Inference in belief networks

Chapter 15.3-4 + New

Outline

\diamond Exact inference by enumeration
\diamond Exact inference by variable elimination
\diamond Approximate inference by stochastic simulation
\diamond Approximate inference by Markov chain Monte Carlo

Inference tasks

Simple queries: compute posterior marginal $\mathbf{P}\left(X_{i} \mid \mathbf{E}=\mathbf{e}\right)$ e.g., $P($ NoGas \mid Gauge $=$ empty, Lights $=o n$, Starts $=$ false $)$

Conjunctive queries: $\mathbf{P}\left(X_{i}, X_{j} \mid \mathbf{E}=\mathbf{e}\right)=\mathbf{P}\left(X_{i} \mid \mathbf{E}=\mathbf{e}\right) \mathbf{P}\left(X_{j} \mid X_{i}, \mathbf{E}=\mathbf{e}\right)$
Optimal decisions: decision networks include utility information; probabilistic inference required for P (outcome|action, evidence)

Value of information: which evidence to seek next?
Sensitivity analysis: which probability values are most critical?
Explanation: why do I need a new starter motor?

Inference by enumeration

Slightly intelligent way to sum out variables from the joint without actually constructing its explicit representation

Simple query on the burglary network:

$$
\begin{aligned}
& \mathbf{P}(B \mid J=\text { true }, M=\text { true }) \\
& =\mathbf{P}(B, J=\text { true }, M=\text { true }) / P(J=\text { true }, M=\text { true }) \\
& =\alpha \mathbf{P}(B, J=\text { true }, M=\text { true }) \\
& =\alpha \Sigma_{e} \Sigma_{a} \mathbf{P}(B, e, a, J=\text { true }, M=\text { true })
\end{aligned}
$$

Rewrite full joint entries using product of CPT entries:

$$
\begin{aligned}
& P(B=\text { true } \mid J=\text { true, } M=\text { true }) \\
& =\alpha \Sigma_{e} \Sigma_{a} P(B=\text { true }) P(e) P(a \mid B=\text { true, e) } P(J=\text { true } \mid a) P(M=\text { true } \mid a) \\
& =\alpha P(B=\text { true }) \Sigma_{e} P(e) \Sigma_{a} P(a \mid B=\text { true, e) } P(J=\text { true } \mid a) P(M=\text { true } \mid a)
\end{aligned}
$$

Enumeration algorithm

Exhaustive depth-first enumeration: $O(n)$ space, $O\left(d^{n}\right)$ time

```
Enumeration \(\operatorname{Ask}(X, e, b n)\) returns a distribution over \(X\)
inputs: \(X\), the query variable
    \(\mathbf{e}\), evidence specified as an event
    \(b n\), a belief network specifying joint distribution \(\mathbf{P}\left(X_{1}, \ldots, X_{n}\right)\)
    \(\mathbf{Q}(x) \leftarrow\) a distribution over \(X\)
    for each value \(x_{i}\) of \(X\) do
        extend \(\mathbf{e}\) with value \(x_{i}\) for \(X\)
        \(\mathbf{Q}\left(x_{i}\right) \leftarrow\) Enumerate All (Vars \(\left.[b n], \mathbf{e}\right)\)
    return Normalize \((\mathbf{Q}(X))\)
```

Enumerate All(vars,e) returns a real number
if Empty? (vars) then return 1.0
else do
$Y \leftarrow \mathrm{Finst}($ vars $)$
if Y has value y in \mathbf{e}
then return $P(y \mid P a(Y)) \times$ EnumerateAll(Rest(vars), \mathbf{e})
else return $\Sigma_{y} P(y \mid P a(Y)) \times \operatorname{EnumerateAll}\left(\operatorname{Rest}(\right.$ vars $\left.), \mathbf{e}_{y}\right)$
where \mathbf{e}_{y} is \mathbf{e} extended with $Y=y$

Inference by variable elimination

Enumeration is inefficient: repeated computation e.g., computes $P(J=$ true $\mid a) P(M=$ true $\mid a)$ for each value of e

