CompSci 275, CONSTRAINT Networks

Rina Dechter, Fall 2020

Directional consistency
Chapter 4
Outline

- Arc-consistency algorithms
- Path-consistency and i-consistency
- Arc-consistency, Generalized arc-consistency, relation arc-consistency
- Global and bound consistency
- Consistency operators: join, resolution, Gaussian elimination
- Distributed (generalized) arc-consistency
Boolean constraint propagation

• \((A \lor \neg B)\) and \((B)\)
 • \(B\) is arc-consistent relative to \(A\) but not vice-versa

• Arc-consistency by resolution:
 \[\text{res}((A \lor \neg B), B) = A\]

Given also \((B \lor C)\), path-consistency:

\[\text{res}((A \lor \neg B), (B \lor C)) = (A \lor C)\]

Relational arc-consistency rule = unit-resolution

\[A \land B \rightarrow G, \neg G, \Rightarrow \neg A \lor \neg B\]
Boolean constraint propagation

Procedure UNIT-PROPAGATION

Input: A cnf theory, φ, $d = Q_1, \ldots, Q_n$.

Output: An equivalent theory such that every unit clause does not appear in any non-unit clause.

1. queue = all unit clauses.
2. while queue is not empty, do.
3. $T \leftarrow$ next unit clause from Queue.
4. for every clause β containing T or $\neg T$
5. if β contains T delete β (subsumption elimination)
6. else, For each clause $\gamma = \text{resolve}(\beta, T)$.
 if γ, the resolvent, is empty, the theory is unsatisfiable.
7. else, add the resolvent γ to the theory and delete β.
 if γ is a unit clause, add to Queue.
8. endfor.
9. endwhile.

Theorem 3.6.1 Algorithm UNIT-PROPAGATION has a linear time complexity.
Consistency for numeric constraints (Gausian elimination)

\[x \in [1,10], y \in [5,15], \]
\[x + y = 10 \]

\[\text{arc-\,consistency} \Rightarrow x \in [1,5], y \in [5,9] \]

\[x + y = 10, -y \leq -5 \]

\[z \in [-10,10], \]
\[y + z \leq 3 \]

\[\text{path-\,consistency} \Rightarrow x - z \geq 7 \]

\[, x + y = 10, -y - z \geq -3 \]
Impact on graphs of i-consistency
Tractable classes

Theorem 3.7.1 1. The consistency binary constraint networks having no cycles can be decided by arc-consistent

2. The consistency of binary constraint networks with bi-valued domains can be decided by path-consistency,

3. The consistency of Horn cnf theories can be decided by unit propagation.

• Examples of Horn theories (each clause has at most one positive literal)
 • (¬ A, ¬ B , ¬ C, D), (¬ D, F), (¬ A)
Outline

• Directional Arc-consistency algorithms
• Directional Path-consistency and directional i-consistency
• Greedy algorithms for induced-width
• Width and local consistency
• Adaptive-consistency and bucket-elimination
Backtrack-free search: or
What level of consistency will guarantee global-consistency

Let’s explore how we can make a problem backtrack-free with a minimal amount of effort

Definition 4.1.1 (backtrack-free search) A constraint network is backtrack-free relative to a given ordering $d = (x_1, ..., x_n)$ if for every $i \leq n$, every partial solution of $(x_1, ..., x_i)$ can be consistently extended to include x_{i+1}.

Backtrack free and queries:
Consistency,
All solutions
Counting
optimization
Directional arc-consistency: another restriction on propagation

Definition 4.3.1 (directional arc-consistency) A network is directional-arc-consistent relative to order $d = (x_1, \ldots, x_n)$ iff every variable x_i is arc-consistent relative to every variable x_j such that $i \leq j$.

$D_4 = \{\text{white, blue, black}\}$
$D_3 = \{\text{red, white, blue}\}$
$D_2 = \{\text{green, white, black}\}$
$D_1 = \{\text{red, white, black}\}$
$X_1 = x_2$
$x_1 = x_3$
$x_3 = x_4$
Algorithm for directional arc-consistency (DAC)

DAC(\mathcal{R})

Input: A network \mathcal{R} = (\mathcal{X}, \mathcal{D}, \mathcal{C}) , its constraint graph \mathcal{G} , and an ordering \mathcal{d} = (x_1, ..., x_n).

Output: A directional arc-consistent network.

