ICS 271 - Solutions Homework 2

1. Trace the operation of A^* search applied to the problem of getting to Bucharest from Lugoj using the straight-line distance heuristic.

Answer:

Using the single-letter labels from the map on page 100 and omitting simple back-tracking state expansions due to space limitations.

	Action	Open Nodes	f(n)	g(n)	h(n)
1	Initial State	(L, 244)	244	0	244
2	Expand Lugoj				
	Add Timisoara	(T, 440)	440	111	329
	Add Mehadia	(T, 440), (M, 301)	301	70	241
3	Expand Mehadia				
	Add Drobeta	(T, 440), (D, 387)	387	145	242
4	Expand Drobeta				
	Add Craiova	(T, 440), (C, 425)	425	265	160
5	Expand Craiova				
	Add Rimmicu Vilcea	(T, 440), (R, 604)	604	411	193
	Add Pitesti	(T, 440), (R, 604), (P, 503)	503	403	100
6	Expand Timisoara				
	Add Arad	(R, 604), (P, 503), (A, 595)	595	229	366
7	Expand Pitesi				
	Add Bucharest	(R, 604), (A, 595), (B, 504)	504	504	0
8	Expand Bucharest				
	At Goal State	(R, 604), (A, 595)	-	-	-

2. The heuristic path algorithm is a best-first search in which the objective function is f(n) = (2 - w)g(n) + wh(n). For what values of w is this algorithm guaranteed to be optimal? What kind of search does this perform when w = 0? When w = 1? When w = 2?

Answer:

The algorithm is guaranteed to be optimal for $0 \le w \le 1$, since scaling g(n) by a constant has no effect on the relative ordering of the chosen paths, but, if w > 1 then it is possible the wh(n) will overestimate the distance to the goal, making the heuristic inadmissible. If $w \le 1$, then it will reduce the estimate, but it is still guaranteed to underestimate the distance to the goal state.

w	f(n)	Algorithm
		Uninformed best-first search
w=1	f(n) = g(n) + h(n)	A* search
w=2	f(n) = 2h(n)	Greedy best-first search

3. Propose an admissible h function for this problem that is better than $h \equiv 0$.

Answer:

One of the possible admissible heuristics is:

$$h(state) = 3 - |(number\ of\ discs\ on\ peg\ B) - (number\ of\ discs\ on\ peg\ C)|$$

Obsiously h(goal) = 0 for both goals. Moreover $h(stat) \leq number$ of steps to achieve goal.

4. Algorithms A* does not terminate until a goal node is selected for expansion. However, a path to a goal node might be reached long before that node is selected for expansion. Why not terminate a soon as a goal node has been found? Illustrate your answer with an example.

Answer:

One cannot stop after the a goal node is found while expanding its predecessor since that can lead to a suboptimal solution. For instance, consider the simple "diamond" search graph with the given costs and heuristics in Figure 4.

Consider the trace of A* for this problem shown in the table below. If we stopped searching after encountering the goal state (D) for the first time after expanding node C in step 3, then we would have been lead to believe that the best path to the goal had a cost of 7. However, by waiting until the the goal state has the lowest cost of nodes in the frontier, we guarantee that the lowest cost path through node B is found.

	Action	Open Nodes	f(n)	g(n)	h(n)
1	Initial State	(A, 6)	6	0	6
2	Expand A				
	Add B	(B, 6)	6	3	3
	Add C	(B, 6), (C, 5)	5	2	3
3	Expand C				
	Add D	(B, 6), (D, 7)	7	7	0
4	Expand B				
	Replace D	(D, 6)	6	6	0
5	Expand D				
	At Goal State		-	-	-

5. For the sliding block puzzle, specify a heuristic function H, and show the search tree produced by algorithm A^* using this function. Show the first 10 nodes expanded.

