
PKRU-Safe: Automatically Locking Down the Heap
Between Safe and Unsafe Languages

Paul Kirth
∗

Mitchel Dickerson

pkirth@uci.edu

mgdicker@uci.edu

University of California, Irvine

USA, CA, Irvine

Stephen Crane

Per Larsen

sjc@immunant.com

perl@immunant.com

Immunant

USA, CA, Irvine

Adrian Dabrowski

David Gens

Yeoul Na
†

a.dabrowski@uci.edu

dgens@uci.edu

rapidsna@gmail.com

University of California, Irvine

USA, CA, Irvine

Stijn Volckaert

stijn.volckaert@kuleuven.be

imec-DistriNet, KU Leuven

Belgium

Michael Franz

franz@uci.edu

University of California, Irvine

USA, CA, Irvine

Abstract
After more than twenty-five years of research, memory

safety violations remain one of the major causes of

security vulnerabilities in real-world software. Memory-safe

languages, like Rust, have demonstrated that compiler tech-

nology can assist developers in writing efficient low-level

code without the risk of memory corruption. However,

many memory-safe languages still have to interface with

unsafe code to some extent, which opens up the possibility

for attackers to exploit memory-corruption vulnerabilities

in the unsafe part of the system and subvert the safety

guarantees provided by the memory-safe language.

In this paper, we present PKRU-Safe, an automated

method for enforcing the principle of least privilege on

unsafe components in mixed-language environments.

PKRU-Safe ensures that unsafe (external) code cannot

corrupt or otherwise abuse memory used exclusively by

the safe-language components. Our approach is automated

using traditional compiler infrastructure to limit memory

accesses for developer-designated components efficiently.

PKRU-Safe does not require any modifications to the

program’s original data flows or execution model. It can be

adopted by projects containing legacy code with minimal

∗
Now at Google

†
Now at Apple

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

EuroSys ’22, April 5–8, 2022, RENNES, France
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9162-7/22/04.

https://doi.org/10.1145/3492321.3519582

effort, requiring only a small number of changes to a

project’s build files and dependencies, and a few lines of

annotations for each untrusted library.

We apply PKRU-Safe to Servo, one of the largest Rust

projects with approximately two million lines of Rust code

(including dependencies) to automatically partition and pro-

tect the browser’s heap from its JavaScript engine writ-

ten in unsafe C/C++. Our detailed evaluation shows that

PKRU-Safe is able to thwart real-world exploits, often with-

out measurable overhead, and with a mean overhead un-

der 11.55% in our most pessimistic benchmark suite. As the

method is language agnostic and major prototype compo-

nents operate directly on LLVM IR, applying our techniques

to other languages is straightforward.

CCS Concepts: • Security and privacy→ Software and
application security; Systems security.

Keywords: Compilers, Security, Compartmentalization,

MPK

ACM Reference Format:
Paul Kirth, Mitchel Dickerson, Stephen Crane, Per Larsen, Adrian

Dabrowski, David Gens, Yeoul Na, Stijn Volckaert, and Michael

Franz. 2022. PKRU-Safe: Automatically Locking Down the Heap

Between Safe and Unsafe Languages . In Seventeenth European Con-
ference on Computer Systems (EuroSys ’22), April 5–8, 2022, RENNES,
France. ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/

3492321.3519582

1 Introduction
Despite decades of research, memory-corruption bugs con-

tinue to plague real-world software. Google reported a range

of 5-15 exploitable bugs in Chrome’s renderer process across

five major releases [17] and estimated that memory corrup-

tion accounts for 90% of the vulnerabilities in AOSP [59]. Sim-

ilarly, Microsoft reported that 70% of security patches over

https://doi.org/10.1145/3492321.3519582
https://doi.org/10.1145/3492321.3519582
https://doi.org/10.1145/3492321.3519582

EuroSys ’22, April 5–8, 2022, RENNES, France Kirth, et al.

the past 12 years addressed memory-corruption bugs [48].

New, memory-safe languages, like Rust [37], aim to com-

bine safety and performance through a combination of ad-

vanced compile-time analysis and a rich type system, giving

developers an option to write low-level code that is also

secure. However, adoption of new programming languages

takes time, and legacy parts of the code base force large soft-

ware projects to interface with unsafe code [49]. Moreover,

the abundance of unsafe code written before safe languages

became a viable option makes it unlikely that all legacy code

will be ported. This means that many applications written

in safe languages will still interact with unsafe code, e.g.,

through libraries and other legacy components.

While operating systems traditionally provide abstrac-

tions to isolate applications from each other through virtual

memory, there currently exists no standard way of isolat-

ing memory between components within an application.

Although this has led to a number of proposed general isola-

tion schemes in the related work, they all either require OS

modifications [16, 32, 44, 60] or extensive rewriting of the

application [30, 53, 61].

We present PKRU-Safe, the first intra-process isolation

scheme for heap data in mixed-language environments that

does not require OS modifications or rewriting of the appli-

cation code, relying only on developer-provided annotations

that operate at the library level. Our system automatically

partitions the original program into two cooperative parts:

the trusted compartment, T , (i.e., Rust code and trusted

dependencies) and the untrusted compartment, U, (i.e.,

components written in an unsafe language which the devel-

oper does not wish to fully trust). Given this partitioning,

PKRU-Safe prevents code that a developer specifically des-

ignates as untrusted (e.g.,U) from accessing data in T not

directly shared with it.

PKRU-Safeworks largely automatically by analyzing data

flows and instrumenting the annotated application code as

part of the compilation process. In our detailed evaluation we

demonstrate the effectiveness of our approach using Rust as

a memory-safe language environment which includes unsafe

legacy components utilizing Intel’s Memory-Protection Keys

(MPK) as a fast, hardware-backed enforcement mechanism

to isolate unsafe memory domains.
1
Though previously only

available on Xeon server chips, MPK PKU instruction exten-

sions are now available in current generation AMD Ryzen

and Intel 11th generation desktop client processors [18].

Our compiler analysis tracks data flows from allocation

sites across the isolation boundary to determine which pieces

of data are required to be shared across the boundary to

maintain a functional program. Successfully implementing

fine-grained heap isolation for large, real-world codebases

1
Intel recently announced a supervisor mode feature for the MPK processor

extensions, called PKS. Throughout the paper we refer to the userland

feature of MPK, called PKU.

requires us to solve a number of challenging problems, such

as reliably tracking memory object provenances across com-

piler toolchains, overcoming the page-based protection gran-

ularity at run time, and scaling the annotation-based instru-

mentation to millions of code lines.

In summary, we make the following contributions. 1) We

present PKRU-Safe, the first data-flow aware and fully

automatic source-level compartmentalization framework

that supports mixed-language environments without

requiring OS modifications or application rewriting. 2) We

implemented a prototype of PKRU-Safe and demonstrate

our framework scales to large software projects such as

Servo, a web browser which is written in Rust that also

includes substantial portions of unsafe legacy code that

requires least-privilege isolation. We have released our

prototype as an open-source implementation, available at

https://github.com/securesystemslab/pkru-safe.git. 3) We

extensively evaluate and test our framework on a wide

range of benchmarks and a large real-world application,

demonstrating PKRU-Safe is both effective and practical,

showing a mean overhead under 11.55% in our most

pessimistic benchmark, and often on par with unmodified

applications.

2 Threat Model
PKRU-Safe’s primary goal is to prevent unauthorized access

and manipulation of heap data owned by the safe language

through a memory corruption vulnerability in the unsafe

components of the application. Since the safe and unsafe com-

ponents share an address space, we must therefore consider

a broad class of memory disclosure and corruption vulner-

abilities. While the application itself may have exploitable

bugs in the unsafe component, it is not itself malicious. Our

standard assumptions are in line with the related work in

this area [23, 31, 52, 54]:

• Memory-corruption vulnerability. The legacy part

of the application contains a memory-corruption bug.

This grants the attacker arbitrary read or write capa-

bilities in any part of the application’s address space.

• Code-injection and code-reuse defense. We as-

sume a strong W⊕X policy [47] meaning no memory

pages are ever simultaneously writable and executable.

We assume that legacy code is built with control-flow

integrity [5] including backward edge protection (e.g.,

using a shadow stack implementation [14]). This forces

adversaries to resort to data-only attacks [15, 33, 36].

• Hardware-backed Intra-Process Memory Pro-
tection. We assume Intel Memory Protection Keys

(MPK) [20] to be available on the target platform.

PKRU
2
values, which control domain access privileges,

remain in registers or MPK-protected memory so

2
In Intel’s MPK architecture, the Protection Key Rights Register (PKRU)

defines the access rights for each active key.

https://github.com/securesystemslab/pkru-safe.git

PKRU-Safe: Automatically Locking Down the Heap Between Safe and Unsafe Languages EuroSys ’22, April 5–8, 2022, RENNES, France

adversaries cannot directly manipulate them. Since

CFI is in place an adversary cannot reuse MPK

instructions inserted into the legacy part of the code.

Because our focus is on protecting heap data, we assume

that the stack in T is protected with a Shadow Stack [14, 40]

implementation that prevents tampering fromU, and that

an adversary cannot corrupt stack data used by T , even if it

resides in memory accessible with U.

As pointed out in Connor et al. [19], there are a variety

of unexpected methods of circumventing MPK based pro-

tections. Addressing these is orthogonal to the problems

addressed in this paper. Further, information disclosure at-

tacks through side-channels such as transient execution

are out of scope [24, 39, 43]. Likewise, we do not consider

remote-fault injection attacks targeting hardware-backed

isolation [12, 38, 57, 62].

Lastly, PKRU-Safe relies on a dynamic profiling compo-

nent as discussed in Section 4, and profiling inputs are as-

sumed to be benign. Thus the developer must ensure that

the profiling corpus does not contain code that violates the

intended sharing policy.

3 Design
PKRU-Safewas designed to enforce fine-grained data access

control without requiring developers to deeply understand

the exact data flow of their application and all of its depen-

dencies. Our system partitions the original program into

two parts: the trusted compartment, T , (i.e., Rust code and

trusted dependencies) and the untrusted compartment,U,

(i.e., components written in an unsafe language which the

developer does not wish to fully trust). PKRU-Safe prevents

code that a developer specifically tags as untrusted (e.g., U)

from accessing data in T not directly shared with it. On its

own, the code that makes upU is not malicious, but because

it lacks sufficient safety guarantees, it should not be granted

unrestricted access to all of the application’s data. Limiting

access in this manner more closely aligns with the principle

of least privilege and reduces the available attack surface.

Because T is entirely composed of code from the memory-

safe language and its trusted dependencies, we grant it an

unrestricted view of the application’s data, both its own

private memory, which we refer to as trusted memory
(MT), and the memory used by U, which we refer to as

untrusted memory (MU). This is a key factor in why we

target memory-safe languages as the target for T , since it

allows us to both simplify our reasoning regarding cross-

compartment sharing and aligns well with our goal: restrict-

ing data-access rights ofU. In contrast,U only has access

to MU , which is accessible by all compartments. Thus MU
holds the data shared between T and U, and the private

data ofU.

