
Sudoku Madness
Team 3: Matt Crain, John Cheng, and Rabih Sallman

I. Problem Description

Standard Sudoku is a logic-based puzzle in which the user must fill a 9 x 9 board
with the appropriate digits so that each row, column, and individual sub-grids (must
be perfect squares) contains the digits 1-9.

Sudoku is essentially a form of a constraint satisfaction problem, therefore we will
use methods discussed in literature and lecture to help us find a solution that is both
fast and efficient. Some techniques that we may build from are constraint
propagation (forward checking, backtracking search, etc.) and local consistency
verification(arc, path, etc.).

The standard Sudoku by itself is a very well known problem. It has been solved
using just about every possible method, multiple times. Brute force algorithms can
solve Sudoku, but aren't efficient in any sense of the term. Constraint satisfaction is
exceptionally common and Sudoku almost seems like a mascot for attracting new
people to look into constraint programming, since it provides an interesting
foundation for constraint solving while being difficult enough to remain interesting.
Less conventional means of solving that involve various searching techniques and

even genetic algorithms have also been used. In the paper "Stochastic Optimization
Approaches for Solving Sudoku", Meir Perez and Tshilidzi Marwala used Cultural
Genetic Algorithm, Repulsive Particle Swarm Optimization, Quantum Simulated
Annealing and a Genetic Algorithm with Simulated Annealing. These gave varying
results, with the Swarm algorithm being incapable of solving the problem and the
Genetic Algorithm with Simulated Annealing being the fastest.

II. Detailed Background

Currently, most literature focuses on a very focused limited set of Sudoku, which
typically is the standard 9 x 9. Rarely do the problems ever reach even a 16 x 16
grid. What we would like to do is push the upper bound of our program to a much
larger grid size, allowing things like 25 x 25, 36 x 36, or even larger grids to be
generated and solved. "A search based Sudoku solver" is one paper about using
search techniques for solving sudoku that does reference these larger grids and
states that there is a phase change when you get to 25 x 25 that causes the
problems to become more difficult.

Solving techniques that can be done by hand have been thoroughly flushed out.
There's over a dozen different inference techniques that people may use to solve

very difficult puzzles. Most, if not all of these have been detailed on SadMan
Software.



There's also one thing we haven't noticed much in any of the literature and that's the
benefits that multi-threading can provide. In something like a backtracking search it
would be very easy to see a thread being spawned for each branch of a backtrack so
each branch would be evaluated in parallel. This could be very helpful with larger
versions of the problem.

Solving

Solving a Sudoku is quite easy in principle, but very difficult to do with efficiency. The
solving algorithm heavily utilizes the constraint network to find solution values for
cells and search for solutions if need be. The basis of the algorithm is constraint
propagation, so once one value is assigned to a cell that value is removed from the
domain of any cells that are constrained by the cell that was assigned. Finding cells
to assign values to is done by a simple search through all the cells. The search looks
for cells that are most heavily constrained, therefor having a small number of
minimum remaining possible values to be assigned to them. The best case is when a
search returns cells that only have one possible value, because that is the solution
value for that cell. If the search returns cells that have more than one possible value,
then a completely different search is performed; a recursive backtracking search.

The backtracking search is effective, being able to solve any Sudoku given infinite
time, but slow, so a lot of effort is spent minimizing the amount of backtracking that is
performed. Using cells with the minimum remaining values is very important.
Typically the minimum is two if a backtracking search is required. It is very important
to perform the search on these values that only have two possible values instead of
searching on other random cells. The odds on being correct on the first guess are
50%, instead of around 20% if you were to pick randomly. The cells with the
minimum remaining value are ordered in a way to try and maximize correctness on
the first guess. Each value in the domain is weight based on how many times it has
been used already in the Sudoku, the more it has been used the higher the weight.
Using these weights the possible cells are sorted in a fashion that places the highest
weighted values to be picked first. The highest weighted possible value is assigned
to the cell and the search continues. This heuristic is used because the more a
specific value is used the lower the total number of remaining cells it can occupy.
Typically if a cell contains one of the last possible locations for that value there's a

higher probability of being correct if we chose it. If a branch is encountered where
there are one or more cells that can't be legally given a value from their domain then
the branch is deemed a fairly and the algorithm backtracks to the last branching
point.