Variable elimination: carry out summations right-to-left, storing intermediate results (factors) to avoid recomputation

$$
\begin{aligned}
\mathbf{P}(B \mid J & =\text { true, } M=\text { true }) \\
& =\alpha \underbrace{\mathbf{P}(B)}_{B} \Sigma_{e} \underbrace{P(e)}_{E} \Sigma_{a} \underbrace{\mathbf{P}(a \mid B, e)}_{A} \underbrace{P(J=t r u e \mid a)}_{J} \underbrace{P(M=\text { true } \mid a)}_{M} \\
& =\alpha \mathbf{P}(B) \Sigma_{e} P(e) \Sigma_{a} \mathbf{P}(a \mid B, e) P(J=\operatorname{true} \mid a) f_{M}(a) \\
& =\alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} \mathbf{P}(a \mid B, e) f_{J}(a) f_{M}(a) \\
& =\alpha \mathbf{P}(B) \Sigma_{e} P(e) \Sigma_{a} f_{A}(a, b, e) f_{J}(a) f_{M}(a) \\
& =\alpha \mathbf{P}(B) \Sigma_{e} P(e) f_{\bar{A} J M}(b, e)(\text { sum out } A) \\
& =\alpha \mathbf{P}(B) f_{\bar{E} \bar{A}, J}(b)(\text { sum out } E) \\
& =\alpha f_{B}(b) \times f_{\bar{E} \bar{A} J M}(b)
\end{aligned}
$$

Variable elimination: Basic operations

Pointwise product of factors f_{1} and f_{2} :

$$
\begin{aligned}
& \quad f_{1}\left(x_{1}, \ldots, x_{j}, y_{1}, \ldots, y_{k}\right) \times f_{2}\left(y_{1}, \ldots, y_{k}, z_{1}, \ldots, z_{l}\right) \\
& \quad=f\left(x_{1}, \ldots, x_{j}, y_{1}, \ldots, y_{k}, z_{1}, \ldots, z_{l}\right) \\
& \text { E.g., } f_{1}(a, b) \times f_{2}(b, c)=f(a, b, c)
\end{aligned}
$$

Summing out a variable from a product of factors: move any constant factors outside the summation:
$\Sigma_{x} f_{1} \times \cdots \times f_{k}=f_{1} \times \cdots \times f_{i} \Sigma_{x} f_{i+1} \times \cdots \times f_{k}=f_{1} \times \cdots \times f_{i} \times f_{\bar{X}}$
assuming f_{1}, \ldots, f_{i} do not depend on X

Variable elimination algorithm

```
function EliminationAsk \((X, \mathbf{e}, b n)\) returns a distribution over \(X\)
    inputs: \(X\), the query variable
        \(\mathbf{e}\), evidence specified as an event
        \(b n\), a belief network specifying joint distribution \(\mathbf{P}\left(X_{1}, \ldots, X_{n}\right)\)
    if \(X \in \mathbf{e}\) then return observed point distribution for \(X\)
    factors \(\leftarrow[]\); vars \(\leftarrow \operatorname{REVERSE}(\operatorname{Vars}[b n])\)
    for each var in vars do
        factors \(\leftarrow[\operatorname{MakEFACTOR}(\) var, \(\mathbf{e}) \mid\) factors \(]\)
        if var is a hidden variable then factors \(\leftarrow\) SumOut (var,factors)
    return Normalize(PointwiseProduct (factors))
```


Complexity of exact inference

Singly connected networks (or polytrees):

- any two nodes are connected by at most one (undirected) path
- time and space cost of variable elimination are $O\left(d^{k} n\right)$

Multiply connected networks:

- can reduce 3SAT to exact inference \Rightarrow NP-hard
- equivalent to counting 3SAT models \Rightarrow \#P-complete

1. $A \vee B \vee C$
2. $C \vee D v \sim A$
3. B v C v ~D

Inference by stochastic simulation

Basic idea:

1) Draw N samples from a sampling distribution S
2) Compute an approximate posterior probability \hat{P}
3) Show this converges to the true probability P

Outline:

- Sampling from an empty network
- Rejection sampling: reject samples disagreeing with evidence
- Likelihood weighting: use evidence to weight samples
- MCMC: sample from a stochastic process whose stationary distribution is the true posterior

