Directional consistency Chapter 4

ICS-275

Fall 2014

Tractable classes

- Theorem 3.7.1 1. The consistency binary constraint networks having no cycles can be decided by arc-consistent
 - 2. The consistency of binary constraint networks with bi-valued domains can be decided by path-consistency,
 - 3. The consistency of Horn cnf theories can be decided by unit propagation.

Backtrack-free search: or

What level of consistency will guarantee globalconsistency

Definition 4.1.1 (backtrack-free search) A constraint network is backtrack-free relative to a given ordering $d = (x_1, ..., x_n)$ if for every $i \leq n$, every partial solution of $(x_1, ..., x_i)$ can be consistently extended to include x_{i+1} .

Backtrack free and queries: Consistency, All solutions

Counting optimization

Directional arc-consistency:

another restriction on propagation

Definition 4.3.1 (directional arc-consistency) A network is directional-arc-consistent relative to order $d = (x_1, ..., x_n)$ iff every variable x_i is arc-consistent relative to every variable x_j such that $i \leq j$.

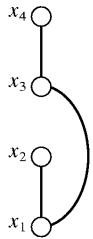
D4={white,blue,black}

D3={red,white,blue}

D2={green,white,black}

D1={red,white,black}

X1=x2, x1=x3, x3=x4



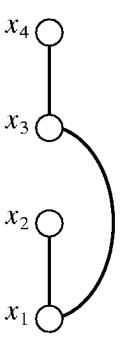
Directional arc-consistency:

another restriction on propagation

- D4={white,blue,black}
- D3={red,white,blue}
- D2={green,white,black}
- D1={red,white,black}
- X1=x2,
- x1=x3,
- x3=x4

After DAC:

- D1= {white},
- D2={green,white,black},
- D3={white,blue},
- D4={white,blue,black}



Algorithm for directional arcconsistency (DAC)

 $DAC(\mathcal{R})$

Input:A network $\mathcal{R} = (\mathcal{X}, \mathcal{D}, \mathcal{C})$, its constraint graph G, and an ordering $d = (x_1,, x_n)$. Output: A directional arc-consistent network.

```
1. for i = n to 1 by -1 do
```

2. for each
$$j < i$$
 s.t. $R_{ji} \in \mathcal{R}$,

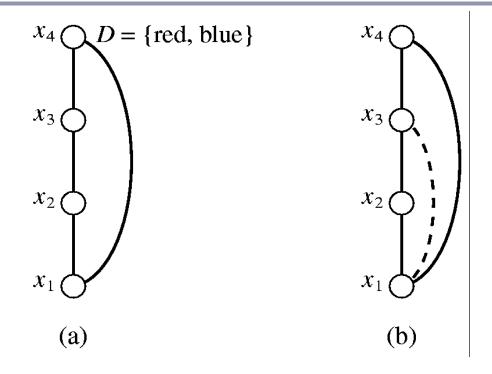
3.
$$D_j \leftarrow D_j \cap \pi_j(R_{ji} \bowtie D_i)$$
, (this is revise $((x_j), x_i)$).

end-for

Figure 4.6: Directional arc-consistency (DAC)

• Complexity: $O(ek^2)$

Directional arc-consistency may not be enough → Directional path-consistency



Definition 4.3.5 (directional path-consistency) A network \mathcal{R} is directional path-consistent relative to order $d = (x_1, ..., x_n)$ iff for every $k \geq i, j$, the pair $\{x_i, x_j\}$ is path-consistent relative to x_k .

Algorithm directional path consistency (DPC)

```
DPC(\mathcal{R})
```

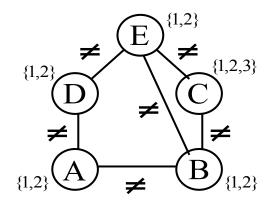
Input:A binary network $\mathcal{R} = (X, D, C)$ and its constraint graph $G = (V, E), d = (x_1, ..., x_n)$. Output:A strong directional path-consistent network and its graph G' = (V, E'). Initialize: $E' \leftarrow E$.

```
1. for k = n to 1 by -1 do
```

- 2. (a) $\forall i \leq k$ such that x_i is connected to x_k in the graph, do
- 3. $D_i \leftarrow D_i \cap \pi_i(R_{ik} \bowtie D_k) \ (Revise((x_i), x_k))$
- 4. (b) $\forall i, j \leq k \text{ s.t. } (x_i, x_k), (x_j, x_k) \in E' \text{ do}$
- 5. $R_{ij} \leftarrow R_{ij} \cap \pi_{ij}(R_{ik} \bowtie D_k \bowtie R_{kj}) \text{ (Revise-3}((x_i, x_j), x_k))$
- 6. $E' \leftarrow E' \cup (x_i, x_j)$
- 7. endfor
- 8. **return** The revised constraint network \mathcal{R} and G' = (V, E').

