrees having small-sized hyperedges because this implies small constraint subprob-
lems. The most popular approach manipulates the constraint’s primal graph and it emerges from
the primal recognition process of acyclic networks described earlier. Since acyclic problems have
primal graph that is chordal, the idea is to make the primal graph of a given network, which is not
acyclic, chordal and then associates the maximal cliques of the resulting chordal graph with hyper-
edges. Those hyperedges will be the new scopes in the targeted acyclic problem. Given an ordered
graph, chordality can be enforced by recursively connecting all parents of every node starting from
the last node to the first. This process leads to the notion of induced-graph, induced-width and
tree-width which will be used extensively.

DEFINITION 5 (induced-width,tree-width) Anordered graph is a pair(G, d) denotedGd where
G is an undirected graph, andd = (X1, ..., Xn) is an ordering of the vertices. Thewidth of a vertex
in an ordered graph is the number of its earlier neighbors. Thewidth of an ordered graph, w(Gd),
is the maximum width of all its vertices. Theinduced width of an ordered graph, w∗(Gd), is the
width of the induced ordered graph, denotedG∗

d, obtained by processing the vertices recursively,
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from last to first; when vertexX is processed, all its earlier neighbors are connected. When the
identity of the graph is known we will also denotew∗(Gd) byw∗(d). Theinduced width of a graph,
w∗(G), is the minimal induced width over all its orderings [15]. It is well known that the induced
width of a graph is identical to itstree-width[2] [16], we will therefore define tree-width of a
graph as the induced-width of the graph.

The procedure that generates the hypertree partitioning using the chordality algorithm and that
then associates each cluster of constraints with its full set of solutions is called join-tree clustering
(JTC) described in Figure 7. The first three steps of algorithm JTC manipulate the primal graph,
embedding it in a chordal graph (whose maximal cliques make a hypertree), and then identifying
its join-tree. Step 4 partitions the constraints into the cliques (the hypertree edges). Step 5 solves
each subproblem defined by a cluster, and thus creates one new constraint for each subproblem
(clique).

JOIN-TREE CLUSTERING(JTC)

Input: A constraint problemR = (X, D, C) and its primal graphG = (X, E).
Output: An equivalent acyclic constraint problem and its join-tree:T = (X, D, C′)
1. Select a variable ordering,d = (X1, ..., Xn).
2. Triangulation (create the induced graph alongd and call itG∗):

for j = n to 1 by -1 do
E ← E ∪ {(i, k)| (i, j) ∈ E, (k, j) ∈ E}

3. Create a join-tree of the induced graphG∗:
a. Identify all maximal cliques in the chordal graph (each variable and its parents is a clique).

Let C1, ..., Ct be all such cliques, created going from last variable to first in the ordering.
b. Create a tree-structureT over the cliques:

Connect eachCi to aCj (j < i) with whom it shares largest subset of variables.
4. Place each input constraint in one clique containing its scope, and let

Pi be the constraint subproblem associated withCi.
5. SolvePi and letR′

i be its set of solutions.
6. ReturnC ′ = {R′

1, ..., R
′
t}, the new set of constraints and their join-tree,T .

Figure 7: Join-tree clustering

We can conclude,

THEOREM 3 [16] Algorithm join-tree clustering transforms a constraint network into an equiva-
lent acyclic network.2

Example 4 Consider the graph in Figure 8(a), and assume it is a primal graph of a binary con-
straint network. In this case, the primal and hypergraph are the same. Consider the ordering
d1 = (F,E, D,C,B, A) in Figure 8(b). Performing join- tree-clustering connects parents re-
cursively from the last variable to the first, creating the induced-ordered graph by adding the new
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Figure 9: Join-graphs of the induced graphs from (a)Figure 8(b) and Figure 8(c). (All arcs in-
cluded.) The corresponding join-trees are the same figures with the broken arcs removed.

(broken) edges of Figure 8(b). The maximal cliques of this induced graph are:Q1 = {A,B, C,E},
Q2 = {B,C, D,E} andQ3 = {D, E, F}. Alternatively, if orderingd2 in Figure 8(c) is used, the
induced graph generated has only one added edge. The cliques in this case are:Q1 = {D,F},
Q2 = {A,B,E}, Q3 = {B, C, D} andQ4 = {A,B,C}. The corresponding join-trees of both
orderings are depicted in Figure 9 (broken arcs are not part of the join-trees). Next, focusing on
the join-tree in Figure 9b, JTC partition the constraints into the tree-nodes. It places the following
subproblems into the nodes:P1 = {RFD} is placed in node (FD),P2 = {RBD, RCD} is placed in
node(BCD), P3 = {RAB, RAC} is placed in node(ABC) andP4 = {RAB, RBE, RAE} is placed
in (ABE). Next, applying steps 4 and 5 of the algorithm we solves the subproblemsP1, P2, P3, P4,
and replace each withR′

1, R
′
2, R

′
3, R

′
4, whereR′

i is the solution relation ofPi, yielding a desired
acyclic network.

THEOREM 4 [16] [complexity of JTC] Given a constraint network havingn variables andr con-
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straints, the time complexity of join-tree clustering isO(r · kw∗(d)+1), and the space complexity is
O(n ·kw∗(d)+1) wherek is the maximum domain size andw∗(d) is the induced width of the ordered
graph.

Proof: Finding a tree-decomposition of a hypergraph (Step 1 of JTC) is performed over the con-
straint primal graph and requirsO(n2) steps. The most expensive step is Step 5, which computes
all the solutions of each subproblem. Since the size of each subproblem corresponds to a clique in
the induced (triangulated) ordered graph, it is bounded by the induced width plus one. Solving a
problemPi having at mostw∗(d) + 1 variables andri constraints costsO(ri · kw∗(d)+1). Summing
over all subproblems

∑
i rik

w∗(d)+1, yields the desired bound. The space complexity is due to the
need to record the solutions for each of then clusters having at mostw∗(d) + 1 variables.2

Once algorithm JTC delivers an acyclic problem, it can be solved byACYCLIC-SOLVING yield-
ing a solution. algorithm JTC followed byACYCLIC-SOLVING provide a procedure for solving the
CSP problem. We get:

THEOREM 5 (complexity of JTC followed by ACYCLIC-SOLVING) Given a constraint network
having n variables andr constraints, the time complexity of finding a solution using join-tree
clustering andACYCLIC-SOLVING is O(r · w∗(d) · logk · kw∗(d)+1) and the space complexity is
O(nkw∗(d)+1), wherek is the maximum domain size andw∗(d) is the induced width of the ordered
graph.