3.1 Overview

As depicted in Figure 1 our design relies on 1 developer an-

notations which define the explicit interface between T and

U. Given that boundary, we use 2 compiler-based instru-

mentation to partition the program along the compartment

boundary in conjunction with our provenance tracking run-

time to identify cross-compartment data sharing. Profiling

inputs are then used to collect runtime profiles 3 that can

determine if an allocation site from T is used by U. The

profiling information is then fed back into the 4 compiler

toolchain and used to change shared allocations in trusted
memory (MT) to instead come from untrustedmemory (MU)

in final version of the 5 application. This four stage com-

pilation pipeline ensures that memory access permissions

are correctly modified when transitioning between compart-

ments and that each compartment is still able to correctly

access program data.

⑤ PKRU App

① Annotation Profile Build② Profile Builds

Developer

Inter-
faces

Rust
code

C
Library

rustc

PKRU plugins

pkalloc

LLVM

Provenance
Instrumentation

③ Profile App

Trusted Code
T (Rust)

Profiles

RT Provenance
Tracing

Untrusted U
(C Library)

Final Build④ Enforcement

LLVM

Profile-based
Instrumentation

Trusted
Code

Profiling
Runs

Profile
InputProfile

InputProfile
Input

rustc

PKRU plugins

pkalloc
Mem
ℳ

ℳᴛ

ℳᴜ
Untrusted
Code U

1 2

3

4

5

Figure 1. PKRU-Safe’s dynamic workflow and main components: The developer annotates the intended interface between

the safe and unsafe language environments. However, since allocations may propagate through the application at runtime via

complicated data flows, we use dynamic profiling to identify allocations that must come from MU . Finally, PKRU-Safe emits

the instrumented executable that enforces the intended data flow policy at runtime.

EuroSys ’22, April 5–8, 2022, RENNES, France Kirth, et al.

3.2 Compartment Identification

To automate memory isolation, our system requires a defini-

tion of the compartment boundary. PKRU-Safe operates at

the level of function calls and therefore needs some method

for disambiguating calls to code in U from those in T .

There are various ways this problem could be addressed.

First, we could simply instrument all interfaces to libraries

written in an unsafe language. This approach, however,

would mean that we could not necessarily trust code in

standard or system libraries which operate through the

Foreign Function Interface (FFI). Further, it would force

developers to distrust other dependencies that interface with

external code, even when they do not impact security or may

be required by the platform. We believe that it is far more

common for a developer to want to selectively limit access

to some subset of the application rather than to require such

a drastic form of sandboxing, for example restricting data

access privileges to core components that must process un-

trusted inputs. However, we see no fundamental reason why

our approach could not work with a more restrictive policy.

Second, we could use some form of heuristic or static

analysis to identify the boundary. However, we know of no

satisfactory automated way to reason about a security parti-

tioning, given the complex nature of modern applications.

Prior work that has followed this approach have often made

assumptions about the semantics of sensitive operations and

well known library interfaces, but still rely on developers to

provide new security rules [11, 28, 32] or to model portions

of the system outside of the analysis [29, 56].

We chose to require developers to annotate their program

to restrict data access to specific components. Annotations

provide a nice middle ground between a heuristic approach

and fine-grained manual refactoring. Our annotations op-

erate at the level of library interfaces, and therefore only

require a small number of changes to project or source files.

In essence, the annotations we employ are declarative, and

offer a less burdensome alternative to process level sandbox-

ing, which often requires substantial refactoring.

The annotations provide a tractable way to reason about

compartment transitions from T to U, and allow us to rea-

son about the legal, cross-compartment data flows the parti-

tioning should enforce. Given that we now have a concrete

mapping of compartment transitions from T toU, we must

address transitions from U to T . We conservatively assume

that any function from T that may be called from U needs

to be able to return to T . This includes any address-taken

function from T , since it may be used as a callback from U.

3.3 Basic Instrumentation

In PKRU-Safe, each interface from T to U is transparently

wrapped so that any call to the function from T must first

revoke its ability to accessMT . When execution resumes in

T , the previous memory permissions are restored. Note that

we do not assume the previous permissions allowed access

toMT , but instead track permissions in a per-thread com-

partment stack that ensures the permissions are correctly

restored.

Our system does not attempt to modify normal program

execution or data sharing beyond enforcing the access per-

missions described above. We allowU to directly call APIs

from T in the normal fashion, and do not place any addi-

tional restrictions on the flow of function pointers from T
to U beyond what the language or runtime may already

impose. Because we do not attempt to analyze or reason

about the call graph forU, we cannot speculate about which

functions in T may be called fromU and therefore instru-

ment all address-taken and externally visible APIs from T
which may be called fromU. For these APIs, we change their

permissions to enable access to MT and then to restore the

previous level of access when they return. IfU attempts to

directly call a function from T that does not have this instru-

mentation, it will crash the program if it attempts to access

data residing inMT , which will still be inaccessible without

correctly changing access permissions. This still leaves the

challenge of how PKRU-Safe addresses cross-compartment

data flow, as the existing cross-compartment data flows will

now crash the program if they pass data from MT across

the compartment boundary into U.

3.4 Overcoming Page-based Protection Granularity
One of the key challenges in our system is that hardware-

backed memory protection is fundamentally tied to the gran-

ularity of memory pages. However, the main focus of our

work is to limit access to memory objects, which may, in

general, be significantly smaller than a single memory page

or, alternatively, span across multiple pages. This poses two

issues. First, general-purpose heap allocators may not sup-

port (or respect) heap partitions. Second, how an object is

allocated determines which memory page it resides on, and

thus determines how it can be accessed.

Heap Partitioning. Modern general-purpose allocators

commonly use a set of internal memory regions to manage

heap objects. Generally, these are contiguous regions used

to allocate objects within a particular size class. Normally,

an allocator is free to place any two allocations of the same

size in the same memory region. In our system, this would

be problematic if those two objects actually should reside

in separate compartments, since it may result in a program

crash or expose private data from MT by placing it in the

wrong memory region.

We chose to keep separate memory pools for each com-

partment, which makes disabling access to the entire pool

straightforward. The key observation here is that each com-

partment’s memory pool must be disjoint from all others, and

that pages are never migrated between the pools, in particu-

lar through mechanisms such as an allocator’s page cache.

PKRU-Safe: Automatically Locking Down the Heap Between Safe and Unsafe Languages EuroSys ’22, April 5–8, 2022, RENNES, France

We tackle this challenge within PKRU-Safe by providing a

compartment-aware heap allocator. Making an allocator that

can cope with these changes also requires modifications to

where and how it manages its own internal data in addition

to supporting fine grained region control. For instance, our

allocator keeps its internal data for each compartment in

that compartment’s memory region, which prevents other

compartments from improperly accessing or modifying it.

We discuss our specific implementation choices in greater

detail in Section 4.

Data-Flow-Based Allocation. The final and most impor-

tant challenge of PKRU-Safe is the ability to automatically

determine if a memory object should be accessible fromU,

and if so to ensure that it will reside in MU . This is ulti-

mately a question about the program’s inter-procedural data

flow, which must account for objects directly passed through

the compartment boundary as well as those indirectly ref-

erenced by function parameters, such as objects reachable

through the fields of aggregate types. As mentioned previ-

ously the root of this issue is the page-based nature of the

enforcement mechanisms available in hardware. Therefore,

when an object is allocated, we must be able to determine

how it may be used in the future, since that will determine

which memory pool it must reside in, and thus how it can

be accessed.

We model this as a taint tracking problem, in which alloca-

tion functions in T are sources of MT and the interfaces to

U are sinks. Should any source ever flow into (or through)

a sink, then we have determined that this memory object

must be shared between the compartments, and that it must

reside inMU . Automatically accounting for data flow is a

major departure from recent work in this area [25, 30, 61],

which has required on developers to manually separate data.

By identifying which allocation sites must be shared, we

can ensure that the necessary objects are placed into the

shared region of memory and maintain the program’s orig-

inal functionality without requiring source code changes.

PKRU-Safe uses dynamic profiling information to identify

cross-compartment memory sharing, but is compatible with

other suitable types of analysis. We describe our implemen-

tation of the dynamic reachability analysis in Section 4.

4 Implementation
Our implementation of PKRU-Safe is tightly integrated into

the Rust compiler toolchain, making use of frontend annota-

tions and instrumentation in the Rust compiler (rustc), as
well as profiling instrumentation and analysis in its LLVM

backend. The compartmentalization runtime also makes

use of our compartment-aware allocator, pkalloc, to sep-

arate the application data in two: MT and MU . This al-

lows us to provide a drop-in replacement for a normal Rust

toolchain, and allows developers to adopt our memory pro-

tection scheme with only minimal changes to existing work-

flows.

4.1 Frontend Instrumentation
Our modifications to rustc provide the necessary developer

annotations for identifying the boundary of U. We provide

this functionality chiefly through a compiler plugin, which

allows developers to tag specific Rust crates as untrusted
interfaces. The plugin will then annotate all FFI functions in

those crates, and transparently wrap them to drop memory

access permissions, as described in Section 3. This instru-

mentation happens during AST expansion, prior to type or

borrow checking, and is transparent to all dependent code.

Later compilation stages propagate the annotations as LLVM

metadata so that we can reliably identify them in the LLVM

backend.

We use Intel MPK to control the memory access permis-

sions of each compartment, because it provides a suitable

balance between performance and fine-grained access con-

trol. We use call gates consisting of small assembly stubs that

modify compartment permissions held in the PKRU register.

Each call gate verifies that the new PKRU value matches

the target permission the gate is meant to enforce, and will

otherwise exit the application if the values are mismatched.

Further, because we assume code in U is compiled with CFI

enabled, it should not be possible for an adversary to escalate

their memory access capabilities, since PKRU-modifying gad-

gets are not valid control flow targets for untrusted code, and

our call gates prevent whole-function reuse from incorrectly

changing permissions.

4.2 Modifications to Rust and its Core Libraries
The other significant changes we made to Rust were to

its liballoc and its Global Allocator trait. We extended

liballoc’s allocation functions with equivalent untrusted

variants that allocate from MU instead of MT , such
as __rust_untrusted_alloc() for __rust_alloc().
Additionally, we modified the __rust_realloc() imple-

mentation to ensure that memory is always reallocated

from the same pool its base pointer originated from. This

ensures that reallocations behave consistently regardless of

the execution path.

4.3 Analysis
MPK-based protections are inherently tied to a memory ob-

ject’s provenance, e.g., if it resides inMT it is only accessible

from T . Hence, PKRU-Safe must understand how data may

flow from T to U so that all of the memory objects that

are passed to untrusted code can be allocated from the cor-

rect pool of memory. To overcome this challenge, we use

a data flow analysis that can determine if a heap allocated

object may eventually be passed through the compartment

boundary.

EuroSys ’22, April 5–8, 2022, RENNES, France Kirth, et al.

4.3.1 DynamicAnalysis. Weopted to use a dynamic anal-

ysis approach that would allow us to identify the allocations

that need to be shared between T andU. Dynamic analysis

has a number of well understood trade-offs when compared

to static approaches. Since data-flow analysis is an active

field of research, we provide a brief overview of the most

prominent points and current developments in Sections 6

and 7. Our dynamic analysis tracks which heap allocations

from MT are accessed from U in a profiling phase. The

recorded allocation sites are then used later on in the instru-

mentation to automatically select which memory region an

object should come from (MT orMU). Note that because

PKRU-Safe only changes which memory region an alloca-

tion comes from, it introduces no new allocation sites into

the original program.