Answer:

A simple heuristic is taking half the sum of the number of white tiles to the right of each black tile, w_i since it will take at least one move to move past each black tile. Dividing by half ensures that we never overestimate since it's possible for a white tile to hop two black tiles in a single move.

$$h(n) = \frac{1}{2} \sum_{i} w_i$$

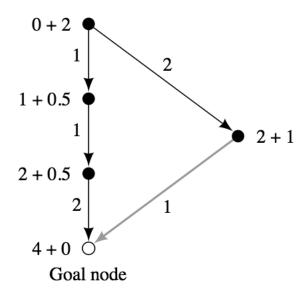


Figure 1: Example where stopping after finding a goal state for the first time fails for A^* search.

	Action	Open Nodes	f(n)	g(n)	h(n)
1	Initial State	(BBBWWWE, 4.5)	4.5	0	4.5
2	Expand BBBWWWE				
	Add BBBWWEW	(BBBWWEW, 5.5), (BBBWEWW, 5.5)	5.5	1	4.5
	Add BBBWEWW	(BBBEWWW, 5.5)	5.5	1	4.5
	Add BBBEWWW		6.5	2	4.5
3	Expand BBBWWEW				
	Add BBEWWBW	(BBBWEWW, 5.5), (BBBEWWW, 6.5)	6.5	3	3.5
		(BBEWWBW, 6.5)			
4	Expand BBBWEWW				
	Add BBEWBWW	(BBBEWWW, 6.5), (BBEWWBW, 6.5)	6	2	4
	Add BEBWBWW	(BBEWBWW, 6.0), (BEBWBWW, 7.0)	7	3	4
5	Expand BBEWBWW				
	Add BBWEBWW	(BBBEWWW, 6.5), (BBEWWBW, 6.5)	7	3	4
	Add BBWWBEW	(BEBWBWW, 7.0), (BBWEBWW, 7.0)	7.5	4	3.5
	Add EBBWBWW	(BBWWBEW, 7.5), (EBBWBWW, 7.0)	7	3	4
6	Expand BBBEWWW				
	Add BBEBWWW	(BBEWWBW, 6.5), (BEBWBWW, 7.0)	7.5	3	4.5
	Add BEBBWWW	(BBWEBWW, 7.0), (EBBWBWW, 7.0)	7.5	3	4.5
	Add EBBBWWW	(BBWWBEW, 7.5), (BBEBWWW, 7.5)	8.5	4	4.5
		(BEBBWWW, 7.5), (EBBBWWW, 8.5)			
7	Expand BBEWWBW				
	Add BEBWWBW	(BEBWBWW, 7.0), (BBWEBWW, 7.0)	7.5	4	3.5
	Add EBBWWBW	(EBBWBWW, 7.0), (BBWWBEW, 7.5)	7.5	4	3.5
	Add BBWEWBW	(BBEBWWW, 7.5), (BEBBWWW, 7.5)	7.5	4	3.5
	Add BBWWEBW	(EBBBWWW, 8.5), (BEBWWBW, 7.5)	7.5	4	3.5
		(EBBWWBW, 7.5), (BBWEWBW, 7.5)			
		(BBWWEBW, 7.5)			

- 6. Prove the following properties on algorithm \mathbf{A}^* .
 - (a) A heuristic function is monotone if for every node n and its child node n'

$$h(n) \le h(n') + c(n, n')$$

Prove that is h_1 and h_2 are both monotone, so also is $h = \max(h_1, h_2)$ Answer:

$$h(n) = \max(h_1(n), h_2(n))$$

$$\leq \max(h_1(n') + c(n, n'), h_2(n') + c(n, n'))$$

$$\leq \max(h_1(n'), h_2(n')) + c(n, n')$$

$$\leq h(n') + c(n, n')$$

(b) Prove that if h is monotone then it is also admissible.

Answer:

At the goal node, $h(n^*) = 0$, so one step away from the goal, $h(n) \le h(n') + c(n, n') \le c(n, n^*)$. By induction, $h(n) \le c(n, n^*)$ from any node, thus it is admissible since it always underestimates the path cost to the goal state.