Sampling from an empty network

function PriorSample $(b n)$ returns an event sampled from $\mathbf{P}\left(X_{1}, \ldots, X_{n}\right)$ specified by $b n$
$\mathbf{x} \leftarrow$ an event with n elements
for $i=1$ to n do
$x_{i} \leftarrow$ a random sample from $\mathbf{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$
return x
$\mathbf{P}(C l o u d y)=\langle 0.5,0.5\rangle$
sample \rightarrow true
$\mathbf{P}($ Sprinkler \mid Cloudy $)=\langle 0.1,0.9\rangle$
sample \rightarrow false
$\mathbf{P}($ Rain \mid Cloudy $)=\langle 0.8,0.2\rangle$
sample \rightarrow true
$\mathbf{P}($ WetGrass $\mid \neg$ Sprinkler, Rain $)=\langle 0.9,0.1\rangle$
sample \rightarrow true

Sampling from an empty network contd.

Probability that PriorSample generates a particular event

$$
S_{P S}\left(x_{1} \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { Parents }\left(X_{i}\right)\right)=P\left(x_{1} \ldots x_{n}\right)
$$

i.e., the true prior probability

Let $N_{P S}(\mathbf{Y}=\mathbf{y})$ be the number of samples generated for which $\mathbf{Y}=\mathbf{y}$, for any set of variables \mathbf{Y}.

Then $\hat{P}(\mathbf{Y}=\mathbf{y})=N_{P S}(\mathbf{Y}=\mathbf{y}) / N$ and

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \hat{P}(\mathbf{Y}=\mathbf{y}) & =\Sigma_{\mathbf{h}} S_{P S}(\mathbf{Y}=\mathbf{y}, \mathbf{H}=\mathbf{h}) \\
& =\Sigma_{\mathbf{h}} P(\mathbf{Y}=\mathbf{y}, \mathbf{H}=\mathbf{h}) \\
& =P(\mathbf{Y}=\mathbf{y})
\end{aligned}
$$

That is, estimates derived from PriorSample are consistent

Rejection sampling

$\hat{\mathbf{P}}(X \mid \mathbf{e})$ estimated from samples agreeing with \mathbf{e}

```
function RejectionSampling \((X, \mathbf{e}, b n, N)\) returns an approximation to \(P(X \mid \mathbf{e})\)
    \(\mathrm{N}[X] \leftarrow\) a vector of counts over \(X\), initially zero
    for \(j=1\) to \(N\) do
        \(\mathbf{x} \leftarrow\) PriorSample \((b n)\)
        if \(\mathbf{x}\) is consistent with \(\mathbf{e}\) then
            \(\mathrm{N}[x] \leftarrow \mathrm{N}[x]+1\) where \(x\) is the value of \(X\) in \(\mathbf{x}\)
    return Normalize( \(\mathrm{N}[X]\) )
```

E.g., estimate $\mathbf{P}($ Rain \mid Sprinkler $=$ true $)$ using 100 samples

27 samples have Sprinkler $=$ true
Of these, 8 have Rain =true and 19 have Rain =false.
$\hat{\mathbf{P}}($ Rain \mid Sprinkler $=$ true $)=\operatorname{NormaLIZE}(\langle 8,19\rangle)=\langle 0.296,0.704\rangle$
Similar to a basic real-world empirical estimation procedure

Analysis of rejection sampling

$$
\begin{aligned}
& \hat{\mathbf{P}}(X \mid \mathbf{e})=\alpha \mathbf{N}_{P S}(X, \mathbf{e}) \quad \text { (algorithm defn.) } \\
& \left.\quad=\mathbf{N}_{P S}(X, \mathbf{e}) / N_{P S}(\mathbf{e}) \quad \text { (normalized by } N_{P S}(\mathbf{e})\right) \\
& \quad \approx \mathbf{P}(X, \mathbf{e}) / P(\mathbf{e}) \quad \text { (property of PRIORSAMPLE) } \\
& \quad=\mathbf{P}(X \mid \mathbf{e}) \quad \text { (defn. of conditional probability) }
\end{aligned}
$$

Hence rejection sampling returns consistent posterior estimates
Problem: hopelessly expensive if $P(\mathbf{e})$ is small