We use LLVM and compiler-rt to build a runtime profiler

for our target code as depicted in Figure 2 in a simplifiedman-

ner. When we profile an application we use compiler inserted

instrumentation to track information about the program at

runtime, and use the recorded data to generate our profiles.

We use an LLVM pass to assign each call to the global allo-

cator a unique Allocation Identifier (AllocId), which can be

recorded and tracked as part of the runtime instrumentation.

Our allocation identifiers are a tuple of the function ID, basic

block ID, and the ID of the allocation call site, which allows

us to later tie a specific AllocId to its origin location in

the LLVM IR. All of these IDs are represented by the single

AllocId field in Figure 2. At each call site to one of Rust’s

allocation APIs, we insert a callback into our runtime com-

ponent to record metadata about the memory object which

was just allocated. This metadata includes the AllocId of

the object, the virtual memory address of the new object,

and the size of the allocation. Further, we also instrument

calls to Rust’s reallocation and deallocation APIs to update

the metadata or to stop tracking it respectively. In particular,

reallocation calls associate the returned memory object with

the original object’s AllocId. We can safely do this, because

our modified version of __rust_realloc() will not change
the memory pool for an object on reallocation, so allocations

will remain in the pool they were originally allocated in,

i.e.,MT orMU . Tracking reallocation this way preserves

the information about which objects may be used later by

untrusted code, without concern for whether a reallocation

occurs or not.

After instrumentation, a developer will profile the appli-

cation to capture its expected behavior, which will generate

a profile recording of all allocation identifiers accessed from

U. Because none of the instrumentation has attempted to

partition the heap yet, when profiles are collected all heap

data is allocated in MT . Therefore, we can be certain that

any data originating from T and that is accessed by U dur-

ing profiling will raise a fault. While profiling, our runtime

interposes on all memory access violations by registering a

fault handler for SIGSEGV, which records the AllocIds of

memory objects fromMT that are accessed fromU when

they trigger an MPK violation. Our fault handler, described

in Section 4.3.2, looks up the metadata associated with the

faulting memory address, and records it to the profile. As

mentioned in Section 2, profiling inputs are assumed to be

benign, and the developer must ensure that the profiling

corpus does not contain improper cross-compartment data

access, such as those performed by malicous code.

After profiling, the developer will recompile the applica-

tion using the collected profiles, which will modify all the

allocation sites in T that were accessed from U to come

fromMU . This is done by simply matching the allocation

identifiers to their corresponding allocation site in the LLVM

IR, and updating the call to the allocator to use memory from

MU . If the profiling corpus does not record an allocation

being used byU, it will not be in the profile, and therefore it

will reside inMT . This makes it important for developers to

have a good profiling corpus for their application, as missed

cross-compartment data accesses will crash the program. We

address this point in greater detail in Section 6.

One challenge of this approach is that some applications

will register their own fault handlers. In particular, Servo

and rustc both register specialized handlers for SIGSEGV,
but discard previously registered handlers. To overcome this

we initialize our handler as late as possible. If any conflicting

fault handlers were registered before ours, we keep a refer-

ence to it, so faults unrelated to an MPK violation behave

normally. While most programs do not require modifica-

tion to use our instrumentation, some programs may require

special treatment. For instance, Servo registers many fault

Store
Metadata

Trusted Domain (Allocation Site)

Allocator function

%34 = all i8* @__rust_alloc(i64 %31, i64 %33)
call void @log_alloc(i8* %34, i64 %31, i64 4)

Address Size AllocIdProvTracking

Runtime Metadata

Address Size AllocId

0x15378... 16 4

...

Logging

Fault Handler

Access
Violation

Untrusted Domain (Usage Site)

Memory Load

void untrusted_foo(char* x){
 ...
 y = *x;
 ...
}

lookupFaultingAddress(ptr)
logAllocId(4)

Metadata
Lookup Profile

1

2

3

5
4

Figure 2.Dynamic Instrumentation. 1 Provenance tracking

calls are inserted in LLVM to track allocations fromMT and

store metadata into 2 . 3 When untrusted code accesses

MT it will trigger an access violation and call into our fault

handler 4 , which will record the AllocId in a profile record

5 before resuming execution.

PKRU-Safe: Automatically Locking Down the Heap Between Safe and Unsafe Languages EuroSys ’22, April 5–8, 2022, RENNES, France

handlers for SIGSEGV which may be registered late in pro-

gram execution. To address this, we manually placed a call

to register our fault handler directly after its last handler

was installed. This limitation could be overcome with ad-

ditional engineering effort to interpose on signal handling

registration, similar to some of LLVM’s sanitizer runtimes.

4.3.2 Fault Handler. The key component of the dynamic

analysis is our fault handler. Each time an address fromMT
is used from U, an access violation will be raised by the

hardware. Our fault handler services these faults when they

are the result of an MPK violation, but will otherwise fall

back to any preexisting fault handler for SIGSEGV. The fault
handler operates as part of T , and is able to modify com-

partment permissions to record profiles and inspect trusted

memory. Since our runtime tracks all live heap objects and

their valid address ranges, we use the faulting address to

look up the object’s metadata and record it if it’s AllocId
has not been seen before. This limits our profile to a set of

unique faulting allocation sites. After recording the fault,

we need to resume the application. This poses a challenge,

as simply exiting the handler and allowing the program to

resume will cause another fault when the memory access is

retried, but simply advancing the instruction pointer would

skip the memory access altogether. Similarly, only reseting

the PKRU register and resuming execution would effectively

perform a compartment transition, and would cause all other

memory accesses while executing in U to be missed in the

profile. We opted to use single stepping to allow us to tem-

porarily disable the MPK protection in the fault handler,

and then restore it after the memory access completes. We

achieved this by setting the trap flag on the faulting instruc-

tion, and setting the PKRU register to allow the memory

access (i.e., temporarily switch compartments back to T).

After the instruction completes, the processor will trap into

the OS and a SIGTRAP signal will be raised. We service the

fault for SIGTRAP in our runtime, and restore the previous

PKRU value. While we could have alternatively emulated the

memory access, we wished to avoid decoding the faulting

instruction, and correctly emulating the access, when single

stepping would suffice.

4.4 pkalloc

It is imperative that we ensure that the global allocator does

not improperly share memory pages between its memory

pools for MT and MU . To address this issue we developed

pkalloc, an allocator interface, which manages the memory

for both MT and MU originating from T . It allows us to

provide a uniform interface to both memory pools through

use of the extended Global Allocator trait, which we modi-

fied to support allocating memory for use in U (i.e., MU).

pkallocwraps two separate heap allocators, je_malloc and
malloc from libc. Internally, all allocations from MT are al-

located by je_malloc, which we modified to only use pages

from a special pool of memory reserved from the OS dur-

ing application startup, and which are marked with a PKEY
to ensure they are only accessible from T . By default we

reserve 46-bits of the address space for T , but this value

can be tuned on a per-application basis. We leverage the on-

demand paging semantics of mmap to map the entire region

at once, which has virtually no cost if those pages are never

used. All memory outside of this pool of memory is a part of

MU , and therefore is accessible fromU. To supply alloca-

tions from the shared region of memory, MU , we use libc’s

malloc implementation which uses a completely disjoint

set of memory pages from those in MT . This split-allocator
design allowed us to avoid modifying allocator internals to

prevent memory sharing.

5 Evaluation
We evaluated PKRU-Safe on two dimensions: security and

performance.

5.1 Experimental configuration
We compiled and tested the performance of our system on

a Dell Precision 7820 workstation, running Ubuntu 18.04.4

LTS with kernel version 4.15.0. The system has a Intel Xeon

Silver 4110 CPU running at 2.10 GHz and 48 GB of DDR4

ECC memory. Both our experiments and build jobs were run

inside of a Docker container based on Debian Buster. While

we tried to follow best practices when running experiments,

there are some forms of system variability that are difficult

to completely eliminate [50]

We used a set of micro-benchmarks with different memory

access patterns and variable workloads between compart-

ment transitions to understand the overhead our proposed

system would impose. We also evaluated our system in the

context of the Servo web browser. Servo is written almost

completely in Rust but uses the SpiderMonkey JavaScript

engine written in unsafe C/C++
3
, which is why SpiderMon-

key is placed in U in our experiments. Servo is perhaps the

most complex Rust program available today, having 265K

lines of Rust code with an additional 1.8M lines of Rust from

its dependencies. We chose it as our primary target for eval-

uation because Servo is exactly the type of application we

believe developers will want to use memory sandboxes on:

it is mostly written in Rust, but has a key component that

is written in unsafe C++ and that processes untrusted inputs.

Another key factor is that Servo is a large, complex program

with approximately 2 million lines of Rust code, with sophis-

ticated, hard to track data flows. Our reasoning here is that

any automated methods of hardening a Rust application that

will work on Servo will likely scale well to most other Rust

applications, due to both Servo’s large size and complexity.

Additionally, though Servo will remain a standalone browser

for the foreseeable future, several of its components have

3
CVE-2019-11707, CVE-2019-9792, CVE-2019-9813,CVE-2019-9810

EuroSys ’22, April 5–8, 2022, RENNES, France Kirth, et al.

already been integrated into Firefox [49], which may also

benefit from adopting this style of memory access control.

5.2 Micro-Benchmarks
We created a series of micro-benchmarks to better under-

stand the types of overhead our instrumentation was intro-

ducing. We use a set of three workloads to measure overhead.

Each benchmark uses a controllable workload, so we could

understand how call gate overhead scaled with the work

done in each compartment transition. Each workload is du-

plicated in a trusted and an untrusted version. Trusted work-

loads do not have call gates, but otherwise behave identically.

Trusted and untrusted workloads live in separate libraries,

with the untrusted library marked as untrusted. Each API in

the untrusted library has our call gate instrumentation.

Our workloads are as follows:

• Empty. The FFI function has no body. This benchmark

measures themaximumoverhead call gates can impose

per instrumented function call.

• Read-One. The FFI fuction performs a single memory

read to a heap address. This benchmark is designed to

understand how call gates scale with work size, but

also help quantify allocator overhead.

• Callback. The FFI function performs a callback that

triggers a compartment transition back to the trusted

compartment, which both exercises external call gates,

but also increases the number of compartment transi-

tions per unit of work.

All call gate micro-benchmarks ran for 100 million itera-

tions, and are reported as the mean overhead averaged across

all iterations. The call gates in the Empty benchmark had

an overhead of 8.55x, which aligns with our expectations for

overhead when compared to the execution time of a single

ret instruction. The Read-One benchmark had slightly bet-

ter performance, with 7.61x on average, while the Callback
benchmark had only a 6.17x overhead, despite going through

twice the number of call gates. The decreased overhead in

these benchmarks stems from the more favorable ratio of

the call gates to the workload.

To confirm this, we simulated increasing amounts of work

between each compartment transition by increasing the num-

ber of loop iterations executed in the target function. We

can see from the plot in Figure 3 that the overhead decreases

quickly as the execution time between compartment transi-

tions increases.

5.3 Performance
Configuration. We compiled Servo in three different con-

figurations: configuration (base) is our baseline configura-
tion with a completely unmodified Servo built using our ver-

sion of rustc and with LTO enabled, configuration (alloc)
adds our allocator pkalloc, but does not add other instru-

mentation to the application (i.e., no call gates between T

andU), and configuration (mpk) adds call gate instrumenta-

tion between T andU to configuration (alloc).