Proof: JTC generates an acyclic problem having at mostn relations whose sizes are bounded by
kw∗(d)+1. Thus the complexity of acyclic-solving on these relations is bounded byO(n · w∗(d) ·
logk · kw∗(d)+1), which is just applying acyclic-solving whenl = O(kw∗(d)+1). 2

2.3.2 General Tree-Decomposition Schemes

Algorithm Join-tree-clustering commits to a specific structuring algorithm that is based on chordal
graphs. In this section we reformulate the notion of a tree-decomposition and provide an alter-
native, time-space sensitive algorithm, for its processing. This exposition unifies several related
schemes such as variable elimination, join-tree clustering and hypertree decomposition (to be dis-
cussed later).

DEFINITION 6 (tree-decomposition)Let R = (X, D, C) be a CSP problem. Atree-
decompositionfor R is a triple < T, χ, ψ >, whereT = (V,E) is a tree, andχ and ψ are
labeling functions which associate each vertexv ∈ V with two sets,χ(v) ⊆ X andψ(v) ⊆ C,
that satisfy the following conditions:

1. For each constraintRi ∈ C, there isat least one vertexv ∈ V such thatRi ∈ ψ(v), and
scope(Ri) ⊆ χ(v).

2. For each variableXi ∈ X, the set{v ∈ V |Xi ∈ χ(v)} induces a connected subtree ofT .
(This is the connectedness property.)

DEFINITION 7 (tree-width, hypertree-width, separator) The tree-width of a tree-decomposition
< T, χ, ψ > is tw = maxv∈V |χ(v)| − 1 and its hypertree width ishw = maxv∈V |ψ(v)|. Given
two adjacent verticesu and v of a tree-decomposition, the separator ofu and v is defined as
sep(u, v) = χ(u) ∩ χ(v). The tree-width of a CSP problem is the minimal tree-width over all its
tree-decompositions.
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Figure 10: Two tree-decompositions

Remarks: It is easy to see that the definition of a tree-decomposition of a constraint network
R = (X, D,C) is completely determined by the hypergraph of the constraint networkH = {X, S}
whereS is the scheme ofR: S = {Si|Si = scope(Ci)}. Thus a tree-decomposition of a constraint
network defines a tree-decomposition of its hypergraph and its tree-width. The tree-width of a
hypergraph is the minimal tree-width over all its tree-decompositions. It can be shown that the
tree-width of a hypergraph is identical to the induced-width of its primal graph.

Example 5 Consider the binary constraint problem whose primal graph appears in Figure 8(a).
The join-trees in Figure 9(a) and (b) were obtained via triangulation in orderings of Figure 8b and
8c and can be redescribed in Figure 10, using the two labeling functions. Theχ labelings are the
sets inside each node.

Once a tree-decomposition is available, algorithmCluster-Tree Elimination (CTE)in Figure
11, can processes the decomposition. The algorithm is presented as a message-passing algorithm,
where each vertex of the tree sends a constraint to each of its neighbors. If the tree containsm
edges, then a total of2m messages will be sent. Nodeu takes all the constraints inψ(u) and all
the constraint messages received byu from all adjacent nodes, and generate their join projected on
the various separators with its neighbors. The resulting constraint is then sent tov (remember that
v is adjacent tou in the tree).

Implementing Equation 1: The particular implementation of equation (1) in CTE can vary.
One option is to generate the combined relation(1Ri∈clusterv(u) Ri) before sending messages to
neighborv. The other option, which we assume here, is that the message sent to each neighbor is
created without recording the relation(1Ri∈clusterv(u) Ri). Rather, each tuple in the join is projected
on the separator immediately after being created. This will yields a better memory utilization.
Furthermore, whenu sends a message tov its cluster may contain the message it received from
v. Thus in a synchronized message passing we can allow a single enumeration of the tuples in
cluster(u) when the messages are sent back towards the leaves, each of which be projected in
parallel on the separators of the outgoing messages.

The output ofCTE is the original tree-decomposition where each node is augmented with the
constraints sent to it from neighboring nodes, called clusters. For each node the augmented set
of constraints is aminimal subproblemrelative to the input constraint problemR. Intuitively, a
subproblem of a constraint network is minimal if one can correctly answer any query on it without

13



CLUSTER TREE-ELIMINATION (CTE)
Input: A tree decomposition< T, χ, ψ > for a problemR =< X,D,C >.
Output: An augmented tree whose nodes are clusters containing the original constraints as
well as messages received from neighbors. A decomposable problem for each nodev.
Compute messages:
for every edge(u, v) in the tree, do

• Let m(u,v) denote the message sent by vertexu to vertexv. After nodeu has received
messages from all adjacent vertices, except maybe fromv

– Define,clusterv(u) = ψ(u) ∪ {m(i,u)|(i, u) ∈ T, i 6= v}
– Compute and send tov:

m(u,v) ← πsep(u,v)(1Ri∈clusterv(u) Ri) (1)

endfor
Return: A tree-decomposition augmented with constraint messages. For every nodeu ∈ T ,
return the decomposable subproblemcluster(u) = ψ(u) ∪ {m(i,u)|(i, u) ∈ T}

Figure 11: Algorithm cluster-tree elimination (CTE)

having to refer back to information in the whole network. More precisely, a subproblem over a
subset of variablesY is minimal relative to the whole network, if its set of solutions is identical to
the projection of the networks’ solutions onY .

DEFINITION 8 (decomposable subproblem)Given a constraint problemR = (X,D,C) and a
subset of variablesY ⊆ X, a subproblem overY , RY = (Y,DY , CY ), is decomposable relative
toR iff sol(RY ) = πY sol(R) wheresol(R) is the set of all solutions of networkR.

Convergence ofCTE is guaranteed. The above description implies that the computation will
proceed from leaves towards the root and back. Therefore, convergence is guaranteed after two
passes, where only one constraint message is sent on each edge in each direction.

Example 6 Figure 12 shows the messages propagated over the tree-decomposition in Figure 10b.
Since cluster 1 contains only one relation, the message from cluster 1 to 2 is the projection ofRFD

over the separator between cluster 1 and 2, which is variableD. The messagem(2,3) from cluster 2
to cluster 3 joins the relations in cluster 2 with the messagem(1,2), and projects over the separator
between cluster 2 and 3, which is{B, C}, and so on.

CTE can be shown to be equivalent to generating and solving an acyclic constraint problem
by a tree-solving algorithm and therefore it is clearly sound [32].

2.3.3 Complexity of CTE

It is well known that given an induced graph having an induced-widthw∗(d) along an orderingd,
it implies a tree-decomposition having tree-widthtw = w∗. The opposite is also true: if there is a
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Figure 12: Example of messages sent by CTE
.

tree-decomposition having tree-widthtw, it dictates an orderingd having induced-widthw∗(d) =
tw. Thus, from now on we will usew∗(d) for both induced-width and tree-width of a given tree
decomposition, whilew∗ or tw∗ for the minimal tree-width/induced-width of a graph.