Likelihood weighting

Idea: fix evidence variables, sample only nonevidence variables, and weight each sample by the likelihood it accords the evidence

```
function WeightedSample ( \(b n, \mathbf{e}\) ) returns an event and a weight
    \(\mathbf{x} \leftarrow\) an event with \(n\) elements; \(w \leftarrow 1\)
    for \(i=1\) to \(n\) do
        if \(X_{i}\) has a value \(x_{i}\) in \(\mathbf{e}\)
            then \(w \leftarrow w \times P\left(X_{i}=x_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)\)
            else \(x_{i} \leftarrow\) a random sample from \(\mathbf{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)\)
    return \(\mathbf{x}, w\)
function LikelifoodWeighting \((X, \mathbf{e}, b n, N)\) returns an approximation to \(P(X \mid \mathbf{e})\)
    \(\mathrm{W}[X] \leftarrow\) a vector of weighted counts over \(X\), initially zero
    for \(j=1\) to \(N\) do
        \(\mathbf{x}, w \leftarrow\) WeightedSample \((b n)\)
        \(\mathbf{W}[x] \leftarrow \mathbf{W}[x]+w\) where \(x\) is the value of \(X\) in \(\mathbf{x}\)
    return Normalize( \(\mathbf{W}[X]\) )
```


Likelihood weighting example

Estimate $\mathbf{P}($ Rain \mid Sprinkler $=$ true, WetGrass $=$ true $)$

LW example contd.

Sample generation process:

1. $w \leftarrow 1.0$
2. Sample $\mathbf{P}($ Cloudy $)=\langle 0.5,0.5\rangle$; say true
3. Sprinkler has value true, so
$w \leftarrow w \times P($ Sprinkler $=$ true \mid Cloud $y=$ true $)=0.1$
4. Sample $\mathbf{P}($ Rain \mid Cloudy $=$ true $)=\langle 0.8,0.2\rangle$; say true
5. WetGrass has value true, so
$w \leftarrow w \times P($ WetGrass $=$ true \mid Sprinkler $=$ true, Rain $=$ true $)=0.099$

Likelihood weighting analysis

Sampling probability for WeightedSample is

$$
S_{W S}(\mathbf{y}, \mathbf{e})=\prod_{i=1}^{l} P\left(y_{i} \mid \operatorname{Parents}\left(Y_{i}\right)\right)
$$

Note: pays attention to evidence in ancestors only \Rightarrow somewhere "in between" prior and posterior distribution

Weight for a given sample \mathbf{y}, \mathbf{e} is

$$
w(\mathbf{y}, \mathbf{e})=\prod_{i=1}^{m} P\left(e_{i} \mid \text { Parents }\left(E_{i}\right)\right)
$$

Weighted sampling probability is

$$
\begin{aligned}
& S_{W S}(\mathbf{y}, \mathbf{e}) w(\mathbf{y}, \mathbf{e}) \\
& \quad=\prod_{i=1}^{l} P\left(y_{i} \mid \text { Parents }\left(Y_{i}\right)\right) \prod_{i=1}^{m} P\left(e_{i} \mid \text { Parents }\left(E_{i}\right)\right) \\
& \quad=P(\mathbf{y}, \mathbf{e}) \text { (by standard global semantics of network) }
\end{aligned}
$$

Hence likelihood weighting returns consistent estimates but performance still degrades with many evidence variables

Approximate inference using MCMC

"State" of network = current assignment to all variables
Generate next state by sampling one variable given Markov blanket Sample each variable in turn, keeping evidence fixed

```
function MCMC-Ask(X,e,bn,N) returns an approximation to P(X|\mathbf{e})
    local variables: }\textrm{N}[X]\mathrm{ , a vector of counts over }X\mathrm{ , initially zero
        Y, the nonevidence variables in bn
        x, the current state of the network, initially copied from e
    initialize \mathbf{x}\mathrm{ with random values for the variables in Y}
    for }j=1\mathrm{ to }N\mathrm{ do
        N[x]}\leftarrow\mathbf{N}[x]+1\mathrm{ where }x\mathrm{ is the value of X in }\mathbf{x
        for each Yi in Y do
            sample the value of Y}\mp@subsup{Y}{i}{}\mathrm{ in }\mathbf{x}\mathrm{ from P}\mathbf{P}(\mp@subsup{Y}{i}{}|MB(Yi)) given the values of MB(Y) in \mathbf{x
    return Normalize(N[X])
```

Approaches stationary distribution: long-run fraction of time spent in each state is exactly proportional to its posterior probability

MCMC example contd.