The base configuration was built using our modified Rust

compiler, which is based on the same version of the nightly

Rust compiler that the revision of Servo we built against

required, nightly-2019-06-19. The only other changes we

made were to build files, which we altered to compile us-

ing LTO and to reference a local checkout of the crates

containing the SpiderMonkey JavaScript engine (mozjs and

rust-mozjs) that we would instrument in later tests. This

version is otherwise unmodified, and serves as our base-

line for comparison. Configuration (alloc) was modified

to replace the Global Allocator implementation in Servo

(jemalloc) with pkalloc, which required us to modify ap-

proximately 90 lines of Servo’s code. While this sounds sig-

nificant, the bulk of this was simply commenting out Servo’s

definitions for its Global Allocator, and using our pkalloc
crate in its place. This configuration allows us to capture the

overhead introduced by using our allocator, as it is the only

meaningful change from the baseline configuration. Our fi-

nal configuration, mpk, enables the full instrumentation of

untrusted APIs which makes the memory pages inMT inac-

cessible when not executing in T . We added our library level

annotations to the mozjs and rust-mozjs crates to enable

the call gates between the browser and the JavaScript engine.

We found that we needed to add one more change to the

rust-mozjs crate because it rewrites the rust bindings gen-

erated by bindgen, a Rust library used to automatically gener-

ate Rust bindings to FFI code, after they are created through

macro expansion. While PKRU-Safe normally works with

bindgen, this new rebinding bypassed our instrumentation

by linking directly to the C/C++ APIs after our wrappers

were generated, and changing their names and signatures.

This is a non-standard use of bindgen, and predates its nor-

mal facilities for mapping types and rebinding signatures. As

a result we had to modify the macros used in the rust-mozjs
crate to use our call gates, and therefore ensure that all of the
browsers interfaces to the JavaScript engine had the correct

call gates. Without this change we would have missed nearly

10% of the bindings to critical APIs in the JavaScript engine.

0 25 50 75 100 125 150 175 200
Loop Count

1

2

3

4

5

6

7

8

No
rm

al
ize

d
Ru

nt
im

e

Figure 3. Call Gate Overhead vs. Work Load

PKRU-Safe: Automatically Locking Down the Heap Between Safe and Unsafe Languages EuroSys ’22, April 5–8, 2022, RENNES, France

This, however, could be overcome with some additional en-

gineering to ensure that our wrappers were generated at a

later time during AST expansion.

Using PKRU-Safe is intended to be no more onerous than

using a Sanitizer. We find the summary of changes required

for building Servo with PKRU-Safe to be illustrative in that

regard: full instrumentation required 4 lines of code per

library, plus an additional 3 lines to build files to enable

our compiler plugin, annotations, and enable automated in-

strumentation. We added 8 lines of annotations to the two

JavaScript libraries, and 9 to build files. Adapting the auto-

generated bindings from bindgen was an additional one line.

Identifying the conflict with the global allocator was done

automatically by the compiler frontend, and required us to

remove about 80 lines of code, and add 2.

To begin our experiment, we first profiled Servo using its

internal test suite to capture the normal, expected behavior

of the browser. This gave us a suitable memory profile to

partition the browser heap intoMT andMU . Specifically,

we used the test suites for the Web Platform Tests, jQuery,

and Web-IDL. Additionally, we used Selenium to browse a

selection of common web pages, such as google.com, red-

dit.com, wikipedia.org, and youtube.com. We confirmed that

the browser was functional by visiting a number of websites

outside of our corpus, and exercising functionality we had

not recorded, such as watching a video in the browser and

following links to other websites. This profiling corpus gave

approximately 30% code coverage for Servo, with 48.7% cov-

erage for the JavaScript related components. After the final

instrumentation, our toolchain had changed 274 of Servo’s

12088 allocation sites in T to come fromMU . This means

our system is able to modify as little as 2.26% of the allocation

sites, across the entire program and its Rust dependencies to

separate the Rust portion of the browser’s heap data from

its JavaScript engine.

Standard Benchmarks. We evaluated Servo using the

Dromaeo [1], Kraken [3], Octane [4], and JetStream2 [2]

benchmark suites. These benchmarking suites are well

known and widely used for benchmarking browser per-

formance. We provide a quick overview of the results in

Table 1. Note that although these are separate benchmarking

suites, there is a large overlap in their testing corpus. For

each benchmark we served a copy of the benchmark via a

local http server. We made no modifications to Dromaeo,

Kraken, or Octane, but we had to disable the WASM-based
test suite in JetStream, because the base revision of Servo

we used for our evaluation had a bug that would not allow

that benchmark to complete.

Dromaeo benchmarks were run with the recommended set

of benchmarks in the same configuration used by the Servo

developers. The results from the experiment, which can be

found in Figure 4 and Table 2, demonstrate that the overhead

for this style of instrumentation is highly correlated with the

Table 1. Servo Mean Benchmark Overhead and Statistics

alloc mpk Transitions %MU
Dromaeo 5.89% 11.55% 1775338812 4.13%

JetStream2 -1.48% 0.61% 7025902 42.41%

Kraken -0.11% -0.41% 5831503 48.59%

Octane -2.25% 3.28% 425426 16.57%

Table 2. Dromaeo Benchmark Overhead and Statistics

alloc mpk Transitions % MU
dom 7.85% 30.74% 734083388 50.30%

v8 -2.31% 0.53% 339698 4.59%

dromaeo 15.87% 4.64% 730295 0.57%

sunspider -1.34% -0.81% 893923 3.11%

jslib 9.39% 22.65% 1017275385 13.93%

mean 5.89% 11.55% - -

dom v8 dromaeo sunspider jslib
0.0

0.5

1.0

alloc
mpk

Figure 4. Dromaeo Benchmark Normalized Runtime Over-

head

specific workload. In general, our split allocator design fared

well, with respect to the performance impact, with its mean

scores within 6% of the baseline. We hypothesized that the

majority of this overhead comes from the less performant

allocator used forMU , which is the libc version of malloc.
To verify this we changed pkalloc’s implementation to use

memory fromMT for both trusted and untrusted allocation

sites, but with our call gates disabled to avoid program errors.

This modification removed any detectable overhead from

our benchmarking numbers. This result gives us confidence

to expect that choosing a more performant allocator for

MU would remove most of the overhead associated with

pkalloc. Adding our call gate instrumentation shows an

average overhead across all of Dromaeo of roughly 11.55%

compared to the baseline, but only has approximately 6%

additional overhead on top of the allocator.

The data shows that the dom and jslib tests exhibit a sig-

nificant overhead due to the introduction of call gates, having

overheads for the MPK-based call gates of approximately

22.89% and 13.26% over the allocator only versions respec-

tively. Given our micro-benchmarking results, we wanted

to understand exactly why this happened. We were able to

determine that these benchmarks cause Servo to spend a

significant amount of time switching rapidly between T
and U, but do very little work before transitioning back.

This occurs for two reasons: 1) a function with a call gate

is called in a loop, and 2) several of the callbacks registered

EuroSys ’22, April 5–8, 2022, RENNES, France Kirth, et al.

au
di
o-
fft

st
an

fo
rd
-c
ry
pt
o-
pb

kd
f2

au
di
o-
be

at
-d
et
ec
tio

n

st
an

fo
rd
-c
ry
pt
o-
cc
m

im
ag

in
g-
da

rk
ro
om

jso
n-
pa

rs
e-
fin

an
cia

l

im
ag

in
g-
ga

us
sia

n-
bl
ur

ai
-a
st
ar

au
di
o-
df
t

st
an

fo
rd
-c
ry
pt
o-
sh
a2

56
-it
er
at
iv
e

jso
n-
st
rin

gi
fy
-ti
nd

er
bo

x

au
di
o-
os
cil
la
to
r

st
an

fo
rd
-c
ry
pt
o-
ae

s

im
ag

in
g-
de

sa
tu
ra
te

0.6

0.8

1.0

1.2

alloc
mpk

Figure 5.Kraken Benchmark Normalized Runtime Overhead

with the JavaScript engine also call functions that trigger

transitions between compartments. This can occasionally

result in a deeply nested stack of compartment transitions

where only a small amount of work is performed before the

compartment stack unwinds.

As noted in our micro-benchmarks, the runtime overhead

of each call gate is proportional to the number of instructions

executed between compartment switches, and both the dom
and jslib test suites highlight this limitation. We ran the

individual benchmark suites with instrumentation to capture

the number of compartment transitions in each sub-suite

during normal benchmarking. The Transitions column in

Table 2 shows the number of compartment transitions that

the dom and jslib suites execute during the benchmark. The

data shows that these portions of the suite have dispropor-

tionately large numbers of compartment transitions when

compared to the other workloads. Further, the dom test suite

has significantly fewer benchmarks than the jslib suite (26

vs 59). If we average the number of transitions evenly across

the number of tests in each suite, we can see that each dom
test has almost 63% more transitions per test than jslib on

average.We believe that this per test view of transitionsmore

closely matches the overheads we see in the benchmarks, as

the larger number of tests increase the total number of transi-

tions, but do not contribute as much overhead to any one test.

The Kraken benchmarks in Figure 5 show low overhead

on average, with performance results on par with the base-

line. The Octane benchmarks also had low overhead, with

an average overhead under 4% for our mpk configuration.

Experimental results for Octane are presented in Figure 6.

Like Kraken and Octane, the results from JetStream2 have

scores on par with the baseline for the entire test suite. Plots

of the normalized runtime overhead for each of the Jet-

stream2 benchmarks can be found in Figure 7. Note that

JetStream2 scores each of its benchmarks individually, but

computes an overall score as the geometric mean of the

Table 3. JetStream2 Overall Scores and Overhead

base alloc mpk
Score 60.31 61.20 59.94

Overhead - -1.48% 0.61%

individual scores [21], which we present in Table 3.

5.4 Security
For our security evaluation, we leveraged a known type con-

fusion vulnerability in Servo’s JavaScript engine, SpiderMon-

key (CVE-2019-11707), which is present in SpiderMonkey

versions prior to 60.8.0. This exploit was previously shown to

be the basis for an arbitrary read/write primitive [10], which

we use in a fashion similar to Park et al. [54]. Specifically,

we use the read/write primitive to access browser data that

should logically be inaccessible from the JavaScript engine.

As part of our evaluation, we modified Servo to hold a

secret at a fixed address, which it allocates at program start,

and logs its value to console on program exit. We chose to

use a fixed address for ease of implementation, as prior work

has shown that it is possible to determine the location of in

memory secrets in a variety of ways. Servo was otherwise

identical to our mpk configuration, using the same profiling

corpus and build configuration we used in our benchmark

experiments. Our exploit uses the type confusion vulner-

ability mentioned earlier to write a value to this address.

The important aspect of this exploit is that it is targeting

some private data in memory at a valid address within MT .
In our experiment, the attack successfully writes to data in

Servo’s private memory without our memory protection,

which can be confirmed by examining the program output.

In contrast, once Servo’s memory has been compartmental-

ized by PKRU-Safe the attacker’s attempt to write to private

memory fails, resulting in a memory access violation from

the OS, and crashing the application.