The main issue with the backtracking search is how many different branching
possibilities there are. A fair amount of effort is spent trying to minimize these
branches with inference techniques that go beyond what the general constraints of
Sudoku allow. Really they can be found within the constraints, however then can't be
easily propagated throughout the grid when an assignment is made. One example
would be if a subgrid (one of the nine 3x3 squares within a standard Sudoku)
requires that a specific value, we'll use '7', must be located within a column of that
subgrid. Since the 7 for that sub grid must be within the cells that make up the



column, then all the cells in the rest of that column for the entire puzzle cannot
contain the number 7 in their domain. This can eliminate up to 6 possible branching
positions that the constraints typically do not show.

Arc consistency is a way that allows a fair amount of the information that's deduced
through the inference techniques to be flushed out in a more simplified manner and
in one centralized process. Most efficient arc consistency techniques are
complicated and difficult to implement properly. van Dongen's AC-3d algorithm is
efficient, but quite complex. Our chosen algorithm is the AC-3 algorithm which is
easy to understand and almost efficient enough to justify using it. This algorithm
works great on 9x9, but slows down when the size of the puzzle is increased.

Multithreading was attempted, but had to be cut. It was taking too much time to
ensure that everything was properly working. Debugging is very difficult and it was
also hard to find out accurately how much effort went into solving a puzzle (e.g. the
number of branches explored). Given more time this could accelerate solving in a
manner proportional to the number of CPUs available. If you had 16 CPUs you
could explore 16 branches simultaneously and asynchronously, because branches
aren't dependent on the results of other branches.

Generating

Generating Sudoku puzzles is a task that is completed with three steps. First step is
to generate a complete puzzle. Second step is to generate a random permutation
from this completed puzzle. Lastly, we remove hints from the puzzle in order to
generate a puzzle that is playable.

Generating a complete puzzle is trivial. It can be done manually by inserting ordered
rows which are shifted one after another. For example, in a 9x9 Sudoku grid, first
row is defined as 1,2,3,4,5,6,7,8,9. The second row is shifted over:
2,3,4,5,6,7,8,9,1,etc... Another way is to allow a Sudoku solver, “solve” a blank
puzzle. At the end it will come up with some sort of valid configuration of cell values,
depending on the algorithm used.

Once the solved puzzle is generated, permutations are applied to “shuffle” the puzzle
to create different possible combinations while still maintaining the integrity of the
game. Permutations such as reflecting horizontally, vertically, diagonally keep the
puzzle valid. Other techniques such as value swapping and row swapping are also
valid moves. You can view these in "Enumerating possible Sudoku grids"

Lastly, removing hints from the grid can be done either randomly or methodically.
Most Sudoku games written in Javascript for a web browser, or cell phones use
random cell removal and the difficulty levels are determined by how many cells are
removed. For example, “easy” can be considered removing 47 cells, “medium” 54,
and “hard” 59. However, a different method can be used by examining the fact that
each row, column, or subgrid has to add up to 1 + 2 + 3 + .. + N where N is the size
of the puzzle. Using this property, we can find out how difficult a puzzle is by seeing
how many different sums are possible to complete each row, column, or subgrid.



Additionally, hints should be removed symmetrically. For example, if a hint is
removed in (0, 0) on a 9x9 grid, position (8,8) should also be removed. This creates
a puzzle that looks more balanced to a player and also reduces the chances of
generating invalid puzzles by evenly distributing the hints. An easy way to visualize
this is to imagine 40 hints being removed from a puzzle, and 3 adjacent subgrids are
completely removed. The puzzle is not balanced and multiple solutions can be easily
discovered.