Computing the messages.Algorithm CTE can be subtly varied to influence its time and space
complexities. If we first record the joined relation in Equation (1) and subsequently project on
the separator, we will have space complexity exponential inw∗. However, we can interleave the
join and project operations, and thereby make the space complexity identical to the size of the sent
constraint message. The message can be computed by enumeration (or search) as follows: For
each assignmentv to χ(u), we can test ifv is consistent with each constraint in cluster(u), and if it
is, we will project the tuplev oversep, creatingvsep, and add it to the relationm(sep).

THEOREM 6 [32] [Complexity of CTE] LetN be the number of vertices in a given tree decompo-
sition of a constraint network,w∗ its tree-width,sep its maximum separator size,r the number of
input functions,deg the maximum degree inT , andk the maximum domain size of a variable. The
time complexity ofCTE is O((r + N) · deg · kw∗+1) and its space complexity isO(N · ksep).

Proof. The time complexity of processing a vertexu is degu · (|ψ(u)|+ degu) · k|χ(u)|, wheredegu

is the degree ofu, because vertexu has to send outdegu messages, each being a combination of
at most(|ψ(u)| + degu) functions, and require the enumeration ofk|χ(u)| combinations of values.
The time complexity of CTE,Time(CTE) is

Time(CTE) =
∑
u

degu · (|ψ(u)|+ degu) · k|χ(u)|

By bounding the first occurrence ofdegu by deg and|χ(u)| by the tree-widthw∗ + 1, we get

Time(CTE) ≤ deg · kw∗+1 ·∑
u

(|ψ(u)|+ degu)

Since
∑

u |ψ(u)| = r we can write

Time(CTE) ≤ deg · kw∗+1 · (r + N)

15
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Figure 13: A graph coloring example

= O((r + N) · deg · kw∗+1)

For each edge CTE will record two functions. Since the number of edges is bounded byN
and the size of each function we record is bounded byksep, the space complexity is bounded by
O(N · ksep).

If the cluster-tree is minimal (for anyu andv, sep(u, v) ⊂ χ(u) andsep(u, v) ⊂ χ(v)), then
we can bound the number of verticesN by n. Assumingr ≥ n, the time complexity of a minimal
CTE isO(deg · r · kw∗+1).

If r ≥ n, this yields complexity ofO(deg · r · kw∗+1). It is possible to have an implementation
of the algorithm whose time complexity will not depend ondeg, but this improvement will be more
expensive in memory [44, 32].2

Join-tree clustering as tree-decomposition.Algorithm JTC is a specific algorithm for creat-
ing the tree-decomposition. Because it generates the full set of solutions for each node, its space
complexity is exponential inw∗ + 1, unlike CTE whose space complexity is exponential in the
separator’s size only. On the other hand, while the time complexity ofCTE is O(r · deg · kw∗+1)
if N ≤ r, the time complexity ofJTC, followed byACYCLIC-SOLVING is O(r ·w · logk · kw∗+1).
Clearly, this distinction matters only if there is a substantial difference between the tree-width and
the maximum separator size of a given tree-decomposition. See [32] for more details.

2.4 Variable-Elimination schemes

We next show that variable-elimination algorithms such as Adaptive-consistency [15] can be
viewed as message passing in a CTE type algorithm. Adaptive consistency, described in Figure
15, works by eliminating variables one by one, while deducing the effect of the eliminated variable
on the rest of the problem. Adaptive-consistency can be described using the bucket data-structure.
Given a variable orderingd = A,B, D,C,E in a graph coloring example depicted in Figure 13
we process the variables from last to first, namely, fromE to A. Step one is to partition the con-
straints intoordered buckets. All the constraints mentioning the last variableE are put in a bucket
designated asbucketE. Subsequently, all the remaining constraints mentioningD are placed in

16



Bucket(E): E 6= D, E 6= C, E 6= B
Bucket(C): C 6= B
Bucket(D): D 6= A,
Bucket(B): B 6= A,
Bucket(A):

(a)
Bucket(E): E 6= D, E 6= C, E 6= B
Bucket(C): C 6= B || RDCB

Bucket(D): D 6= A, || , RDB

Bucket(B): B 6= A, || RAB

Bucket(A): || RA

(b)

Figure 14: A schematic execution of adaptive-consistency

bucketD, and so on. The initial partitioning of the constraints is depicted in Figure 14a. In general,
each constraint is placed in the bucket of its latest variable.

After this initialization step, the buckets are processed from last to first by Adaptive-
consistency. Processing the bucket ofE, all three constraints in the buckets are solved and the
solution is projected overD, C, B, recording the ternary constraintRDCB which is placed in the
bucket ofC. Next, the algorithm processC ’s bucket which containsC 6= B and the new constraint
RDCB. Joining these two constraints and projecting outC yields a constraintRDB that is placed
in the bucket ofD, and so on.

At each step the algorithm generates a reduced but equivalent problem with one less variable
expressed by the union of unprocessed buckets. Once the reduced problem is solved its solution
is guaranteed to be extendible to a full solution since it accounted for the deduced constraints
generated by the rest of the problem. Therefore, once all the buckets are processed, and if no
inconsistency is discovered, a solution can be generated in a backtrack-free manner. Namely,
a solution is assembled progressively assigning values to variables from the first variable to the
last. A value of the first variable is selected satisfying all the current constraints in its bucket.
A value for the second variable is then selected which satisfies all the constraints in the second
bucket, and so on. Processing a bucket amounts to solving a subproblem defined by the constraints
appearing in the bucket, and then restricting the solutions to all but the current bucket’s variable.
Adaptive-consistency is an instance of a general class of variable elimination algorithms called
bucket-elimination that are applicable across many tasks [11].

The complexity of adaptive-consistency is linear in the number of buckets and in the time to
process each bucket. Since processing a bucket amounts to solving a constraint subproblem (the
computation in a bucket can be described in terms of the relational operators ofjoin followed by
projection) its complexity is exponential in the number of variables mentioned in a bucket which
is bounded by theinduced-widthof the constraint graph along that ordering [15].

THEOREM 7 (Complexity of AC) [11, 32] Let w∗(d) be the induced width ofG along ordering
d. The time complexity of adaptive-consistency isO(r · kw∗(d)+1) and the space complexity is
O(n · kw∗(d)).
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Algorithm Adaptive consistency (AC)
1. Input: A constraint problemR1, ...Rt, orderingd = X1, ..., Xn.
2. Output: An equivalent backtrack-free set of constraints and a solution.
3. Initialize: Partition constraints intobucket1, ...bucketn. bucketi contains
all relations whose scope includeXi but no higher indexed variable.
4. For p = n downto 1, processbucketp as follows

for all relationsR1, ...Rm defined overS1, ...Sm ∈ bucketp do
(Find solutions tobucketp and project outXp:)
A ← ⋃m

j=1 Sj − {Xi}
RA ← πA(1m

j=1 Rj)

5. if RA is not empty, add it to the bucket of its latest variable.
else, exit and return the empty network.

6. Return∪jbucketj and generate a solution: forp = 1 to n do
assign a value toXp that is consistent with previous assignments and satisfies
all the constraints inbucketp.