This demonstrates PKRU-Safe’s practicality in enforcing

fine-grained privilege separation for heap data automatically

and with low developer effort. This success, however, does

not cover the breadth of potential exploits an adversary may

try to use. We consider several attack vectors out of scope

M
an

dr
ee

l
M
an

dr
ee

lLa
te
nc
y

De
lta

Bl
ue

Na
vi
er
St
ok
es

Ea
rle

yB
oy

er
Sp

la
yL
at
en

cy
Co

de
Lo
ad

Cr
yp

to
Sp

la
y

Ga
m
eb

oy
Ty

pe
sc
rip

t
Bo

x2
D

Ri
ch
ar
ds

Re
gE

xp
Pd

fJS zli
b

Oc
ta
ne

Ra
yT

ra
ce

0.6

0.8

1.0

1.2

alloc
mpk

Figure 6. Octane Normalized Overhead

PKRU-Safe: Automatically Locking Down the Heap Between Safe and Unsafe Languages EuroSys ’22, April 5–8, 2022, RENNES, France

W
SL

Un
iP
ok
er

ug
lif
y-
js-
wt

b
ty
pe

sc
rip

t
ta
gc
lo
ud

-S
P

st
rin

g-
un

pa
ck
-c
od

e-
SP

st
an

fo
rd
-c
ry
pt
o-
sh
a2

56
st
an

fo
rd
-c
ry
pt
o-
pb

kd
f2

st
an

fo
rd
-c
ry
pt
o-
ae

s
sp
la
y

se
gm

en
ta
tio

n
ric

ha
rd
s

re
ge

xp
re
ge

x-
dn

a-
SP

ra
yt
ra
ce

pr
ep

ac
k-
wt

b
pd

fjs
Of
fli
ne

As
se
m
bl
er

oc
ta
ne

-z
lib

oc
ta
ne

-c
od

e-
lo
ad

na
vi
er
-s
to
ke
s

n-
bo

dy
-S
P

m
ul
ti-
in
sp
ec
to
r-c

od
e-
lo
ad M
L

m
an

dr
ee

l
le
ba

b-
wt

b
jso

n-
st
rin

gi
fy
-in

sp
ec
to
r

jso
n-
pa

rs
e-
in
sp
ec
to
r

jsh
in
t-w

tb
ha

sh
-m

ap
gb

em
u

ga
us
sia

n-
bl
ur

flo
at
-m

m
.c

Fl
ig
ht
Pl
an

ne
r

fir
st
-in

sp
ec
to
r-c

od
e-
lo
ad

es
pr
ee

-w
tb

ea
rle

y-
bo

ye
r

de
lta

-b
lu
e

da
te
-fo

rm
at
-x
pa

rb
-S
P

da
te
-fo

rm
at
-to

fte
-S
P

cr
yp

to
-s
ha

1-
SP

cr
yp

to
-m

d5
-S
P

cr
yp

to
-a
es
-S
P

cr
yp

to
co
ffe

es
cr
ip
t-w

tb
ch
ai
-w
tb

cd
js

Bo
x2

D
bo

m
b-
wo

rk
er
s

Ba
sic

ba
se
64

-S
P

ba
by

lo
n-
wt

b
Ba

by
lo
n

as
yn

c-
fs Ai
r

ai
-a
st
ar

ac
or
n-
wt

b
3d

-ra
yt
ra
ce
-S
P

3d
-c
ub

e-
SP

0.6

0.8

1.0

1.2

alloc
mpk

Figure 7. JetStream2.0 Benchmark Overhead

due to the assumptions in our threat model (see Section 2).

ROP-style code reuse is mitigated through our assumption of

forward and backward edge CFI inU. Code pointers, how-

ever, may be corrupted or abused if they are passed to U as

part of aggregate data types. Memory corruption of this type,

however, occurs within the shared region ofMU , and there-

fore cannot be stopped by compartmentalization. This affects

all compartmentalization schemes: cross-compartment shar-

ing of data structures must either be forbidden, or otherwise

have a method for verifying their integrity. Lastly, it is possi-

ble for untrusted code to corrupt Rust objects that reside in

MU and perform COOP-style code reuse through vtable
corruption. This, however, is an uncommon situation, as Rust

generally forbids passing Rust data types, like Trait objects

through its FFI, generating compiler warnings if such objects

or pointers to them cross the FFI boundary. We also stress

that confused deputy style attacks are not the focus of this

work, since the confused deputy is operating within its own

compartment.

6 Discussion
Static vs. Dynamic Analysis. Principally, a purely static

inter-procedural data flow analysis would fit well with Rust’s

compile-time guarantees related to ownership and object life-

times. However, while working towards a prototype instru-

mentation for Servo we found that state-of-the-art data-flow

analyses struggle to provide sufficient precision, soundness,

and/or scalability: in our initial experiments all of the ex-

isting analyses failed to instrument our MPK-enabled build

correctly. Upon closer investigation, we found a variety of

different reasons for this. First, some pointer analyses yielded

unsound results, missing several allocation sites, thus result-

ing in program crashes, because data would not be correctly

shared between compartments. Second, some pointer analy-

ses dramatically over-approximated the amount of data that

could be used by untrusted code, resulting in memory from

completely unrelated components to be exposed to untrusted

code. Third, some pointer analyses were unable to complete

at all due to the exponential space complexity of the nature

of the problem
4
.

While efficient, demand-driven analyses similar to Syn-

chronized Push Down Systems (SPDS) proposed by Späth

et al. [58] represent an attractive alternative, at the time

of writing there exists no comparable analysis for LLVM

based languages. In fact, this may be one of the fundamental

limitations of LLVM IR, which lacks a reliable way to rea-

son about potential access paths through pointers, due to

loss of information through optimization, type casting, or

pointer arithmetic [42]. For this reason, we leverage dynamic

analysis to instrument Servo, although PKRU-Safe supports

instrumentation entirely based on static analysis in principle,

which we tested using various small programs.

Lastly, while incomplete dynamic profiling with

PKRU-Safe may lead to a program crash, similar policies

are widely used in production systems. Our approach shares

similarities with security mechanisms such as SELinux,

where developers profile applications in permissive mode

to determine which resources are required before enabling

enforcement mode. Under SELinux’s enforcement mode any

resources used that are not explicitly allowed by the policy

result in program termination. Our system takes a related

approach for memory, using a permissive profiling phase to

determine which memory resources are required to operate

correctly, and preventing any not discovered during this

phase from being used across compartment boundaries after

deployment.

Dynamic techniques have also been used for process level

isolation [11, 66], with similar limitations.

In our view crashes due to missed inter-compartment

dataflows are bugs that stem from a lack of testing, and are

similar to other memory related errors, like dereferencing

invalid pointers. Further, operating systems and applications

often test and profile applications and collect telemetry and

performance information using a subset of their installation

base [22]. In principle, PKRU-Safe could be deployed using

similar approaches, while minimizing negative impact on its

users.

4
Specifically, they consistently exhausted more than 192 GB of RAM with

an additional 192 GB of swap space on disk in a matter of hours.

EuroSys ’22, April 5–8, 2022, RENNES, France Kirth, et al.

Table 4. Comparison of Selected Related Approaches.

FideliusCharm [6] RLBox [51] XRust [45] Hodor [30] ERIM [61] PtrSplit [46] PKRU-Safe
In-Process Isolation ✓ ✓ ✗ ✓ ✓ ✗ ✓

HW Enforcement ✓ ✗ ✗ ✓ ✓ ✗ ✓

No App Modification ✗ ✗ ✓ ✓ ✗ ✓ ✓

No OS Modification ✗ ✓ ✓ ✗ ✗ ✓ ✓

Data-Flow Analysis ✗ ✗ ✓ ✓ ✗ ✓ ✓

Mixed-Language Support ✓ ✓ ✗ ✗ ✗ ✗ ✓

Number of Compartments. We ensure that whenever

code in the safe language is executing it has full access to

the program’s data, which we consider safe since this part

of the application is both trusted and memory safe. In con-

trast, when untrusted components are running, they should

only be able to access their own data and data from the safe

language that has been shared with them. Our choice of

using only two domains is a policy decision, one chosen to

keep both the reasoning about our partitioning scheme and

the management of memory resources as simple as possi-

ble. Though we have tried to introduce the minimal amount

of change from the original program by keeping our parti-

tioning simple, we see no fundamental issue using a more

complicated partitioning scheme that uses more than two

domains.

Stack Protection. PKRU-Safe is focused, first and fore-

most, on protecting heap data. Currently, our threat model

(Section 2) assumes some level of stack protection is in place

that preventsU from corrupting any of the stack data owned

by T . Ideally, we would also be able to classify stack data

from T in the same way we tackle heap data. In principle,

this could be addressed by our current analysis with some

significant engineering effort to augment provenance track-

ing for stack data. We could mark the stack used by T also

to be part ofMT , and rely on profiling to identify each stack

allocation that was affected in the same way that we track

heap allocations. This change would take a non-trivial ef-

fort to adopt but requires no methodology change over our

approach with heap data.

7 Related Work
The idea of limiting access to potentially sensitive resources,

including memory, is not new and has been an active area of

research for decades and we provide an overview compar-

ison to the most relevant approaches in Table 4. Software

fault isolation (SFI), process-level sandboxing, and in-process

sandboxing are prominent examples in this space. However,

similarities can be found across a wide swath of computer

science research. Region-basedmemory, privilege separation,

memory capabilities, SFI, and memory domains are exam-

ples of techniques that use memory partitioning or access

control methods to manage how essential resources, such

as memory, are used. Manually restructuring legacy applica-

tions to reliably and effectively isolate trusted from untrusted

components can constitute a significant, multi-million dollar

effort [55].

For this reason, PKRU-Safe takes inspiration from

prior work in automated compartmentalization, such as

Privtrans [13], Wedge [11], PtrSplit [46], ProgramCutter [66],

and recently CALI [8]. In particular, we leverage a dynamic

tracing component to make fine-grained resource-sharing

decisions, similar to Wedge and ProgramCutter. However,

in contrast to these works, PKRU-Safe does not attempt to

restrict access to OS-level resources, relying on the OS to

provide suitable primitives such as seccomp filters to restrict
access to sensitive system calls, for example. Moreover,

PKRU-Safe provides in-process memory separation at the

level of individual allocation sites. In contrast, automatic

compartmentalization has been primarily focused on

complete process level isolation, using more coarse-grained

memory separation. While SOAAP [28] uses dynamic

analysis test compartmentalization hypotheses, it does not

automatically compartmentalize the application, but is

intended to support developers as they manually re-architect

their program.

Similarly, in-process memory isolation has been previ-

ously explored using a variety of isolation primitives: kernel

extensions for private memory regions [65], double mapping

virtual address ranges [32], ARM memory domains [16, 60],

linker-assisted isolation [7], and virtualization [9]. Recently,

new processor features, like Intel MPK, have revived interest

in intra-process sandboxing [25, 30, 61]. PKRU-Safe differs

from these works, primarily in its approach to data flow and

its ability to automatically perform most of the partitioning

without relying on developers to rewrite large portions of

their application. While PKRU-Safe uses similar sandboxing

mechanics to other MPK-based approaches, it does not at-

tempt to address the issue of stray MPK-related instructions

as in ERIM or Hodor. Instead, it focuses on solving the largely

ignored problem of correctly managing inter-compartmental

data flow. The existing approaches are fully manual, which

may require significant changes to the original application.