1. for \(i = n \) to 1 by \(-1\) do
2. \hspace{1em} for each \(j < i \) s.t. \(R_{ji} \in \mathcal{R} \),
3. \hspace{2em} \(D_j \leftarrow D_j \cap \pi_j(R_{ji} \Join D_i) \), (this is revise((x_j), x_i)).
4. end-for

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4.6.png}
\caption{Directional arc-consistency (DAC)}
\end{figure}

- Complexity: \(O(ek^2) \)
Directional arc-consistency may not be enough → Directional path-consistency

Not equal constraints
Is it arc-consistent?

Definition 4.3.5 (directional path-consistency) A network \mathcal{R} is directional path-consistent relative to order $d = (x_1, \ldots, x_n)$ iff for every $k \geq i, j$, the pair $\{x_i, x_j\}$ is path-consistent relative to x_k.

Fall 2020
Algorithm directional path consistency (DPC)

DPC(\mathcal{R})
Input: A binary network $\mathcal{R} = (X, D, C)$ and its constraint graph $G = (V, E)$, $d = (x_1, \ldots, x_n)$.
Output: A strong directional path-consistent network and its graph $G' = (V, E')$.
Initialize: $E' \leftarrow E$.
1. for $k = n$ to 1 by -1 do
2. (a) $\forall i \leq k$ such that x_i is connected to x_k in the graph, do
3. $D_i \leftarrow D_i \cap \pi_i(R_{ik} \join D_k)$ (Revise($($$x_i$$, $$x_k$$))$
4. (b) $\forall i, j \leq k$ s.t. $(x_i, x_k), (x_j, x_k) \in E'$ do
5. $R_{ij} \leftarrow R_{ij} \cap \pi_{ij}(R_{ik} \join D_k \join R_{kj})$ (Revise-3($($$x_i$$, $$x_j$$, $$x_k$$))$
6. $E' \leftarrow E' \cup (x_i, x_j)$
7. endfor
8. return The revised constraint network \mathcal{R} and $G' = (V, E')$.

Figure 4.8: Directional path-consistency (DPC)

Theorem 4.3.7 Given a binary network \mathcal{R} and an ordering d, algorithm DPC generates a largest equivalent, strong, directional-path-consistent network relative to d. The time and space complexity of DPC is $O(n^3k^3)$, where n is the number of variables and k bounds the domain sizes.
Example of DPC

- $d = \{A, B, C, D, E\}$

R_CB = \{(1,3)(2,3)\}
R_DB = \{(1,1)(2,2)\}
R_DC = \{(1,1)(2,2)(1,3)(2,3)\}
Directional i-consistency

Definition 4.3.8 (directional i-consistency) A network is directional i-consistent relative to order $d = (x_1, ..., x_n)$ iff every $i - 1$ variables are i-consistent relative to every variable that succeeds them in the ordering. A network is strong directional i-consistent if it is directional j-consistent for every $j < i$.
The induced-width

DPC recursively connects parents in the ordered graph, yielding
Induced-ordered graph:

- Width along ordering \(d \), \(w(d) \):
 - max # of previous parents
- Induced width \(w^*(d) \):
 - The width in the ordered induced graph: recursively connecting the parents from last to first
- Induced-width \(w^* \):
 - Smallest induced-width over all orderings
- Finding \(w^* \):
 - NP-complete \((Arnborg, 1985)\) but greedy heuristics \((\text{min-fill})\).
Induced-width (continued)
Induced-width and DPC

• The induced graph of \((G,d)\) is denoted \((G^*,d)\)
• The induced graph \((G^*,d)\) contains the graph generated by DPC along \(d\), and the graph generated by directional i-consistency along \(d\).
Refined complexity using induced-width

Theorem 4.3.11 Given a binary network \mathcal{R} and an ordering d, the complexity of DPC along d is $O((w^*(d))^2 \cdot n \cdot k^3)$, where $w^*(d)$ is the induced width of the ordered constraint graph along d.

Theorem 4.3.13 Given a general constraint network \mathcal{R} whose constraints’ arity is bounded by i, and an ordering d, the complexity of DIC_i along d is $O(n(w^*(d))^i \cdot (2k)^i)$. □

- Consequently we wish to have ordering with minimal induced-width
- Induced-width is equal to tree-width to be defined later.
- Finding min induced-width ordering is NP-complete
Outline

• Directional Arc-consistency algorithms
• Directional Path-consistency and directional i-consistency
• **Greedy algorithms for induced-width**
• Width and local consistency
• Adaptive-consistency and bucket-elimination
How to find a good induced-width greedily

\(w^* (d) \) – the induced width of the primal graph along ordering \(d \)

The effect of the ordering:

\[
\begin{align*}
 w^*(d_1) &= 4 \\
 w^*(d_2) &= 2
\end{align*}
\]
Greedy algorithms for induced-width

- Min-width ordering
- Min-induced-width ordering
- Max-cardinality ordering
- Min-fill ordering
- Chordal graphs

Primal (moraal) graph
Min-induced-width

MIN-INDUCED-WIDTH (MIW)

input: a graph $G = (V, E)$, $V = \{v_1, ..., v_n\}$

output: An ordering of the nodes $d = (v_1, ..., v_n)$.