Figure 15: Algorithm Adaptive consistency

A

B

D

F

C

G

Figure 16: A constraint network example

2.5 Adaptive-consistency as tree-decomposition

We now show that adaptive-consistency can be viewed as a message-passing algorithm along a
bucket-tree, which is a special case of tree-decomposition. LetR = (X, D, C) be a problem and
d an ordering of its variables,d = (X1, ..., Xn). Let BX1 , ..., BXn be the set of buckets, each
contains those constraints inC whose latest variable ind is Xi. A bucket-treeof R in an ordering
d, has buckets as its nodes, and bucketBX is connected to bucketBY if the constraint generated by
adaptive-consistency in bucketBX is placed inBY . The variables ofBXi

are those appearing in the
scopes of any of its original constraints, as well as those received from other buckets. Therefore, in
a bucket tree, every nodeBX has one parent nodeBY and possibly several child nodesBZ1 , ...BZt.
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Algorithm Adaptive-Tree Consistency (ATC)
Input: A problemR = (X,D, C), orderingd.
Output: Augmented buckets containing the original constraints and all theρ constraints
received from neighbors in the bucket-tree.
0. Pre-processing:
Place each constraint in the latest bucket, alongd, that mentions a variable in its scope.
Connect bucketBX to BY , Y < X, if variableY is the latest earlier neighbor ofX in the
induced graphGd.
1. Top-down phase:(AC)
For i = n to 1, process bucketBXi

:
Let ρ1, ..., ρj be all the constraints inBXi

at the timeBXi
is processed, including original

constraints ofR. The constraintρY
Xi

sent fromXi to its parentY , is computed by

ρY
Xi

(sep(Xi, Y )) = πsep(Xi,Y ) 1
j
i=1 ρi (2)

2. Bottom-up phase:
For i = 1 to n, process bucketBXi

:
Letρ1, ..., ρj be all the constraints inBXi

at the timeBXi
is processed, including the original

constraints ofR. The constraintsρZj

Xi
for each child bucketzj is computed by

ρ
Zj

Xi
(sep(Xi, Zj)) = πsep(Xi,Zj)(1

j
i=1 ρi)

Figure 17: Algorithm Adaptive-Tree Consistency (ATC)

It is easy to see that a bucket tree ofR is a tree-decomposition ofR where for bucketBX ,
χ(BX) containsX and its earlier neighbors in the induced graph along orderingd, while ψ(BX)
contains all constraints whose highest-ordered argument isX. Therefore,

THEOREM 8 [32] A bucket tree of a constraint networkR is a tree-decomposition ofR.

Thus we can add a bottom-up message passing to adaptive-consistency yieldingAdaptive Tree
Consistency(ATC) given in Figure 17. In the top-down phase, each bucket receives constraint
messagesρ from its children and sendsρ constraint messages to its parent. This portion is identical
to AC. In the bottom-up phase, each bucket receives aρ constraint from its parent and sends aρ
constraint to each child.

Example 7 Consider a constraint network defined over the graph in Figure 16. Figure 18 left
shows the initial buckets along the orderingd = (A,B,C, D, F,G), and theρ constraints that will
be created and passed by adaptive-consistency from top to bottom. On its right, the figure displays
the same computation as a message-passing along its bucket-tree. Figure 19 shows a complete
execution of ATC along the linear order of buckets and along the bucket-tree. Theρ constraints
are displayed as messages placed on the outgoing arcs.
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Figure 19: Propagation ofρ messages along the bucket-tree

THEOREM 9 (Complexity of ATC) [32] Let w∗(d) be the induced width ofG along orderingd.
The time complexity ofATC is O(r · deg · kw∗(d)+1), wheredeg is the maximum degree in the
bucket-tree. The space complexity ofATC is O(n · kw∗(d)).

2.6 Hypertree Decomposition

One problem with the tree-width in identifying tractability is that they are sensitive only to the
primal constraint graph and not to its hypergraph structure. For example, an acyclic problem whose
constraint’s scope have high arity would have a high tree-width even though it can be processed
in quadratic time in the input. A different graph parameter that is more sensitive to the hyper-
graph structure is the hypertree width [28]. It relies on a notion of hypertree decompositions for
Constraint Satisfaction and it provides a stronger indicator of tractability than the tree-width.

DEFINITION 9 (hypertree decomposition) [28] A (complete) hypertree decomposition of a hy-
pergraphHG = (X,S) is a triple < T, χ, ψ >, whereT = (V,E) is a rooted tree, andχ andψ
are labelling functions which associate with each vertexv ∈ V two setsχ(v) ⊆ X andψ(v) ⊆ S,
and which satisfies the following conditions:
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1. For each edgeh ∈ S, there existsv ∈ V such thath ∈ ψ(v) andscope(h) ⊆ χ(v) (we say
thatv strongly coversh).

2. For each variableXi ∈ X, the set{v ∈ V |Xi ∈ χ(v)} induces a (connected) subtree ofT .

3. For eachv ∈ V , χ(v) ⊆ scope(ψ(v)).

4. For eachv ∈ V , scope(ψ(v)) ∩ χ(Tv) ⊆ χ(v), whereTv = (Vv, Ev) is the subtree ofT
rooted atv andχ(Tv) = ∪u∈Vvχ(u).

The hypertree widthhw of a hypertree decomposition ishw = maxv|ψ(v)|.

A hypertree decomposition of a constraint networkR is a hypertree decomposition of its hy-
pergraph where the vertices are the variables ofR and the scopes of constraints are the hyperedges.
The hypertree decomposition can be processed by joining all the relations in each cluster and then
applying acyclic-solving procedure, or by CTE.

Processing hypertree decomposition by acyclic-solving:Once a hyper-tree decomposition is
available, 1. join all the relations in each cluster, yielding a single relation on each cluster. This
step takes time and spaceO(m · thw) wheret bounds the relation size andm is the number of edges
in the hypertree decomposition, and it creates an acyclic constraint satisfaction problem. 2. Process
the acyclic problem by arc-consistency. This step can be accomplished in timeO(m·hw ·thw ·logt)
because there arem arc in the hypertree decomposition, each has at mostO(thw) tuples so acyclic-
solving isO(m · thw · log(thw)) which yields the desired bound. We can summarize,

THEOREM 10 [28] Let m be the number of edges in the hypertree decomposition of a constraint
networkR, hw be its hypertree width andt be a bound on the relation size. The hypertree de-
composition can be processed byACYCLIC-SOLVING in timeO(m · hw · logt · thw) and in space
O(m · thw).