For example, when instrumenting NGINX, ERIM required

the authors to modify approximately 117 lines of code in lib

PKRU-Safe: Automatically Locking Down the Heap Between Safe and Unsafe Languages EuroSys ’22, April 5–8, 2022, RENNES, France

crypto of which included around 34 call sites and 25 alloca-

tion sites. Likewise Hodor requires a similar level of manual

effort to instrument the programs correctly in the presence

of cross compartment data sharing. PKRU-Safe is able to

do this type of instrumentation automatically, considering

thousands of allocation sites, and automatically creating hun-

dreds of callgates, all for a code base an order of magnitude

larger than NGINX. In principle, our system could reuse in-

frastructure from other contemporary systems, and work

just as well, at the cost of additional engineering effort to

reconcile their different environments, build systems, and

libraries.

PKRU-Safe is focused on isolating untrusted code at the

level of a library interface, similar to the approaches found

in Google’s Sandboxed API [26], RLBox [51], and Enclo-

sures [25]. While Google’s Sandboxed API and RLBox are

focused on using process-level isolation and WASM, Ghosn

et al. [25] use MPK based isolation that is directly integrated

into the toolchains and runtimes for Go and Python, but still

directly relies on developers to correctly account for data

flow manually and to make source level changes to support

the desired isolation policy. Similar approaches have been

explored for sandboxing Rust libraries[41] in a manner simi-

lar to the approaches used in BreakApp[63] and ART [34].

Other Rust-centric approaches, such as Fidelius Charm [6],

require changes to the OS kernel, are not fully automated,

and do not fully account for data flow. PKRU-Safe operates

at a similar granularity but automatically accounts for data

flowwhen separatingmemory access privileges, thoughwith

fewer features.

XRust [45] aims to isolate the unsafe parts of Rust from the

safe parts of Rust by allocating memory for safe and unsafe

code from two different heaps. This is primarily achieved

through the use of inline reference monitors to bounds check

sensitive memory accesses, though they additionally pro-

vide an option to use guard pages in place of the reference

monitors. Compared to PKRU-Safe XRust does not aim to

provide a general mechanism for in-process memory isola-

tion. We note that XRust could be used in tandem with our

approach to strengthen the trust in our compartmentaliza-

tion scheme for unsafe code blocks in the Rust language part

of the program. For this, PKRU-Safe could adopt pointer

analysis similar to XRust, however, the analysis would need

to be sound, highly scalable, and precise. As explained in

Section 6, unfortunately, no such analysis currently exists,

which is why we exploit dynamic analysis for our instrumen-

tation. PKRU-Safe is focused on protecting heap data across

both language and trust boundaries. It is not an attempt to

enforce partial memory safety on the trusted application

but to enforce sensible memory access controls across these

boundaries.

Though Connor et al. [19] demonstrate that existing MPK

protections can be bypassed by using the kernel as a confused

deputy, compelling recent work indicates that MPK opera-

tions can bemade secure. Both Im et al. [35] and Voulimeneas

et al. [64] propose systems that can interpose onMPK related

operations and prevent adversaries from bypassing the in-

tended security mechanisms. While our system is focused on

user-level applications, Gravani et al. [27] demonstrated that

MPK can be used to provide user-kernel separation within

a shared address space. Additionally, their system provides

a secure and efficient shadow stack implementation that is

free from data races.

8 Conclusion
We presented PKRU-Safe, the first data-flow aware and

fully automatic source-level compartmentalization frame-

work that supports multi-threaded mixed-language envi-

ronments without requiring OS modifications or significant

application rewriting. It allows developers to gain safety

now, as they transisiton the rest of their codebase to safer

alternatives. Our prototype of PKRU-Safe demonstrates its

scalability to large software projects, such as web browsers,

which require least privilege isolation. Our evaluation on a

wide range of benchmarks and a large real-world application

further shows that PKRU-Safe is both effective and practical,

yielding low overhead while adding significant additional

memory isolation for mixed-language programs.

Acknowledgments
This material is based upon work supported by the Defense

Advanced Research Projects Agency (DARPA) Small Busi-

ness Technology Transfer (STTR) Program Office under Con-

tract No. W31P4Q-20-C-0052 and W912CG-21-C-0020. Any

opinions, findings and conclusions or recommendations ex-

pressed in this material are those of the author(s) and do not

necessarily reflect the views of the DARPA STTR Program

Office, its Contracting Agents, or any other agency of the

U.S. Government.

This research is partially funded by the Research Fund KU

Leuven, and by the Flemish Research Programme Cyberse-

curity.

We also thank the Donald Bren School of Information and

Computer Science at UCI for an ICS Research Award.

References
[1] 2021. Dromaeo: JavaScript performance testing. https://wiki.mozilla.

org/Dromaeo.

[2] 2021. JetStream 2. https://browserbench.org/JetStream.

[3] 2021. Kraken Benchmarks. http://krakenbenchmark.mozilla.org/.

[4] 2021. Octane Benchmarks. https://developers.google.com/octane/.

[5] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2005.

Control-Flow Integrity. In ACM Conference on Computer and Commu-
nications Security (CCS).

[6] HussainM. J. Almohri andDavid Evans. 2018. Fidelius Charm: Isolating

Unsafe Rust Code. In Proceedings of the Eighth ACM Conference on Data
and Application Security and Privacy (Tempe, AZ, USA) (CODASPY ’18).

https://wiki.mozilla.org/Dromaeo
https://wiki.mozilla.org/Dromaeo
https://browserbench.org/JetStream
http://krakenbenchmark.mozilla.org/
https://developers.google.com/octane/

EuroSys ’22, April 5–8, 2022, RENNES, France Kirth, et al.

Association for Computing Machinery, New York, NY, USA, 248–255.

https://doi.org/10.1145/3176258.3176330

[7] Julian Bangert, Sergey Bratus, Rebecca Shapiro, Jason Reeves, Sean W.

Smith, Anna Shubina, Maxwell Koo, and Michael E. Locasto. 2016.

Sections are Types, Linking is Policy: Using the Loader Format for Ex-

pressing Programmer Intent. In BlackHat USA. https://www.blackhat.

com/us-16/briefings.html#sergey-bratus

[8] Markus Bauer and Christian Rossow. 2021. Cali: Compiler Assisted

Library Isolation. In Proceedings of the 2021 ACM Asia Conference on
Computer and Communications Security (ASIA CCS’21). Association
for Computing Machinery.

[9] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Maz-

ières, and Christos Kozyrakis. 2012. Dune: Safe User-level Access to

Privileged CPU Features. In 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 12). USENIX Association,

Hollywood, CA, 335–348. https://www.usenix.org/conference/osdi12/

technical-sessions/presentation/belay

[10] bi0s. 2019. Writeup for CVE-2019-11707. https://blog.bi0s.in/2019/08/

18/Pwn/Browser-Exploitation/cve-2019-11707-writeup/.

[11] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp.

2008. Wedge: Splitting Applications into Reduced-Privilege Com-

partments. In 5th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 08). USENIX Association, San Francisco,

CA. https://www.usenix.org/conference/nsdi-08/wedge-splitting-

applications-reduced-privilege-compartments

[12] Ferdinand Brasser, Lucas Davi, David Gens, Christopher Liebchen,

and Ahmad-Reza Sadeghi. 2017. CAn’t touch this: Software-only

mitigation against Rowhammer attacks targeting kernel memory. In

26th USENIX Security Symposium (USENIX Security 17). 117–130.
[13] David Brumley and Dawn Song. 2004. Privtrans: Automatically

Partitioning Programs for Privilege Separation. In 13th USENIX
Security Symposium (USENIX Security 04). USENIX Association, San

Diego, CA. https://www.usenix.org/conference/13th-usenix-security-

symposium/privtrans-automatically-partitioning-programs-

privilege

[14] Nathan Burow, Xinping Zhang, and Mathias Payer. 2019. SoK: Shining

light on shadow stacks. In 2019 IEEE Symposium on Security and Privacy
(SP). IEEE, 985–999.

[15] Shuo Chen, Jun Xu, Emre Can Sezer, Prachi Gauriar, and Ravishankar K

Iyer. 2005. Non-Control-Data Attacks Are Realistic Threats. In USENIX
Security Symposium.

[16] Y. Chen, S. Reymondjohnson, Z. Sun, and L. Lu. 2016. Shreds: Fine-

Grained Execution Units with Private Memory. In 2016 IEEE Sympo-
sium on Security and Privacy (SP). 56–71. https://doi.org/10.1109/SP.

2016.12

[17] Chromium. 2019. Chromium Site Isolation. https://www.chromium.

org/Home/chromium-security/site-isolation.

[18] The GNU Compiler Collection. 2021. x86 Options. https://gcc.gnu.org/

onlinedocs/gcc/x86-Options.html.

[19] R. Joseph Connor, Tyler McDaniel, Jared M. Smith, and Max Schuchard.

2020. PKU Pitfalls: Attacks on PKU-based Memory Isolation Sys-

tems. In 29th USENIX Security Symposium (USENIX Security 20).
USENIX Association, 1409–1426. https://www.usenix.org/conference/

usenixsecurity20/presentation/connor

[20] Jonathan Corbet. 2015. Intel Memory Protection Keys. https://lwn.

net/Articles/643797/.

[21] Webkit Developers. 2021. JetStream2 in depth analysis. https:

//browserbench.org/JetStream/in-depth.html.

[22] Firefox. 2019. Telemetry/Experiments - Mozilla Wiki. https://wiki.

mozilla.org/Telemetry/Experiments.

[23] Tommaso Frassetto, David Gens, Christopher Liebchen, and Ahmad-

Reza Sadeghi. 2017. JITGuard: Hardening Just-in-time Compilers with

SGX. In ACM Conference on Computer and Communications Security
(CCS).

[24] David Gens, Orlando Arias, Dean Sullivan, Christopher Liebchen, Yier

Jin, and Ahmad-Reza Sadeghi. 2017. Lazarus: Practical side-channel

resilient kernel-space randomization. In International Symposium on
Research in Attacks, Intrusions, and Defenses. Springer, 238–258.

[25] Adrien Ghosn, Marios Kogias, Mathias Payer, James R Larus, and

Edouard Bugnion. 2021. Enclosure: Language-Based Restriction of Un-
trusted Libraries. Technical Report.

[26] Google Inc. 2021. Sandboxed API. https://github.com/google/

sandboxed-api.

[27] Sypridoula Gravani, Mohammad Hedayati, John Criswell, and

Michael L Scott. 2021. Fast Intra-kernel Isolation and Security with

IskiOS. In 24th Intl. Symp. on Research in Attacks, Intrusions and De-
fenses (RAID).

[28] Khilan Gudka, Robert N.M. Watson, Jonathan Anderson, David Chis-

nall, Brooks Davis, Ben Laurie, Ilias Marinos, Peter G. Neumann, and

Alex Richardson. 2015. Clean Application Compartmentalization with

SOAAP. In Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security (Denver, Colorado, USA) (CCS ’15).
Association for ComputingMachinery, New York, NY, USA, 1016–1031.

https://doi.org/10.1145/2810103.2813611

[29] Arie Gurfinkel and Jorge A. Navas. 2017. A Context-Sensitive Memory

Model for Verification of C/C++ Programs. In Static Analysis, Francesco
Ranzato (Ed.). Springer International Publishing, Cham, 148–168.