1. **for** $j = n$ to 1 by -1 **do**
2. $r \leftarrow$ a node in V with smallest degree.
3. put r in position j.
4. connect r’s neighbors: $E \leftarrow E \cup \{(v_i, v_j) | (v_i, r) \in E, (v_j, r) \in E\}$,
5. remove r from the resulting graph: $V \leftarrow V - \{r\}$.

Figure 4.3: The min-induced-width (MIW) procedure
Min-width ordering

MIN-WIDTH (MW)

input: a graph $G = (V, E)$, $V = \{v_1, ..., v_n\}$
output: A min-width ordering of the nodes $d = (v_1, ..., v_n)$.

1. for $j = n$ to 1 by -1 do
2. \hspace{1em} $r \leftarrow$ a node in G with smallest degree.
3. \hspace{1em} put r in position j and $G \leftarrow G - r$.
 \hspace{1em} (Delete from V node r and from E all its adjacent edges)
4. endfor

Figure 4.2: The min-width (MW) ordering procedure
Min-fill algorithm

• Prefers a node who adds the least number of fill-in arcs.
• Empirically, fill-in is the best among the greedy algorithms (MW, MIW, MF, MC)
Chordal graphs and max-cardinality ordering

• A graph is chordal if every cycle of length at least 4 has a chord
• Finding w* over chordal graph is easy using the max-cardinality ordering
• If G* is an induced graph it is chordal
• K-trees are special chordal graphs.
• Finding the max-clique in chordal graphs is easy (just enumerate all cliques in a max-cardinality ordering
Max-cardinality ordering

MAX-CARDINALITY (MC)

input: a graph $G = (V, E)$, $V = \{v_1, ..., v_n\}$

output: An ordering of the nodes $d = (v_1, ..., v_n)$.

1. Place an arbitrary node in position 0.
2. for $j = 1$ to n do
3. $r \leftarrow$ a node in G that is connected to a largest subset of nodes in positions 1 to $j - 1$, breaking ties arbitrarily.
4. endfor

Figure 4.5 The max-cardinality (MC) ordering procedure.
We see again that G in Figure 4.1(a) is not chordal since the parents of A are not connected in the max-cardinality ordering in Figure 4.1(d). If we connect B and C, the resulting induced graph is chordal.
Outline

• Directional Arc-consistency algorithms
• Directional Path-consistency and directional i-consistency
• Greedy algorithms for induced-width
• Width and local consistency
• Adaptive-consistency and bucket-elimination
Width vs local consistency: solving trees

Figure 4.10: A tree network

Theorem 4.4.1 If a binary constraint network has a width of 1 and if it is arc-consistent, then it is backtrack-free along any width-1 ordering.
Tree-solving

Input: A tree network $T = (X, D, C)$.
Output: A backtrack-free network along an ordering d.

1. generate a width-1 ordering, $d = x_1, \ldots, x_n$.
2. let $x_{p(i)}$ denote the parent of x_i in the rooted ordered tree.
3. for $i = n$ to 1 do
4. \hspace{1em} Revise $((x_{p(i)}, x_i)$;
5. \hspace{1em} if the domain of $x_{p(i)}$ is empty, exit. (no solution exists).
6. \hspace{1em} endfor

Figure 4.11: Tree-solving algorithm

\[\text{complexity : } O(nk^2) \]
Theorem 4.4.3 (Width-2 and directional path-consistency) If R is directional arc and path-consistent along d, and if it also has width-2 along d, then it is backtrack-free along d. □
Width vs directional consistency
(Freuder 82)

Theorem 4.4.5 (Width (i-1) and directional i-consistency) Given a general network \(\mathcal{R} \), its ordered constraint graph along \(d \) has a width of \(i - 1 \) and if it is also strong directional \(i \)-consistent, then \(\mathcal{R} \) is backtrack-free along \(d \).
Width vs i-consistency

• DAC and width-1
• DPC and width-2
• DIC_i and width-(i-1)
• \rightarrow backtrack-free representation

• If a problem has width 2, will DPC make it backtrack-free?
• **Adaptive-consistency**: applies i-consistency when i is adapted to the number of parents
Adaptive-consistency

ADAPTIVE-CONSISTENCY (ac1)

Input: a constraint network $\mathcal{R} = (X, D, C)$, its constraint graph $G = (V, E)$, $d = (x_1, \ldots, x_n)$.