Random initial state: Cloudy $=$ true and Rain $=$ false

1. $\mathbf{P}($ Cloudy $\mid M B($ Cloudy $))=\mathbf{P}($ Cloudy \mid Sprinkler,\neg Rain $)$ sample \rightarrow false
2. $\mathbf{P}($ Rain $\mid M B($ Rain $))=\mathbf{P}($ Rain $\mid \neg$ Cloudy, Sprinkler, WetGrass $)$ sample \rightarrow true

Visit 100 states
31 have Rain $=$ true, 69 have Rain $=$ false
$\hat{\mathbf{P}}($ Rain \mid Sprinkler $=$ true, WetGrass $=$ true $)$
$=\operatorname{NormaLIzE}(\langle 31,69\rangle)=\langle 0.31,0.69\rangle$

MCMC analysis: Outline

Transition probability $q\left(\mathbf{y} \rightarrow \mathbf{y}^{\prime}\right)$
Occupancy probability $\pi_{t}(\mathbf{y})$ at time t
Equilibrium condition on π_{t} defines stationary distribution $\pi(\mathbf{y})$
Note: stationary distribution depends on choice of $q\left(\mathbf{y} \rightarrow \mathbf{y}^{\prime}\right)$
Pairwise detailed balance on states guarantees equilibrium
Gibbs sampling transition probability:
sample each variable given current values of all others
\Rightarrow detailed balance with the true posterior
For Bayesian networks, Gibbs sampling reduces to sampling conditioned on each variable's Markov blanket

Stationary distribution

$\pi_{t}(\mathbf{y})=$ probability in state \mathbf{y} at time t
$\pi_{t+1}\left(\mathbf{y}^{\prime}\right)=$ probability in state \mathbf{y}^{\prime} at time $t+1$
π_{t+1} in terms of π_{t} and $q\left(\mathbf{y} \rightarrow \mathbf{y}^{\prime}\right)$

$$
\pi_{t+1}\left(\mathbf{y}^{\prime}\right)=\Sigma_{\mathbf{y}} \pi_{t}(\mathbf{y}) q\left(\mathbf{y} \rightarrow \mathbf{y}^{\prime}\right)
$$

Stationary distribution: $\pi_{t}=\pi_{t+1}=\pi$

$$
\pi\left(\mathbf{y}^{\prime}\right)=\Sigma_{\mathbf{y}} \pi(\mathbf{y}) q\left(\mathbf{y} \rightarrow \mathbf{y}^{\prime}\right) \quad \text { for all } \mathbf{y}^{\prime}
$$

If π exists, it is unique (specific to $q\left(\mathbf{y} \rightarrow \mathbf{y}^{\prime}\right)$)
In equilibrium, expected "outflow" = expected "inflow"

Detailed balance

"Outflow" = "inflow" for each pair of states:

$$
\pi(\mathbf{y}) q\left(\mathbf{y} \rightarrow \mathbf{y}^{\prime}\right)=\pi\left(\mathbf{y}^{\prime}\right) q\left(\mathbf{y}^{\prime} \rightarrow \mathbf{y}\right) \quad \text { for all } \mathbf{y}, \mathbf{y}^{\prime}
$$

Detailed balance \Rightarrow stationarity:

$$
\begin{aligned}
\Sigma_{\mathbf{y}} \pi(\mathbf{y}) q\left(\mathbf{y} \rightarrow \mathbf{y}^{\prime}\right) & =\Sigma_{\mathbf{y}} \pi\left(\mathbf{y}^{\prime}\right) q\left(\mathbf{y}^{\prime} \rightarrow \mathbf{y}\right) \\
& =\pi\left(\mathbf{y}^{\prime}\right) \Sigma_{\mathbf{y}} q\left(\mathbf{y}^{\prime} \rightarrow \mathbf{y}\right) \\
& =\pi\left(\mathbf{y}^{\prime}\right)
\end{aligned}
$$

MCMC algorithms typically constructed by designing a transition probability q that is in detailed balance with desired π