Processing hypertree decompositions by CTE:Recall that given a hypertree decomposition,
each nodeu has to send a single message to each neighborv. We can computem(u,v) in the space
saving mode as follows. 1., Join all functionsψ(u) in nodeu yielding functionh(u), namely,
h(u) =1R∈ψ(u) R. This step can be done in time and spaceO(t|ψ(u)|). 2. For each neighborc of
u, c 6= v iterate,h(u) ← h(u) 1 m(c,u). This step can be accomplished inO(deg · hw · logt · thw)
time andO(thw) space. 3.m(u,v) ← πχ(u)∩χ(v)h(u). We can conclude:

THEOREM 11 A hypertree decomposition of a constraint network can be processed by CTE in time

O(m · deg · hw · logt · thw)

and spaceO(m · thw), wherem is the number of edges in the hypertree decomposition,hw its
hypertree width, andt is a bound on the size of the relational representation of each function inR.
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Notice that CTE may be more space efficient than processing by generating the joins in each
cluster followed byACYCLIC-SOLVING. However, we cannot capture this saving usinghw alone.
If we use thesep parameter we could boundCTE’s space complexity byO(N · ksep).

Notice that there are tree-decompositions that are not hypertree decompositions as in Defini-
tion 9, because hypertree decompositions require that the variable-sets labeling a vertex, will be
contained in the combined scope of its labeling functions (Condition 3 of Definition 9). This is
not required by the tree-decomposition definition. For example, consider a single n-ary constraint
R. It can be mapped into a bucket-tree with n vertices. Nodei contains variables{1, 2, ...i} but
no constraints, except that noden contains also the original constraints of the problem. Both join-
tree and hypertree decomposition will allow just one vertex that include the function and all its
variables.

Therefore, Theorem 11 does not apply to Definition 6 of tree-decomposition because the anal-
ysis assumed Condition 3 of Definition 9. We can overcome this problem by thinking of all uncov-
ered variables in a node as having a universal relation with the variables as its scope. In this case
we can show

THEOREM 12 A tree-decomposition of a constraint networkR can be processed by CTE in time

O(m · deg · hw∗ · logt · thw∗)

where t is a bound on the relation size,hw∗(v) = (|ψ(v)| + |{Xi|Xi 6∈ scope(ψ(v)}|), and
hw∗ = max

v∈V
hw∗(v) and in spaceO(m · thw∗).

Proof: Once we add the universal relation on uncovered variables we have a restricted hypertree
decomposition to which we can apply the bound of Theorem 11 assuming the same implementation
of CTE. The number of uncovered variables in a nodev is n(v) = |{Xi|Xi 6∈ scope(ψ(v)}|.
So the processing of a node takes timeO(thw · kn(v)) wherek bounds the domain size, yielding
O((max(t, k)hw∗). Assuming thatt > k we can use the time and space boundO(N · thw∗).
Consequently, message passing between all nodes yields overall complexity as in Theorem 11
whenhw is replaced byhw∗. 2

2.7 Summary

This section discussed inference algorithms that transform a general constraint problem into a
tree of constraints which can be solved efficiently. The complexity of the transformation pro-
cess is exponentially bounded by the tree-width (or induced-width) of the constraint graph. It is
also exponentially bounded by any hypertree width of the hypertree-decomposition. Thus both
the induced-width and tree-width hypertree width can be used to define structure-based tractable
classes. Yet, the hypertree width defines a larger tractability class because every problem with a
bounded tree-width has a bounded hypertree width but not vice-versa.

3 Trading Time and Space by Hybrids of Search and Inference

As we noted at the introduction, search and inference have complementary properties. Inference
exploit the graph structure and therefore allows structure-based time guarantees but require sub-
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Figure 20: An instantiated variable cuts its own cycles.

stantial memory. Search, does not posses good complexity time bounds yet it can operate in linear
space. Therefore, using a hybrid of search and inference allows structure-driven tradeoff of space
and time. Two such hybrids are presented next.

3.1 The cycle-cutset and w-cutset schemes

The algorithms presented in this section exploit the fact that variable instantiation changes the
effective connectivity of the constraint graph. Consider a constraint problem whose graph is given
in Figure 20a. For this problem, instantiatingX2 to some value, saya, renders the choices of
values toX1 andX5 independent, as if the pathwayX1−X2−X5 were blocked atX2. Similarly,
this instantiation blocks dependency in the pathwayX1−X2−X4, leaving only one path between
any two variables. In other words, given thatX2 was assigned a specific value, the “effective”
constraint graph for the rest of the variables is shown in Figure 20b. Here, the instantiated variable
X2 and its incident arcs are first deleted from the graph, andX2 subsequently is duplicated for each
of its neighbors. The constraint problem having the graph shown in Figure 20(a) whenX2 = a
is identical to the constraint problem having the graph in Figure 20(b) with the same assignment
X2 = a.

In general, when the group of instantiated variables constitutes a cycle-cutset; a set of nodes
that, once removed, would render the constraint graph cycle-free. The remaining network is a tree
(as shown in Figure 20b), and can be solved bytree-solvingalgorithm. In most practical cases it
would take more than a single variable to cut all the cycles in the graph. Thus, a general way of
solving a problem whose constraint graph contains cycles is to identify a subset of variables that
cut all cycles in the graph, find a consistent instantiation of the variables in the cycle-cutset, and
then solve the remaining problem by thetree algorithm. If a solution to this restricted problem
(conditioned on the cycle-cutset values) is found, then a solution to the entire problem is at hand.
If not, another instantiation of the cycle-cutset variables should be considered until a solution is
found. If the task is to solve a constraint problem whose constraint graph is presented in Figure 20a,
(assumeX2 has two values{a, b} in its domain), firstX2 = a must be assumed, and the remaining
tree problem relative to this instantiation, is solved. If no solution is found, it is assumed that
X2 = b and another attempt is made.

The number of times the tree-solving algorithm needs to be invoked is bounded by the number
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of partial solutions to the cycle-cutset variables. A small cycle-cutset is therefore desirable. How-
ever, since finding a minimal-size cycle-cutset is computationally hard, it will be more practical to
settle for heuristic compromises. One approach is to incorporate this scheme within backtracking
search. Becausebacktrackingworks by progressively instantiating sets of variables, we only need
to keep track of the connectivity status of the constraint graph. As soon as the set of instantiated
variables constitutes a cycle-cutset, the search algorithm is switched to the tree-solving algorithm
on the restricted problem, i.e., either finding a consistent extension for the remaining variables (thus
finding a solution to the entire problem) or concluding that no such extension exists (in which case
backtracking takes place and another instantiation tried).

Example 8 Assume that backtracking instantiates the variables of the CSP represented in Figure
21a in the orderC, B, A, E, D, F (Figure 21b). Backtracking will instantiate variablesC, B and
A, and then, realizing that these variables cut all cycles, will invoke a tree-solving routine on the
rest of the problem: the tree-problem in Figure 21c with variablesC, B andA assigned, should
then be attempted. If no solution is found, control returns to backtracking which will go back to
variableA.