Theorem 4.3.7 Given a binary network \mathcal{R} and an ordering d, algorithm DPC generates a largest equivalent, strong, directional-path-consistent network relative to d. The time and space complexity of DPC is $O(n^3k^3)$, where n is the number of variables and k bounds the domain sizes.

Example of DPC



Directional i-consistency

Definition 4.3.8 (directional i-consistency) A network is directional i-consistent relative to order $d = (x_1, ..., x_n)$ iff every i - 1 variables are i-consistent relative to every variable that succeeds them in the ordering. A network is strong directional i-consistent if it is directional j-consistent for every j < i.

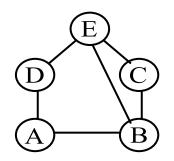
Algorithm directional i-consistency

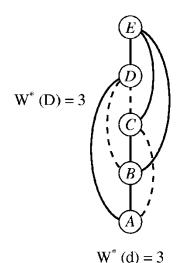
```
Directional i-consistency (DIC_i(\mathcal{R}))
Input: a network \mathcal{R} = (X, D, C), its constraint graph G = (V, E), d = (x_1, \dots, x_n).
output: A strong directional i-consistent network along d and its graph G' = (V, E').
Initialize: E' \leftarrow E, C' \leftarrow C.
1. for j = n to 1 by -1 do
2. let P = parents(x_j).
         if |P| < i - 1 then
3.
               Revise(P, x_j)
4.
         else, for each subset of i-1 variables S, S \subseteq P, do
5.
6.
               Revise(S, x_j)
7.
         endfor
         C' \leftarrow C' \cup all generated constraints.
8.
         E' \leftarrow E' \cup \{(x_k, x_m) | x_k, x_m \in P\} (connect all parents of x_j)
8.
9. endfor.
10. return C' and E'.
```

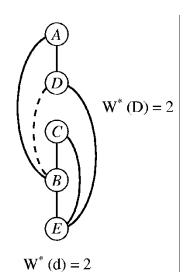
Figure 4.9: Algorithm directional *i*-consistency (DIC_i)

The induced-width

DPC recursively connects parents in the ordered graph, yielding:

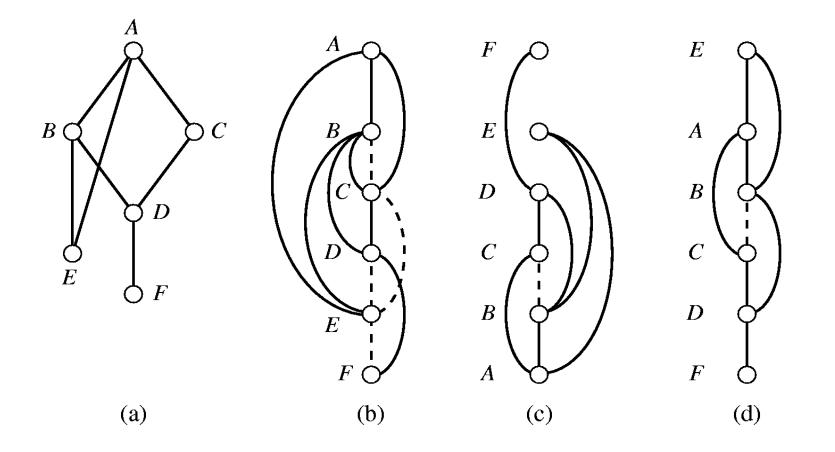






- Width along ordering d, w(d):
 - max # of previous parents
- Induced width w*(d):
 - The width in the ordered induced graph
- Induced-width w*:
 - Smallest induced-width over all orderings
- Finding w*
 - NP-complete (Arnborg, 1985) but greedy heuristics (min-fill).