The problem with removing hints from a completed puzzle is the introduction of
possible invalid puzzles, where the puzzles have multiple solutions. This problem is
solved by finding out whether or not a puzzle is unique, if it is not, generate a new
puzzle. To check if a given puzzle is unique, for every blank cell, every possible
value is assigned systematically and then checked to see how many solutions can
be found this way.

The following table displays the amount of time needed to find a solution vs. the
amount of blanks in the current puzzle. Each point on the line is the average from
100 trials at each number of blanks. A total of 7,000 samples were taken. The front
part of the graph is left out because the time is very predictable. Any larger number
of blanks than is shown produces Sudoku that have thousands of possible solutions
making them trivial to solve.



III. Tools

We used the Java programming language as well as the Eclipse IDE for Java
Development to complete the coding aspect of our project. We are using Google
Code to host our project and enable more efficient code coordination through its
version control client. All the code was created by our team and there is no
previously made code in our project. The GUI was created by our team as well using
the Swing toolkit for Java. We are only using third party tools to test and evaluate our
program. For example, we are using Google Documents to host a spreadsheet that
features our test results such as test case success and speed. Finally, we are
currently using two third-party Sudoku programs to compare our own program with.
One such program, SuDoku Solver, allows us to input a text case and in return will
output the time it takes for the quickest solution to be found. The second program,
The Ultimately Fast Sudoku Solver, is a browser based solver that also returns the
time it takes for the solution to be found, however, the input must be done by hand.

IV. Data

We can generate our own set of numbers/solutions for every game that is going to
be played. The difficulty of each test can be decided by the user and is handled by
our generating algorithms discussed in the previous sections. We are also using
previously generated puzzles (varying in difficulty) from WebSudoku.com and
converting them into text files so they can be used by our program for solving/testing
and any third-party programs that we may use for evaluation.

V. Input/Output

Sudoku Madness can input a previously generated puzzle (text file) and can also
handle input directly through the GUI to create a Sudoku or solve an existing
Sudoku. The text file contains the numbers 1through N with a “0” or “_” indicating a
blank space on the Sudoku grid. The program is set to output the solution of the
current Sudoku puzzle, the time for the solution to be found, and the depth of the
solution.

VI. Summary and Evaluation

Sudoku Madness is complete with a GUI, puzzle generator, solving generator, and a
test suite. The program can generate a Sudoku puzzle from user input through the
GUI or by importing an already existing Sudoku puzzle. The program can also
generate a Sudoku puzzle based on the the generating algorithms discussed in the
previous sections, and can solve the current Sudoku based on the solving algorithms
discussed in previous sections. Most importantly, the program is capable of solving
any difficulty of Sudoku puzzles instantaneously.

The following table displays the solving speed of Sudoku Madness compared with
SuDoku Solver and The Ultimately Fast Sudoku Solver aka Ultimate Solver. The x-
axis is based on the 4 difficulty levels of Sudoku puzzles - Easy, Medium, Hard, and



Evil. The data points represent the average solving time needed for each difficulty
level (Easy: 15 tests, Medium: 15 tests, Hard: 20 tests, and Evil: 30 tests)

Our program performs extremely well for each level of difficulty, even solving easy
Sudoku puzzles faster than SuDoku Solver. Although our program is slightly slower
when solving hard or evil Sudoku puzzles, the average solution time is still
instantaneous.

The following table displays the amount of branches searched before a solution was
found for each difficulty level.



The amount of branches needed to find a solution for the easy or medium test cases
remains right in line with the Ultimate Solver until we reach the the two more difficult
test groups. Our program searches an average of 50 more branches before finding a
solution for hard test cases, however, our program completely outperforms the
Ultimate Solver in the evil Sudoku tests. Our program searches 60% less branches
than the competition when solving the most difficult Sudoku puzzles available.