Output: A backtrack-free network along d

Initialize: $C' \leftarrow C$, $E' \leftarrow E$

1. for $j = n$ to 1 do
2. \hspace{1em} Let $S \leftarrow \text{parents}(x_j)$.
3. \hspace{1em} $R_S \leftarrow \text{Revise}(S, x_j)$ (generate all partial solutions over S that can extend to x_j).
4. \hspace{1em} $C' \leftarrow C' \cup R_S$
5. \hspace{1em} $E' \leftarrow E' \cup \{(x_k, x_r) | x_k, x_r \in \text{parents}(x_j)\}$ (connect all parents of x_j)
6. endfor.

Figure 4.13: Algorithm adaptive-consistency– version 1
Bucket elimination
Adaptive Consistency (Dechter & Pearl, 1987)

Bucket E: \(E \neq D, \ E \neq C \)
Bucket D: \(D \neq A \)
Bucket C: \(C \neq B \)
Bucket B: \(B \neq A \)
Bucket A: \(\text{contradiction} \)

Complexity: \(nk^{w^*+1} \)
\(w^* \) is the induced-width along the ordering
Adaptive-consistency, bucket-elimination

ADAPTIVE-CONSISTENCY (AC)

Input: a constraint network \mathcal{R}, an ordering $d = (x_1, \ldots, x_n)$

output: A backtrack-free network, denoted $E_d(\mathcal{R})$, along d, if the empty constraint was not generated. Else, the problem is inconsistent.

1. Partition constraints into $\text{bucket}_1, \ldots, \text{bucket}_n$ as follows:
 - for $i \leftarrow n$ downto 1, put in bucket_i all unplaced constraints mentioning x_i.
2. for $p \leftarrow n$ downto 1 do
3. for all the constraints R_{S_1}, \ldots, R_{S_j} in bucket_p do
4. $A \leftarrow \bigcup_{i=1}^{j} S_i - \{x_p\}$
5. $R_A \leftarrow \Pi_A(\mathcal{A}_{i=1}^{j} R_{S_i})$
6. if R_A is not the empty relation then add R_A to the bucket of the latest variable in scope A,
7. else exit and return the empty network
8. return $E_d(\mathcal{R}) = (X, D, \text{bucket}_1 \cup \text{bucket}_2 \cup \cdots \cup \text{bucket}_n)$

Figure 4.14: Adaptive-Consistency as a bucket-elimination algorithm
Bucket elimination
Adaptive Consistency (Dechter & Pearl, 1987)

\[\text{Time} : O(n \exp(w^*(d) + 1)) , \]

\[\text{space} : O(n \exp(w^*(d))) \]

\[w^*(d) - \text{induced width along ordering} - d \]
The Idea of elimination

\[R_{DBC} = \prod_{DBC} R_{ED} \bowtie R_{EB} \bowtie R_{EC} \]

Eliminate variable E \Leftrightarrow \text{join and project}
Variable elimination

Eliminate variables one by one: “constraint propagation”

Solution generation after elimination is backtrack-free
Back to Induced width

- Finding minimum-w^* ordering is NP-complete (Arnborg, 1985)
- Greedy ordering heuristics: \textit{min-width, min-degree, max-cardinality} (Bertele and Briochi, 1972; Freuder 1982), Min-fill.
Solving Trees
(Mackworth and Freuder, 1985)

Adaptive consistency is linear for trees and equivalent to enforcing **directional arc-consistency** (recording only unary constraints)
Relational consistency
(Chapter 8)

• Relational arc-consistency
• Relational path-consistency
• Relational m-consistency

• Relational consistency for Boolean and linear constraints:
 • Unit-resolution is relational-arc-consistency
 • Pair-wise resolution is relational path-consistency
Outline

• Directional Arc-consistency algorithms
• Directional Path-consistency and directional i-consistency
• Greedy algorithms for induced-width
• Width and local consistency
• Adaptive-consistency and bucket-elimination
Sudoku’s propagation

- What kind of propagation we do?
Sudoku

Each row, column and major block must be all different

“Well posed” if it has unique solution: 27 constraints

Variables: 81 slots
Domains = \{1,2,3,4,5,6,7,8,9\}
Constraints:
- 27 not-equal

Constraint propagation
Sudoku

Each row, column and major block must be all different

“Well posed” if it has unique solution