The cycle-cutset scheme can be generalized. Rather than insisting on conditioning on a subset
(cutset) that cuts all cycles and yields subproblems having induced-width 1, we can allow cutsets
that create subproblems whose induced-width is higher than 1 but still bounded. This suggests a
framework of hybrid algorithms parameterized by a boundw on the induced-width of subproblems
solved by inference.

DEFINITION 10 (w-cutset) Given a graphG, a subset of nodes is called aw-cutset iff when the
subset is removed the resulting graph has an induced-width less than or equal tow. A minimalw-
cutset of a graph has a smallest size among allw-cutsets of the graph. A cycle-cutset is a 1-cutset
of a graph.

Finding a minimalw-cutset is a hard task. However, like in the special case of a cycle-cutset
we can settle for aw-cutset relative to the given variable ordering. We can look for an initial set of
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Algorithm cutset-decomposition(w)
Input: A constraint networkR = (X, D,C), Y ⊆ X which is a
w-cutset.d is an ordering that starts withY such that the induced-width
whenY is removed, alongd, is bounded byw, Z = X − Y .
Output: A consistent assignment, if there is one.

1. while ȳ ← next partial solution ofY found by backtracking,do

(a) z̄ ← adaptive− consistency(RY =ȳ).

(b) if z̄ is not false, return solution(ȳ, z̄).

2. endwhile.

3. return: the problem has no solutions.

Figure 22: Algorithmcutset-decomposition(w)

the ordering that is a w-cutset. Then a backtracking algorithm can traverse the search space over
the w-cutset and for each of its consistent assignment solve the rest of the problem byADPATIVE-
CONSISTENCYor by CTE.

Algorithm cutset-decomposition(w) (called elim-cond in [11]) is described in Figure 22. It
runs backtracking search on the w-cutset and adaptive-consistency on the remaining variables.
The constraint problemR = (X,D,C) conditioned on an assignmentY = ȳ and denoted byRȳ

is R augmented with the unary constraints dictated by the assignmentȳ. In the worst-case, all
possible assignments to the w-cutset variables need to be enumerated. Ifc is the w-cutset size,kc

is the number of subproblems of induced-width bounded by w needed to be solved, each requiring
O((n− c)kw+1) steps.

THEOREM 13 [11] Algorithm cutset-decomposition(w) has time complexity ofO(n·kc+w+1) where
n is the number of variables,c is the w-cutset size andk is the domain size. The space complexity
of the algorithm isO(kw). 2

The special case ofw = 1 yield the cycle-cutset decomposition algorithm whose time complex-
ity is O((n− c)kc+2) and it operates in linear space. Thus, the constantw can control the balance
between search and inference (e.g., variable-elimination), and can affect the tradeoff between time
and space.

Another approach that uses the w-cutset principle is to alternate between search and variable-
elimination. Given a variable ordering for adaptive-consistency we can apply variable elimination
as long as the induced-width of the variables does not exceedw. If a variable has induced-width
higher than w, it will be conditioned upon. The algorithm alternates between conditioning and
elimination. This scheme was used both for solving SAT problems and for optimization tasks
[40, 33] and is currently used for Bayesian networks applications [20, 19]. Clearly, a cutset uncov-

25



ered via thealternating algorithmis also a w-cutset and therefore can be used within the cutset-
decomposition scheme.

Both cutset-decomposition and the alternating cutset-elimination algorithm call for a new op-
timization task on graphs:

DEFINITION 11 (finding a minimal w-cutset) Given a graphG = (V, E) and a constant w, find
a smallest subset of nodesU , such that when removed the resulting graph has induced-width less
than or equalw.

Finding a minimal w-cutset is hard, but various greedy heuristic algorithms were investigated
empirically. Several greedy and approximation algorithms for the special case of cycle-cutset can
be found in the literature [1]. The general task of finding a minimal w-cutset was addressed in
recent papers [21, 7] both for the cutset-decomposition version and for the alternating version.
Note that verifying that a given subset of nodes is aw-cutset can be accomplished in polynomial
time (linear in the number of nodes), by deleting the candidate cutset from the graph and verifying
that the remaining graph has an induced width bounded byw [2].

In summary, the parameterw can be used within the cutset-decomposition scheme to control
the trade-off between search and inference. Ifd is the ordering used by cutset-decomposition(w)
and if w ≥ w∗(d), the algorithm coincides withADAPTIVE-CONSISTENCY. As w decreases,
the algorithm requires less space and more time. It can be shown that the size of the smallest
cycle-cutset (1-cutset),c∗1 and the smallest induced width,w∗, obey the inequalityc∗1 ≥ w∗ − 1.
Therefore,1 + c∗1 ≥ w∗, where the left side of this inequality is the exponent that determines the
time complexity of cutset-decomposition(w=1), whilew∗ governs the complexity ofADAPTIVE-
CONSISTENCY. In general, ifc∗w is the size of a minimalw-cutset then,

1 + c∗1 ≥ 2 + c∗2 ≥ ...b + c∗b , ... ≥ w∗ + c∗w∗ = w∗

We get a hybrid scheme controlled byw, whose time complexity decreases and its space in-
creases asw changes fromw∗ to 1.

3.2 The super-bucket and super-cluster schemes; separator-width

We now present an orthogonal approach for combining search and inference. The inference algo-
rithm CTE that process a tree-decomposition already contains a hidden combination of variable
elimination and search. It computes constraints on the separators using variable elimination and
is space exponential in the separator’s size. The clusters themselves can be processed by search
in time exponential in the cluster size. Thus, one can trade even more space for time by allowing
larger cliques but smaller separators.

Assume a problem whose tree-decomposition has tree-widthr and maximum separator size
s. Assume further that our space restrictions do not allow the necessaryO(ks) memory re-
quired when applyingCTE on such a tree. One way to overcome this problem is to combine
the nodes in the tree that are connected by large separators into a single cluster. The resulting
tree-decomposition has larger subproblems but smaller separators. This idea suggests a sequence
of tree-decompositions parameterized by the sizes of their separators as follows.

Let T be a tree-decomposition of hypergraphH. Let s0, s1, ..., sn be the sizes of the separators
in T , listed in strictly descending order. With each separator sizesi we associate a secondary
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tree decompositionTi, generated by combining adjacent nodes whose separator sizes are strictly
greater thansi. We denote byri the largest set of variables in any cluster ofTi, and byhwi the
largest number of constraints inTi. Note that assi decreases, bothri andhwi increase. Clearly,
from Theorem 6 it follows that,

THEOREM 14 Given a tree-decompositionT overn variables andm constraints, separator sizes
s0, s1, ..., st and secondary tree-decompositions having a corresponding maximal number of nodes
in any cluster,r0, r1, ..., rt. The complexity ofCTE when applied to each secondary tree-
decompositionsTi is O(m · deg · exp(ri)) time, andO(n · exp(si)) space (i ranges over all the
secondary tree-decomposition).