[30] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John

Criswell, Michael L. Scott, Kai Shen, and Mike Marty. 2019. Hodor:

Intra-Process Isolation for High-Throughput Data Plane Libraries.

In 2019 USENIX Annual Technical Conference (USENIX ATC 19).
USENIX Association, Renton, WA, 489–504. https://www.usenix.org/

conference/atc19/presentation/hedayati-hodor

[31] Andrei Homescu, Stefan Brunthaler, Per Larsen, and Michael Franz.

2013. Librando: transparent code randomization for just-in-time com-

pilers. In ACM Conference on Computer and Communications Security
(CCS).

[32] Terry Ching-Hsiang Hsu, Kevin Hoffman, Patrick Eugster, and Math-

ias Payer. 2016. Enforcing Least Privilege Memory Views for Multi-

threaded Applications. In Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security (Vienna, Austria)

(CCS ’16). Association for Computing Machinery, New York, NY, USA,

393–405. https://doi.org/10.1145/2976749.2978327

[33] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang. 2016.

Data-Oriented Programming: On the Expressiveness of Non-control

Data Attacks. In 2016 IEEE Symposium on Security and Privacy (SP).
969–986. https://doi.org/10.1109/SP.2016.62

[34] Jie Huang, Oliver Schranz, Sven Bugiel, and Michael Backes. 2017.

The art of app compartmentalization: Compiler-based library privilege

separation on stock android. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. 1037–1049.

[35] Bumjin Im, Fangfei Yang, Chia-Che Tsai, Michael LeMay, Anjo

Vahldiek-Oberwagner, and Nathan Dautenhahn. 2021. The Endoker-

nel: Fast, Secure, and Programmable Subprocess Virtualization. arXiv
e-prints (2021), arXiv–2108.

[36] Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger, andMathias Payer.

2018. Block Oriented Programming: Automating Data-Only Attacks.

In ACM Conference on Computer and Communications Security (CCS).
[37] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.

2017. RustBelt: Securing the Foundations of the Rust Programming

Language. Proc. ACM Program. Lang. 2, POPL, Article 66 (Dec. 2017),
34 pages.

[38] Zijo Kenjar, Tommaso Frassetto, David Gens, Michael Franz, and

Ahmad-Reza Sadeghi. 2020. V0ltpwn: Attacking x86 processor in-

tegrity from software. In 29th USENIX Security Symposium (USENIX
Security 20). 1445–1461.

[39] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,

Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas

https://doi.org/10.1145/3176258.3176330
https://www.blackhat.com/us-16/briefings.html#sergey-bratus
https://www.blackhat.com/us-16/briefings.html#sergey-bratus
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/belay
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/belay
https://blog.bi0s.in/2019/08/18/Pwn/Browser-Exploitation/cve-2019-11707-writeup/
https://blog.bi0s.in/2019/08/18/Pwn/Browser-Exploitation/cve-2019-11707-writeup/
https://www.usenix.org/conference/nsdi-08/wedge-splitting-applications-reduced-privilege-compartments
https://www.usenix.org/conference/nsdi-08/wedge-splitting-applications-reduced-privilege-compartments
https://www.usenix.org/conference/13th-usenix-security-symposium/privtrans-automatically-partitioning-programs-privilege
https://www.usenix.org/conference/13th-usenix-security-symposium/privtrans-automatically-partitioning-programs-privilege
https://www.usenix.org/conference/13th-usenix-security-symposium/privtrans-automatically-partitioning-programs-privilege
https://doi.org/10.1109/SP.2016.12
https://doi.org/10.1109/SP.2016.12
https://www.chromium.org/Home/chromium-security/site-isolation
https://www.chromium.org/Home/chromium-security/site-isolation
https://gcc.gnu.org/onlinedocs/gcc/x86-Options.html
https://gcc.gnu.org/onlinedocs/gcc/x86-Options.html
https://www.usenix.org/conference/usenixsecurity20/presentation/connor
https://www.usenix.org/conference/usenixsecurity20/presentation/connor
https://lwn.net/Articles/643797/
https://lwn.net/Articles/643797/
https://browserbench.org/JetStream/in-depth.html
https://browserbench.org/JetStream/in-depth.html
https://wiki.mozilla.org/Telemetry/Experiments
https://wiki.mozilla.org/Telemetry/Experiments
https://github.com/google/sandboxed-api
https://github.com/google/sandboxed-api
https://doi.org/10.1145/2810103.2813611
https://www.usenix.org/conference/atc19/presentation/hedayati-hodor
https://www.usenix.org/conference/atc19/presentation/hedayati-hodor
https://doi.org/10.1145/2976749.2978327
https://doi.org/10.1109/SP.2016.62

PKRU-Safe: Automatically Locking Down the Heap Between Safe and Unsafe Languages EuroSys ’22, April 5–8, 2022, RENNES, France

Prescher, et al. 2019. Spectre attacks: Exploiting speculative execution.

In 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 1–19.
[40] Volodymyr Kuznetzov, László Szekeres, Mathias Payer, George Can-

dea, R Sekar, and Dawn Song. 2018. Code-pointer integrity. In The
Continuing Arms Race: Code-Reuse Attacks and Defenses. 81–116.

[41] Benjamin Lamowski, Carsten Weinhold, Adam Lackorzynski, and

Hermann Härtig. 2017. Sandcrust: Automatic Sandboxing of Unsafe

Components in Rust. In Proceedings of the 9th Workshop on Program-
ming Languages and Operating Systems (Shanghai, China) (PLOS’17).
Association for Computing Machinery, New York, NY, USA, 51–57.

https://doi.org/10.1145/3144555.3144562

[42] Juneyoung Lee, Chung-Kil Hur, Ralf Jung, Zhengyang Liu, John Regehr,

and Nuno P Lopes. 2018. Reconciling high-level optimizations and

low-level code in LLVM. In Proceedings of the ACM on Programming
Languages, Vol. 2. ACM New York, NY, USA, 1–28.

[43] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner

Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel

Genkin, et al. 2018. Meltdown: Reading kernel memory from user space.

In 27th USENIX Security Symposium (USENIX Security 18). 973–990.
[44] James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak

Garg, Bobby Bhattacharjee, and Peter Druschel. 2016. Light-weight

contexts: An OS abstraction for safety and performance. In 12th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16). 49–64.

[45] Peiming Liu, Gang Zhao, and Jeff Huang. 2020. Securing Unsafe

Rust Programs with XRust. In Proceedings of the ACM/IEEE 42nd In-
ternational Conference on Software Engineering (Seoul, South Korea)

(ICSE ’20). Association for Computing Machinery, New York, NY, USA,

234–245. https://doi.org/10.1145/3377811.3380325

[46] Shen Liu, Gang Tan, and Trent Jaeger. 2017. PtrSplit: Supporting

General Pointers in Automatic Program Partitioning. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security (Dallas, Texas, USA) (CCS ’17). Association for Computing

Machinery, New York, NY, USA, 2359–2371. https://doi.org/10.1145/

3133956.3134066

[47] Microsoft. 2006. Data Execution Prevention (DEP). http://support.

microsoft.com/kb/875352/EN-US.

[48] Matt Miller. 2019. Trends, challenges, and strategic

shifts in the software vulnerability mitigation landscape.

https://github.com/microsoft/MSRC-Security-Research/blob/

master/presentations/2019_02_BlueHatIL/2019_01-BlueHatIL-

Trends,challenge,andshiftsinsoftwarevulnerabilitymitigation.pdf.

[49] Mozilla. 2019. Oxidation. https://wiki.mozilla.org/Oxidation.

[50] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F.

Sweeney. 2009. Producing Wrong Data without Doing Anything

Obviously Wrong!. In Proceedings of the 14th International Confer-
ence on Architectural Support for Programming Languages and Op-
erating Systems (Washington, DC, USA) (ASPLOS XIV). Association
for Computing Machinery, New York, NY, USA, 265–276. https:

//doi.org/10.1145/1508244.1508275

[51] Shravan Narayan, Craig Disselkoen, Tal Garfinkel, Nathan Froyd,

Eric Rahm, Sorin Lerner, Hovav Shacham, and Deian Stefan. 2020.

Retrofitting Fine Grain Isolation in the Firefox Renderer. In 29th
USENIX Security Symposium (USENIX Security 20). USENIX Associa-

tion, 699–716. https://www.usenix.org/conference/usenixsecurity20/

presentation/narayan

[52] Ben Niu and Gang Tan. 2014. RockJIT: Securing Just-In-Time Compi-

lation Using Modular Control-Flow Integrity. In ACM Conference on
Computer and Communications Security (CCS).

[53] Soyeon Park, Sangho Lee, Wen Xu, HyunGon Moon, and Taesoo Kim.

2019. libmpk: Software Abstraction for Intel Memory Protection Keys

(Intel MPK). In 2019 USENIX Annual Technical Conference (USENIX
ATC 19). USENIX Association, Renton, WA, 241–254. https://www.

usenix.org/conference/atc19/presentation/park-soyeon

[54] Taemin Park, Karel Dhondt, David Gens, Yeoul Na, Stijn Volckaert,

and Michael Franz. 2020. NoJITsu: Locking Down JavaScript Engines.

In NDSS. https://doi.org/10.14722/ndss.2020.24262

[55] Charles Reis, Alexander Moshchuk, and Nasko Oskov. 2019. Site

isolation: Process separation for web sites within the browser. In 28th
USENIX Security Symposium (USENIX Security 19). 1661–1678.

[56] Philipp Dominik Schubert, Ben Hermann, and Eric Bodden. 2019.

Phasar: An inter-procedural static analysis framework for c/c++. In

International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 393–410.

[57] Mark Seaborn and Thomas Dullien. 2015. Exploiting the DRAM

rowhammer bug to gain kernel privileges. In BlackHat USA.
[58] Johannes Späth, Karim Ali, and Eric Bodden. 2019. Context-, Flow-

and Field-Sensitive Data-Flow Analysis using Synchronized Pushdown

Systems. In 46th ACM SIGPLAN Symposium on Principles of Program-
ming Languages, POPL 2019, January 16-18, 2019, Lisbon, Portugal.
10:1–10:27.

[59] Jeff Vander Stoep and Chong Zhang. 2019. Queue the Hardening

Enhancements. https://android-developers.googleblog.com/2019/05/

queue-hardening-enhancements.html.

[60] Zahra Tarkhani and Anil Madhavapeddy. 2020. `Tiles: Efficient Intra-

Process Privilege Enforcement of Memory Regions. arXiv preprint
arXiv:2004.04846 (2020).

[61] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael

Sammler, Peter Druschel, and Deepak Garg. 2019. ERIM: Secure,

Efficient In-process Isolation with Protection Keys (MPK). In 28th
USENIX Security Symposium (USENIX Security 19). USENIX Associa-

tion, Santa Clara, CA, 1221–1238. https://www.usenix.org/conference/

usenixsecurity19/presentation/vahldiek-oberwagner

[62] Victor Van Der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel

Gruss, Clémentine Maurice, Giovanni Vigna, Herbert Bos, Kaveh

Razavi, and Cristiano Giuffrida. 2016. Drammer: Deterministic

rowhammer attacks on mobile platforms. In ACM Conference on Com-
puter and Communications Security (CCS).