For larger Sudoku puzzles such as 16x16, 25x25, and 36x36 the program requires
much more time and patience for a solution to be found. Our program takes
anywhere between 7 seconds to 1 minute to solve a 16x16 Sudoku with an easy or
medium difficulty. The larger and more difficult the grid became increased the solving
time greatly (beyond 5 minutes) and therefore was not comparable to any third party
program we could find. Although most of our larger Sudoku puzzles were not solved
within our predetermined time limit, the success we experienced when solving 9x9
Sudoku puzzles assures us that a correction solution will be found.

VII. Separation of tasks

Matt Crain - Completed the GUI, Solving Algorithm, and helped test generation and
solving capabilities. Also researched and wrote about the solving algorithms included
in our submitted reports. Collected the rest of the groups information to create a slide
show for our midterm and final presentations.

John Cheng - Completed the Generating Algorithm and helped test generation
capabilities. Also researched and wrote about the generating algorithms included in
our submitted reports and in our slide show presentations.

Rabih Sallman - Completed the evaluation portion of our program. Created test
Sudoku files and an excel worksheet to compare our program with third party
programs. Also wrote and assembled the submitted reports and contributed to the
slide shower presentations.

VIII. User Manual for Sudoku Madness

i) How to compile and execute the program (Windows OS)

Step 1: Download Sudoku.zip from EEE and save to a directory of your choice.
Unzip the contents when the download has finished.

Step 2: Open command prompt by typing cmd in Run (located in the Start Menu for
Windows XP) or the Start Menu search bar (Windows Vista/Windows 7). Once the
command prompt has displayed, switch the current directory to the location of the
program. To switch directory, entering the command cd location; location is the path
to the directory containing the source files.

Step 3: Once in the appropriate directory, compile the .java files by entering the
command javac *.java and run the compiled program by entering the command java
-Xmx512m TestMain TestMain.java – the program’s GUI will appear momentarily.



*Xmx512m increases the Java heap space for the very large Sudoku. 512m is a
lower bound for large Sudoku. If you want to try anything with the larger puzzles
(25x25 or 36x36) I suggest you allocate more memory for it (e.g. 1024m or 2048m if
you have it available).

ii) How to use the GUI

Menu Bar

The following is a short description of each menu located on the menu bar.

File
The user may clear the current grid,
import a Sudoku puzzle, or export
the current puzzle to a text file

Solver Where the user can select to solve
the current Sudoku puzzle.

Generation

The user can generate a new game
based on difficulty – Solved, Easy,
Medium, or Hard. Then can also
test to see if the current Sudoku is
unique.

Generalize
Where the user can select the size
of the Sudoku grid – 9x9, 16x16,
24x24 or 36x36.

Testing Used to evaluate the program with
existing Sudoku files.

Sudoku Grid

The GUI will always display the current Sudoku puzzle for a simpler and more
efficient user experience.

Types of Grids

Generalized: The GUI will display the grid with the coordinates of each individual
box.

Blank: Displayed after the user selects to clear the grid.

Partially Solved: A grid in which some, but not all the values have been placed.



Solved Grid: A fully complete grid filled with legal values in each individual box and
sub-grids.

How to change values

The user is allowed to change the value of each individual box by selecting that box
and choosing the value from the drop down menu. Any illegal value will appear red
and will have to be changed.

Importing Sudoku puzzles

The user may also import a Sudoku puzzle from the file menu. The .txt file must be in
accordance with the formatting rules discussed in the Input/output section.

Exporting the current Sudoku puzzle

The user may also export (save) the currently displayed Sudoku puzzle from the file
menu. The resulting .txt file will be formatted in accordance with the formatting rules
discussed in the Input/output section.