Gibbs sampling

Sample each variable in turn, given all other variables
Sampling Y_{i}, let $\overline{\mathbf{Y}}_{i}$ be all other nonevidence variables Current values are y_{i} and $\overline{\mathbf{y}}_{i}$; e is fixed
Transition probability is given by

$$
q\left(\mathbf{y} \rightarrow \mathbf{y}^{\prime}\right)=q\left(y_{i}, \overline{\mathbf{y}}_{i} \rightarrow y_{i}^{\prime}, \overline{\mathbf{y}}_{i}\right)=P\left(y_{i}^{\prime} \mid \overline{\mathbf{y}}_{i}, \mathbf{e}\right)
$$

This gives detailed balance with true posterior $P(\mathbf{y} \mid \mathbf{e})$:

$$
\begin{aligned}
\pi(\mathbf{y}) q\left(\mathbf{y} \rightarrow \mathbf{y}^{\prime}\right) & =P(\mathbf{y} \mid \mathbf{e}) P\left(y_{i}^{\prime} \mid \overline{\mathbf{y}}_{i}, \mathbf{e}\right)=P\left(y_{i}, \overline{\mathbf{y}}_{i} \mid \mathbf{e}\right) P\left(y_{i}^{\prime} \mid \overline{\mathbf{y}}_{i}, \mathbf{e}\right) \\
& =P\left(y_{i} \mid \overline{\mathbf{y}}_{i}, \mathbf{e}\right) P\left(\overline{\mathbf{y}}_{i} \mid \mathbf{e}\right) P\left(y_{i}^{\prime} \mid \overline{\mathbf{y}}_{i}, \mathbf{e}\right) \quad \text { (chain rule) } \\
& =P\left(y_{i} \mid \overline{\mathbf{y}}_{i}, \mathbf{e}\right) P\left(y_{i}^{\prime}, \overline{\mathbf{y}}_{i} \mid \mathbf{e}\right) \quad \text { (chain rule backwards) } \\
& =q\left(\mathbf{y}^{\prime} \rightarrow \mathbf{y}\right) \pi\left(\mathbf{y}^{\prime}\right)=\pi\left(\mathbf{y}^{\prime}\right) q\left(\mathbf{y}^{\prime} \rightarrow \mathbf{y}\right)
\end{aligned}
$$

Markov blanket sampling

A variable is independent of all others given its Markov blanket:

$$
P\left(y_{i}^{\prime} \mid \overline{\mathbf{y}}_{i}, \mathbf{e}\right)=P\left(y_{i}^{\prime} \mid M B\left(Y_{i}\right)\right)
$$

Probability given the Markov blanket is calculated as follows:

$$
P\left(y_{i}^{\prime} \mid M B\left(Y_{i}\right)\right)=P\left(y_{i}^{\prime} \mid \operatorname{Parents}\left(Y_{i}\right)\right) \Pi_{Z_{j} \in \operatorname{Children}\left(Y_{i}\right)} P\left(z_{j} \mid \operatorname{Parents}\left(Z_{j}\right)\right)
$$

Hence computing the sampling distribution over Y_{i} for each flip requires just $c d$ multiplications if Y_{i} has c children and d values; can cache it if c not too large.

Main computational problems:

1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large: $P\left(Y_{i} \mid M B\left(Y_{i}\right)\right)$ won't change much (law of large numbers)

Absolute approximation: $|P(X \mid \mathbf{e})-\hat{P}(X \mid \mathbf{e})| \leq \epsilon$
Relative approximation: $\frac{|P(X \mid \mathbf{e}) \hat{P}(X \mid \mathbf{e})|}{P(X \mid \mathbf{e})} \leq \epsilon$
Relative \Rightarrow absolute since $0 \leq P \leq 1$ (may be $O\left(2^{-n}\right)$)
Randomized algorithms may fail with probability at most δ
Polytime approximation: poly $\left(n, \epsilon^{-1}, \log \delta^{-1}\right)$
Theorem (Dagum and Luby, 1993): both absolute and relative approximation for either deterministic or randomized algorithms are NP-hard for any $\epsilon, \delta<0.5$
(Absolute approximation polytime with no evidence-Chernoff bounds)