(c) Prove that is the heuristic function is monotone then A* will never reopen any nodes. **Answer:**

$$f(n) = g(n) + h(n)$$

$$\leq g(n) + h(n') + c(n, n')$$

$$\leq g(n) + c(n, n') + h(n')$$

$$\leq g(n') + h(n')$$

$$\leq f(n')$$

Thus, we have proven that f(n) is always greater at a successor node, so once a node has been visited, it cannot be visited again at a smaller cost and thus will never be reopened.

(d) Prove or give a counter example: if for every node n, $h_1(n) \ge h_2(n)$, then A^* with h_1 always expands less nodes than A^* with h_2

Answer:

Well, since $h_1(n) \ge h_2(n)$ we could trivially say that if the two heuristics are equal then h_2 will not result in expanding less nodes than h_1 , but I assume that is not the intent of the question, so let's consider $h_1(n) < h_s(n)$.

For any given node n, it will be placed in the open list with a values of f(n) = g(n) + h(n). Since $f_1(n) \ge f_2(n)$, every node evaluated by f_1 functions will have an estimated at least as large as f_2 . Since the node with the smallest value is chosen for expansion, one of two possibilities exit

- $f_1(n) \ge f_2(n)$ and n has the smallest value. In this case the same node is expanded by both heuristics.
- $f_1(n) \ge f_2(n)$ and there exits a node n' in the open list such that $f_1(n) \ge f_1(n')$ and $f_2(n) \le f_2(n')$. In this case, A* will select node n' first, and, if that node lead to a solution state, node n will not be expanded. Note that the inequality for f_2 is valid since it just shows that f_2 under estimated the path cost to the goal from node n'.

Thus we have shown that A^* with heuristic h_1 con only expand as many or less nodes than h_2 .

(e) Let h be an admissible function and let $f(n) = w \cdot g(n) + (1 - w)h(n)$, $0 \le w \le 1$. Will A* with f find an optimal solution when $w = \frac{1}{4}$?, $w = \frac{1}{2}$?, $w = \frac{3}{4}$? Can you provide a general rule? (note, that f here denotes an arbitrary evaluation function, not necessarily an exact one).

Answer:

It is not guaranteed to find an optimal solution for $w = \frac{1}{4}$ and is guaranteed for $w = \frac{1}{2}$ and $\frac{3}{4}$. The general rule is, for constants a and b where $f(n) = a \cdot g(n) + b \cdot h(n)$, if $\frac{a}{b} \ge 1$ then A* is guaranteed to find an optimal solution.

For this problem, a = w, b = 1 - w, so, solving the ratio,

$$\begin{array}{ccc} \frac{a}{b} & \geq & 1 \\ \frac{w}{1-w} & \geq 1 \\ & w & \geq & 1-w \\ & w & \geq & \frac{1}{2} \end{array}$$

- 7. Extra-credit problem, no solution.
- 8. On page 108, we defined the relaxation of the 8-puzzle in which a tile can move from square A to square B if B is blank. The exact solution of this problem defined **Gaschnig's heuristic**. Explain

5

why Gashnig's heuristic is at least as accurate as h_1 (misplaced tiles), and show cases where it is more accurate than both h_1 and h_2 . Can you suggest a way to calculate Gaschnig's heuristic efficiently?

Answer:

Since the misplaced tile heuristic can place any tile in any other position in one move and Gaschnig's heuristic can only move a tile to the black spot, Gaschnig's will always take at least one move to get a tile to its proper position, and may require two moves if the blank location is in its final position and tiles are still misplaced. Thus, Gaschnig's heuristic dominates h_1 since it is always returns more or an equal number of moves.

1	2	3	1	2	3
8		4	6		4
7	6	5	8	7	5
Target			State		

True Shortest Path Cost: 4 Gashnig's: 4 Misplaced Tiles: 3

1	2	3	1	2	3
8		4	7		4
7	6	5	8	6	5
Target				State	<u> </u>

True Shortest Path Cost: > 3
Gashnig's: 3
Manhatten: 2

Some possible pseudo-code for computing Gaschnig's heuristic is:

```
moves = 0
while not in goal state:
   if blank in goal position:
     swap blank with any mismatch
   else
     swap blank with matched tile
   moves++
return moves
```