[63] Nikos Vasilakis, Ben Karel, Nick Roessler, Nathan Dautenhahn, André

DeHon, and Jonathan M Smith. 2018. BreakApp: Automated, Flexible

Application Compartmentalization.. In NDSS.
[64] Alexios Voulimeneas, Jonas Vinck, Ruben Mechelinck, and Stijn Vol-

ckaert. 2022. You Shall Not (by)Pass! Practical, Secure, and Fast PKU-

based Sandboxing. In European Conference on Computer Systems (Eu-
roSys).

[65] Jun Wang, Xi Xiong, and Peng Liu. 2015. Between Mutual Trust and

Mutual Distrust: Practical Fine-Grained Privilege Separation in Multi-

threaded Applications. In Proceedings of the 2015 USENIX Conference
on Usenix Annual Technical Conference (Santa Clara, CA) (USENIX ATC
’15). USENIX Association, USA, 361–373.

[66] Y. Wu, J. Sun, Y. Liu, and J. S. Dong. 2013. Automatically parti-

tion software into least privilege components using dynamic data

dependency analysis. In 2013 28th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE). 323–333. https:

//doi.org/10.1109/ASE.2013.6693091

A Artifact Appendix
A.1 Abstract

PKRU-Safe is a new system that uses an MPK aware allocator

and set of compiler extensions to protect data exclusively

used by Rust code from abuse by memory unsafe legacy com-

ponents. The provided artifacts are a public facing repository

containing all related code and instructions, and a pre-built

docker image containing artifacts and an environment for

testing the claims made in the paper. The overall layout of

https://doi.org/10.1145/3144555.3144562
https://doi.org/10.1145/3377811.3380325
https://doi.org/10.1145/3133956.3134066
https://doi.org/10.1145/3133956.3134066
http://support.microsoft.com/kb/875352/EN-US
http://support.microsoft.com/kb/875352/EN-US
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01 - BlueHatIL - Trends, challenge, and shifts in software vulnerability mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01 - BlueHatIL - Trends, challenge, and shifts in software vulnerability mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01 - BlueHatIL - Trends, challenge, and shifts in software vulnerability mitigation.pdf
https://wiki.mozilla.org/Oxidation
https://doi.org/10.1145/1508244.1508275
https://doi.org/10.1145/1508244.1508275
https://www.usenix.org/conference/usenixsecurity20/presentation/narayan
https://www.usenix.org/conference/usenixsecurity20/presentation/narayan
https://www.usenix.org/conference/atc19/presentation/park-soyeon
https://www.usenix.org/conference/atc19/presentation/park-soyeon
https://doi.org/10.14722/ndss.2020.24262
https://android-developers.googleblog.com/2019/05/queue-hardening-enhancements.html
https://android-developers.googleblog.com/2019/05/queue-hardening-enhancements.html
https://www.usenix.org/conference/usenixsecurity19/presentation/vahldiek-oberwagner
https://www.usenix.org/conference/usenixsecurity19/presentation/vahldiek-oberwagner
https://doi.org/10.1109/ASE.2013.6693091
https://doi.org/10.1109/ASE.2013.6693091

EuroSys ’22, April 5–8, 2022, RENNES, France Kirth, et al.

the docker image is described in the public repository docu-

mentation.

A.2 Description & Requirements
A.2.1 How to access.

• Docker Image: https://hub.docker.com/r/mgdickerson/

pkru-safe.

• PKRU-Safe: https://github.com/securesystemslab/

PKRU-Safe.

• Instructions: https://github.com/securesystemslab/

PKRU-Safe/blob/main/README.md

• Artifact DOI: https://doi.org/10.5281/zenodo.6336301

A.2.2 Hardware dependencies. PKRU-Safe depends on
Memory Protection Key (MPK) hardware and thus requires

a processor that supports MPK. To check if your system

supports MPK, follow the Instructions under Hardware Re-

quirements.

A.2.3 Software dependencies. PKRU-Safe requires an

extended version of the Rust compiler which can be found in

the docker container linked above or in the code repository.

A.2.4 Benchmarks. PKRU-Safe contains two major

benchmark sets as reported a set of micro-benchmarks and

a set of browser benchmarks (dromaeo, kraken, JetStream2)

used with Servo. Both can be found along with instructions

for usage in Instructions.

A.3 Setup
For setting up the testing environment there are several

options available. The fastest setup would be to use the

docker image referenced above, or to build the docker envi-

ronment from scratch following instructions under Docker

Setup steps 1 through 3 from the Instructions. It is also pos-

sible to build it on your host system if you are on Debian

Buster using the instructions under Local Setup.

A.4 Evaluation workflow
A.4.1 Major Claims.

• (C1): PKRU-Safe is the first intra-process isolation
scheme for heap data in mixed language environments,
relying only on developer annotations that operate at
the library level. This is described in section 4.1 and
shown in greater detail in experiment (E1).

• (C2): PKRU-Safe scales effectively to large projects such
as Servo as described in sections 5.1-5.3. This is also
shown in experiment (E2).

• (C3): PKRU-Safe maintains relatively low overhead on
real world applications as described in section 5.3, fig-
ures [3-7], and Tables [1-3]. This is further shown in
experiment (E2).

• (C4): PKRU-Safe defends against real world vulnerabili-
ties as shown in section 5.4 and experiment (E3).

A.4.2 Experiments. All listed time requirements are

subject to change depending on system resources. All listed

estimates are based on the Author’s system referenced in

the Instructions under Experimental Environment.

Experiment (E1) [5 human-minutes + 10 compute-
minutes][<1GB RAM]: This experiment will walk the user

through setting up a project to use PKRU-Safe in a minimum

working example and showcase its functionality.

[Setup]
If using the provided docker, then the experiment will be

located in the $HOME/mpk-test-dir/pkru-safe-example. To

setup a project from scratch, follow the steps under Project

Setup in the Instructions.

[Running Experiment] In the pkru-safe-example we

will build and run 3 different binaries to showcase the

features of PKRU-Safe. In the Instructions under Building A

Project, Step 1 builds a binary that disallows all untrusted

code from accessing allocations in trusted code segments.

In Step 2 we build a profiling version, which allows us to

execute the program and find safe allocations that need to

be shared with the untrusted code. Finally, Step 3 will build

an instrumented binary that disallows access to trusted

allocations, but also marks allocations found in the profiling

step as shared allocations.

[Results] In Step 1, execution will fault on an untrusted

access of trusted memory. This demonstrates PKRU-Safe’s

ability to isolate heap data, but we also want to mark that

this data allocation should be shared with the untrusted

library. Step 2 demonstrates a profiling version of the

example which marks allocations that cross the boundary

from trusted to untrusted code. Step 3 demonstrates a final

instrumented binary which shares the data allocation with

the untrusted code. The final output show that the value at

the allocation site changes from 0 to 1337.

Experiment (E2) [15 - 30 human-minutes + 1.5 compute-
hours - 7 compute-hours][<40GB RAM]: This experiment

will demonstrate PKRU-Safe on Servo using the pre-built

artifacts on the provided docker image taking approximately

1.5 compute hours. Optionally the user can build the three

versions of Servo from scratch which will take approxi-

mately 7 compute-hours as measured on the author’s system.

[Setup]
If using the provided docker, then the experiment will be

located in the $HOME/mpk-test-dir directory. If instead

building from scratch follow the Instructions under PKRU

Tests, Servo.

https://hub.docker.com/r/mgdickerson/pkru-safe
https://hub.docker.com/r/mgdickerson/pkru-safe
https://github.com/securesystemslab/PKRU-Safe
https://github.com/securesystemslab/PKRU-Safe
https://github.com/securesystemslab/PKRU-Safe/blob/main/README.md
https://github.com/securesystemslab/PKRU-Safe/blob/main/README.md
https://doi.org/10.5281/zenodo.6336301

PKRU-Safe: Automatically Locking Down the Heap Between Safe and Unsafe Languages EuroSys ’22, April 5–8, 2022, RENNES, France

[Running Experiment] To run the benchmarking ex-

periment, follow the Instructions under Servo Step 1,

which will run the benchmarks on the artifacts of the

pre-built container. If you built from the sources, you

can instead use the final command in the Servo building

instructions to run the benchmarks. Notably, we found

that the Dromaeo test suite triggers a spurious bug in the

baseline version of Servo that PKRU-Safe evaluated against.

This behavior appears to depend largely on the hardware

configuration. In our investigation we found that it is caused

by a race condition through an improperly introduced

alias between Rust variables. Since this violates the Rust

language rules, compiler inserted checks will occasionally

flag this language violation as a runtime borrow error in

the original unmodified baseline version of Servo during

execution of the innerHTML test in Dromaeo. We were able

to complete a full set of tests (i.e., including innerHTML) on
all hardware configurations we tested on by reducing the

numTests variable from 5 to 4 (or lower) on Line 8 in the

following file in Dromaeo: $HOME/mpk-test-dir/servo-step-

no-mpk/tests/dromaeo/dromaeo/web/webrunner.js.

[Results] If following the instructions for building

and running a copy from scratch, the results should be

present in a folder named bench-results your chosen

BASE_PATH ($HOME/mpk-test-dir by default). If following

the directions for artifact evaluation, the results should

be in folders vanilla-bench-results, mpk-bench-results,

no-mpk-bench-results, vanilla-dromaeo-bench-results, mpk-

dromaeo-bench-results, and no-mpk-dromaeo-bench-results.

In both approaches, the folders will contain json files with

scores for the given benchmarks that they ran. These will

correspond to the scores reported in the tables 1-3 of the

paper.

Experiment (E3) [5 human-minutes + 10 compute-
minutes][<1GB RAM]: This experiment will demonstrate

PKRU-Safe’s ability to prevent real world vulnerabilities

such as CVE-2019-11707 from SpiderMonkey.

[Setup]
This experiment requires use of the pre-built docker

image. The exploit grabs address location 0x168000000000

and sets its value to 0x42. If you wish to change the

address the exploit grabs, change the variable data on line

4 of cve_2.js to the address you wish to pick as a double value.

[Running Experiment] For this experiment, we have made a

simple version of CVE-2019-11707 and provided the source

at https://github.com/securesystemslab/pkru-safe-cve-html.

For ease of use, we have also included a script for running the

exploit on a version of Servo without PKRU-Safe protections

(servo-exploitable) and a version with protections enabled

(servo-pkru) which is shown in the Instructions under Servo

Step 2. To run the exploit, navigate to the automation folder

(located in the $HOME/mpk-test-dir directory) and run the

test_exploit.sh script.

[Results] On the vulnerable version of Servo the ex-

ploit will change the value of the Rust data at address

location 0x168000000000 from 42 to 1337. Both of these

values will be printed to the console. In the PKRU-Safe

version, the exploit’s attempt to access trusted data will

result in an MPK violation and terminate execution.

https://github.com/securesystemslab/pkru-safe-cve-html

	Abstract
	1 Introduction
	2 Threat Model
	3 Design
	3.1 Overview
	3.2 Compartment Identification
	3.3 Basic Instrumentation
	3.4 Overcoming Page-based Protection Granularity

	4 Implementation
	4.1 Frontend Instrumentation
	4.2 Modifications to Rust and its Core Libraries
	4.3 Analysis
	4.4 pkalloc

	5 Evaluation
	5.1 Experimental configuration
	5.2 Micro-Benchmarks
	5.3 Performance
	5.4 Security

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Setup
	A.4 Evaluation workflow