We will call the resulting algorithmSUPER-CLUSTER TREE ELIMINATION(s), or SCTE(s).
It takes a primary tree-decomposition and generates a tree-decomposition whose separator’s size
is bounded bys, which is subsequently processed byCTE. In the following example we assume
that a naive-backtracking search processes each cluster.

Example 9 Consider the constraint problem having the constraint graph in Figure 23. The graph
can be decomposed into the join-tree in Figure 24(a). If we allow only separators of size 2, we get
the join treeT1 in Figure 24(b). This structure suggests that applyingCTE takes time exponential
in the largest cluster, 5, while requiring space exponential in 2. If space considerations allow
only singleton separators, we can use the secondary treeT2 in Figure 24(c). We conclude that the
problem can be solved either inO(k4) time (k being the maximum domain size) andO(k3) space
usingT0, or in O(k5) time andO(k2) space usingT1, or in O(k7) time andO(k) space usingT2.
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Superbuckets. Since as we saw in Section 2.5, bucket-elimination algorithms can be extended
to bucket-trees and since a bucket-tree is a tree-decomposition, by merging adjacent buckets we
generate asuper-bucket-tree(SBT) in a similar way to generating super clusters. This implies that
in the top-down phase of bucket-elimination several variables are eliminated at once (see [12]).
Algorithm SCTE suggests a new graph parameter.

DEFINITION 12 Given a graphG and a constants find a tree-decomposition ofG having the
smallest induced-width,w∗

s . Or, find a hyper-tree decomposition having the smallest hypertree
width,hw∗

s .

A related problem of finding a tree-decomposition with a bounded tree-widthw having the
smallest separator, was shown to be polynomial [18]. Findingw∗

s however, is hard but it is easy for
the special case ofs = 1 as we show next.

3.2.1 Decomposition into non-separable Ccomponents

A special tree-decomposition occurs when all the separators are singleton variables. This type of
tree-decomposition is attractive because it requires only linear space. While we generally cannot
find the best tree-decompositions having a bounded separators’ size in polynomial time, this is
a feasible task when the separators are singletons. To this end, we use the graph notion ofnon-
separable components[17].

DEFINITION 13 (non-separable components)A connected graphG = (V,E) is said to have
a separation nodev if there exist nodesa and b such that all paths connectinga and b pass
throughv. A graph that has a separation node is calledseparable, and one that has none is called
non-separable. A subgraph with no separation nodes is called anon-separable componentor a
bi-connected component.

An O(| E |) algorithm exists for finding all the non-separable components and the separa-
tion nodes. It is based on a depth-first search traversal of the graph. An important property of
non-separable components is that that they are interconnected in a tree-structured manner [17].
Namely, for every graphG there is atree SG, whose nodes are the non-separable components
C1, C2, . . . , Cr of G. The separating nodes of these trees areV1, V2, . . . , Vt and any two component
nodes are connected through a separating node vertex inSG. Clearly the tree of non-separable
components suggests a tree-decomposition where each node corresponds to a component, the vari-
ables of the nodes are those appearing in each component, and the constraints can be freely placed
into a component that contains their scopes. ApplyingCTE to such a tree requires only linear
space, but is time exponential in the components’ sizes (see [12]).

Example 10 Assume that the graph in Figure 25(a) represents a constraint
network having unary, binary and ternary constraints as follows:R =
{RAD, RAB, RDC , RBC , RGF , DG, DF , REHI , RCFE}. The non-separable components and their
tree-structure are given in Figure 25(b,c). The ordering of componentsd = (C1, C2, C3, C4) dic-
tates super-clusters associated with variables{G, J, F}, {E, H, I}, {C,F,E} and{A,B,C,D}.
The initial partition into super-clusters and a schematic execution of CTE are displayed in Figure
25d.
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Figure 25: A graph and its decomposition into non-separable components.

THEOREM 15 (non-separable components)[24] If R = (X, D, C), |X| = n, is a constraint
network whose constraint graph has non-separable components of at most sizer, then the super-
cluster-tree elimination algorithm, whose buckets are the non-separable components, is time expo-
nentialO(n · exp(r)) but requires only linear in space.

3.2.2 Hinge decomposition

The non-separable component principle can be applied to the dual graph rather than to the primal
constraint graph. Better yet, since the dual graph may contain redundant edges, we can first try to
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remove those edges to obtain a minimal dual graph (also called minimal join-graph) and then gen-
erate a tree of non-separable components. This idea is very related to another tree-decomposition
principle proposed in the literature called hinge-decomposition [35]. Indeed a best hinge decom-
position can be obtained in polynomial time, yielding smallest component in a bi-component tree
decomposition of the dual graph whose some redundant arcs are removed. For a formal proof see
[30].

4 Structure-based tractability in search

Search algorithms typically traverse the problem’s space whose paths represent a partial or full
solutions. Their main virtue is that they can operate using bounded memory. Their main weakness
however is that the structure of the search space hides the independencies of the constraint network.
Next we show thatAND/OR search spacescan overcome this difficulty because they display the
independencies in the constraint graph and can sometime yield exponential saving compared to the
traditional search space (called OR space). As a result, search algorithms can have graph-based
performance guarantees like inference schemes.

4.1 AND/OR Search Trees

DEFINITION 14 (AND/OR search tree based on DFS tree)Given a constraint networkR and a
DFS spanning treeT of its primal graph, the AND/OR search tree ofR based onT , denotedST ,
has alternating levels of OR nodes (labeled with variable names, e.g.X) and AND nodes (labeled
with variable values, e.g.〈X, v〉). The root ofST is an OR node labeled with the root ofT . The
children of an OR nodeX are AND nodes, each labeled with a value ofX, 〈X, v〉. The children
of an AND node〈X, v〉, are OR nodes, labeled with the variables that are children ofX in T . A
solution is a subtree containing the root node and for every OR node, it includes one of its child
nodes and for every AND nodes it includes all its children.

Consider the treeT in Fig. 26 describing a graph coloring problem over domains{1, 2, 3}. Its
traditional OR search tree along the DFS orderingd = (X, Y, T,R, Z, L, M) is given in Fig. 27,
and its AND/OR search tree based on the DFS treeT with a highlighted solution subtrees are given
in Fig. 28.

The construction of AND/OR search trees can be guided not just DFS spanning trees but also
by pseudo-treeswhich include DFS trees [25, 26, 3]. Pseudo-trees have the property that every
arc of the constraint graph is a back-arc in the pseudo-tree (i.e. it doesn’t connect across different
branches). Clearly, any DFS tree and any chain are pseudo-trees. It is easy to see that searching an
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AND/OR tree guided by a pseudo-treeT is exponential in the depthm of T . Also, it is known that
if a graph has a tree-widthw∗ it also has a pseudo-tree whose depthm satisfiesm ≤ w∗ · logn [3].
In summary,

THEOREM 16 Given a constraint networkR and a pseudo-treeT , its AND/OR search treeST

is sound and complete (contains all and only solutions) and its size isO(n · km) wherem is the
depth of its backbone pseudo-tree. Moreover, a constraint network that has a tree-widthw∗ has an
AND/OR search tree whose size isO(kw∗·log n).