Testing

The testing menu provides a variety of ways to test the program. Almost all of them
focus around the test Sudoku files that are provided with the code. These are
labeled with their respective difficulties: easy, medium, hard, and evil. When you
choose these options you are prompted for two different files. The first file will be the
location and name of the file that the test results are saved into. The second file is
one of the test files that you will be testing; if you are testing evil then you will browse
and find evil1 which should be grouped with all other evil difficulty files. This will tell
the program where all the files are located so they can be iterated through.

The only test that doesn't work like this is the super test. The super test will prompt
where you want the results to be saved. The program then generates a variety of
test Sudoku with different numbers of blanks, starting from 1 up to 70 and it
generates 100 test cases for each number of blanks. This means a total of 7000
Sudoku will be generated and solved. This test assumes a 9x9 Sudoku
configuration.

iii) Program Behavior

Sudoku Madness can display generating or solving results on the command prompt
or can save the information in a text file if running through a test suite. When a
Sudoku grid is generated by the program, the number of permutations through the
algorithms discussed earlier will be displayed to the user.The program's ability to
solve will be judged by its solving time and the number of branches it went through
before finding the solution. While a complete solution will be displayed on the GUI in
the form of a solved grid, the information displayed on the command prompt can be
useful for program evaluation.



If a puzzle was generated the following will be displayed on the command prompt:

Permutating through: ___ cycles

If a solution was found the following will be displayed on the command prompt:

"Branches: _____
Solved in _____ seconds"

*With the actual results in the place of the blanks.

When testing for a puzzles uniqueness the program will print all separate solutions
found to the command prompt. Then when all solutions have been found it will
popup a message saying it's done and how many. A limit is set at 1000 solutions
before it stops itself. Otherwise it could be searching for solutions until the end of
time.

Wait Time and Solving Time Limit

Processes such as generating and solving larger and more difficult puzzles,
generalizing larger grids, and testing may require longer waiting times than usual.
For solving, the program has a default time limit of 5 minutes. This value may be
changed by modifying "Constants.java" with a text editor and changing the
TIME_LIMIT variable.

Default is set at 5 minutes:
public static int TIME_LIMIT = 5 * 60 * 1000;

To change the time limit to 10 minutes change the variable to:
public static int TIME_LIMIT = 10 * 60 * 1000;

Recompile and run the program after the changes have been saved.

IX. References

1. Simon Armstrong: SadMan Software: http://www.sadmansoftware.com/
sudoku/solvingtechniques.htm

2. Meir Perez and Tshilidzi Marwala "Stochastic Optimization Approaches for
Solving Sudoku": http://arxiv.org/ftp/arxiv/papers/0805/0805.0697.pdf

3. Tristan Cazenave "A search based Sudoku solver": http://www.ai.univ-
paris8.fr/~cazenave/sudoku.pdf

4. The AC-3 algorithm: http://en.wikipedia.org/wiki/AC-3_algorithm
5. Bertram Felgenhauer "Enumerating possible Sudoku

grids": http://www.afjarvis.staff.shef.ac.uk/sudoku/sudoku.pdf
6. M.R.C. van Dongen "AC-3d an Efficient Arc-Consistency Algorithm with a

Low Space-Complexity": http://www.springerlink.com/index/
017mrfcnpb1qjx19.pdf

http://www.sadmansoftware.com/sudoku/solvingtechniques.htm
http://www.sadmansoftware.com/sudoku/solvingtechniques.htm
http://arxiv.org/ftp/arxiv/papers/0805/0805.0697.pdf
http://www.ai.univ-paris8.fr/%7Ecazenave/sudoku.pdf
http://www.ai.univ-paris8.fr/%7Ecazenave/sudoku.pdf
http://en.wikipedia.org/wiki/AC-3_algorithm
http://www.afjarvis.staff.shef.ac.uk/sudoku/sudoku.pdf
http://www.springerlink.com/index/017mrfcnpb1qjx19.pdf
http://www.springerlink.com/index/017mrfcnpb1qjx19.pdf