Backjumping algorithms [27, 3] are backtracking search schemes applied to the regular OR space,
which uses the problem structure to jump back from a dead-end as far back as possible. Ingraph-
based backjumping(GBJ) [9] each variable maintains a graph-based induced ancestor set which
ensures that no solutions are missed when jumping back to its deepest variable. Graph-based
backjumping extracts knowledge about dependencies from the constraint graph alone. Whenever
a dead-end occurs at a particular variableX, the algorithm backs up to the most recent variable
connected toX in the graph. It can be shown that backjumping in effect explores an AND/OR
search space. Indeed, whenbackjumpingis performed on aDFS ordering of the variables, its
complexity can be bounded byO(km) steps,m being the depth of theDFS tree. Therefore, if the
graph has an induced-widthw∗, there exists an ordering for which backjumping can be bounded
by O(kw∗·logn).

4.2 AND/OR Search Graphs

It is often the case that certain states in the search tree can be merged because the subtrees they
root are identical. Any two such nodes are calledunifiable, and when merged, transform the search
tree into a search graph. For example, in Fig. 28, the search trees below the paths〈X, 2〉, 〈Y, 1〉
and〈X, 3〉, 〈Y, 1〉 are identical, so the corresponding nodes are unifiable.

In general, merging all the unifiable subtrees given an AND/OR search graph yields a unique
graph, called theminimal AND/OR search graph. Merging is applicable to the traditional OR
search space as well. However, in many cases it will not be able to reach the compression we can
get in AND/OR representations. Fig. 29 and Fig. 30 show a comparison between minimal OR
and AND/OR search graphs for the problem in Fig. 26. Indeed some variable-value instantiations
appear multiple times in the OR graph while just once in the AND/OR graph.

In some cases identifying unifiable nodes is easy. The idea is to extract from each path only the
relevantcontextthat completely determines the unexplored portion of the space. Subsequently, the
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subgraph is only solved once and the results are cached and indexed by the context. Searching the
AND/OR graphs rather than the AND/OR tree is related to recording no-goods during backtracking
search [13]. It can be shown that,

THEOREM 17 [14] GivenG, a pseudo-treeT ofG and its induced widthw∗ the size of the minimal
AND/OR search graph based onT is O(n · kw∗), whenk bounds the domain size andn is the
number of variables.

We can show that the minimal AND/OR search graph is bounded exponentially by the primal
graph’s induced-width while the OR minimal search graph is bounded exponentially by itspath-
width. The path-width,pw∗, of a graph is the minimum tree-width over all tree-decompositions
whose trees are chains. It is well known [31] that for any graphw∗ ≤ pw∗ ≤ w∗ · log n. It is also
easy to placem∗ (the minimal pseudo-tree depth) yieldingw∗ ≤ m∗ ≤ pw∗ ≤ w∗ · log n.

5 Summary and Bibliographical Notes

5.1 Structure-based Tractability

Throughout this chapter several techniques that exploit the structure of the constraint network were
presented. Several graph parameters stood out in the analysis. The two main classes arewidth-
based andcutset-based. Width-based parameters capture the size of clusters required to make the
graph a tree of clusters. These include thetree-widthalso known asinduced-widthw∗, (appearing
in adaptive-consistency, tree-clusteringand in searching AND/OR graphs using caching of goods
and no-goods. It also includes path-width (pw) which captures the cluster size required to embed
a graph in a chain of clusters, and the hypertreehw appearing in the hypertree decomposition
which captures the number of constraints in a tree of clusters. Cutset-based parameters include the
cycle-cutset sizec1 and more generally thew-cutset sizecw (appearing in the cutset-decomposition
method, which capture the number of variables that need to be removed from the constraint graph
to make its tree-width bounded byw. This concept can be extended in an obvious way to hy-
percutset decompositions defining cutsets for which the remaining graph has a bounded hypertree
width, rather than tree-width. Other parameters that do not belong to the above two classes is 1) the
depth of aDFS-tree and a pseudo-treem (appearing when searching AND/OR trees and in back-
jumping), 2) thesize of the largest non-separable componentr1 (appearing in the decomposition
to bi-connected components), 3) the size of hinges (appearing in bi-connected decomposition of a
minimal dual graphs) and 4) the size ofsperator-based tree-widthrs appearing in SCTE method
capturing time-space tradeoffs.

It is well known [31, 3] that for any graphw∗ ≤ m∗ ≤ pw∗ ≤ w∗ · log n. Relating width-based
parameters to cutset parameters we have thatw∗ ≤ c∗i + i holds. Also graphs having bounded
tree-width also have bounded hypertree width but not vice-versa. Therefore the hypertree width is
the most informative parameter capturing tractability. However, when memory is bounded we can
use SCTE(i) or cutset-decomposition(i) for an appropriatei so that memory ofO(ki) is feasible.

5.2 Bibliographical notes

Join-tree clustering was introduced in constraint processing by Dechter and Pearl [16] and in
probabilistic networks by Spigelhalter et. al [34]. Both methods are based on the characteriza-
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tion by relational-database researchers that acyclic-databases have an underlying tree-structure,
called join-tree, that allows polynomial query processing using join-project operations and easy
identification procedures [5, 38, 46]. In both constraint networks and belief networks, it was
observed that the complexity of compiling any knowledge-base into an acyclic one is exponen-
tial in the cluster size, which is characterized by the induced-width or tree-width. At the same
time, variable-elimination algorithms developed in [6, 43] and [15] (e.g., adaptive-consistency and
bucket-elimination) were also observed to be governed by the same complexity graph-parameter.
In [15, 16] the connection between induced-width and tree-width was recognized through the work
of [2] on tree-width and k-trees and partial k-trees, which was made explicit later in [22]. The sim-
ilarity between variable-elimination and tree-clustering from the constraint perspective was ana-
lyzed [16]. Independently of this investigation, the tree-width parameter was undergoing intensive
investigation in the theoretic-graph-community. It characterizes the best embedding of a graph or
a hypergraph in a hypertree. Various connections between hypertrees, chordal graphs and k-trees
were made by Arnborg and his colleagues [2, 41]. They showed that finding the smallest tree-width
of a graph is NP-complete, but deciding if the graph has a tree-width below a certain constant k is
polynomial in k. A recent analysis shows that this task can be accomplished inO(n · f(k)) where
f(k) is a very bad exponential function ofk [8].

The decomposition into hinges was presented in [35]. As noted any hinge-decomposition is
closely related to bi-component tree decomposition of the dual graph whose redundant arcs are
removed [30]. The hypertree-width parameter was introduced in [28] and shown to provide the
most inclusive characterization of tractability. In recent years, research has focused on a variety of
greedy and other approximation algorithms for tree-width and induced-width [4, 45]. For recent
work see [39, 42]
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