Induced-width



Induced-width and DPC

- The induced graph of (G,d) is denoted (G*,d)
- The induced graph (G*,d) contains the graph generated by DPC along d, and the graph generated by directional iconsistency along d.

Refined complexity using induced-width

Theorem 4.3.11 Given a binary network \mathcal{R} and an ordering d, the complexity of DPC along d is $O((w^*(d))^2 \cdot n \cdot k^3)$, where $w^*(d)$ is the induced width of the ordered constraint graph along d.

Theorem 4.3.13 Given a general constraint network \mathcal{R} whose constraints' arity is bounded by i, and an ordering d, the complexity of DIC_i along d is $O(n(w^*(d))^i \cdot (2k)^i)$. \square

- Consequently we wish to have ordering with minimal induced-width
- Induced-width is equal to tree-width to be defined later.
- Finding min induced-width ordering is NP-complete

Greedy algorithms for induced-width

- Min-width ordering
- Max-cardinality ordering
- Min-fill ordering
- Chordal graphs

Min-width ordering

MIN-WIDTH (MW)

```
input: a graph G = (V, E), V = \{v_1, ..., v_n\}
output: A min-width ordering of the nodes d = (v_1, ..., v_n).
```

- 1. **for** j = n to 1 by -1 do
- 2. $r \leftarrow$ a node in G with smallest degree.
- 3. put r in position j and $G \leftarrow G r$. (Delete from V node r and from E all its adjacent edges)
- 4. endfor

Figure 4.2: The min-width (MW) ordering procedure

Min-induced-width

MIN-INDUCED-WIDTH (MIW)

```
input: a graph G = (V, E), V = \{v_1, ..., v_n\}
```

output: An ordering of the nodes $d = (v_1, ..., v_n)$.

- 1. **for** j = n to 1 by -1 do
- 2. $r \leftarrow$ a node in V with smallest degree.
- 3. put r in position j.
- 4. connect r's neighbors: $E \leftarrow E \cup \{(v_i, v_j) | (v_i, r) \in E, (v_j, r) \in E\},$
- 5. remove r from the resulting graph: $V \leftarrow V \{r\}$.

Figure 4.3: The min-induced-width (MIW) procedure

Min-fill algorithm

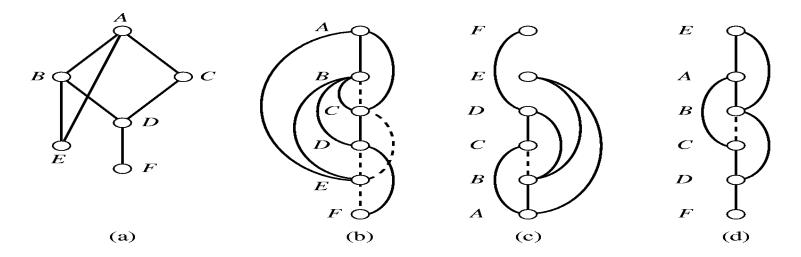
- Prefers a node who adds the least number of fill-in arcs.
- Empirically, fill-in is the best among the greedy algorithms (MW,MIW,MF,MC)

Cordal graphs and maxcardinality ordering

- A graph is cordal if every cycle of length at least 4 has a chord
- Finding w* over chordal graph is easy using the max-cardinality ordering
- If G* is an induced graph it is chordal
- K-trees are special chordal graphs.
- Finding the max-clique in chordal graphs is easy (just enumerate all cliques in a maxcardinality ordering

Example

We see again that *G* in Figure 4.1(a) is not chordal since the parents of *A* are not connected in the max-cardinality ordering in Figure 4.1(d). If we connect *B* and *C*, the resulting induced graph is chordal.



Max-cardinality ordering

MAX-CARDINALITY (MC)

input: a graph $G = (V, E), V = \{v_1, ..., v_n\}$

output: An ordering of the nodes $d = (v_1, ..., v_n)$.

- 1. Place an arbitrary node in position 0.
- 2. for j = 1 to n do
- 3. $r \leftarrow$ a node in G that is connected to a largest subset of nodes in positions 1 to j-1, breaking ties arbitrarily.
- 4. endfor

Figure 4.5 The max-cardinality (MC) ordering procedure.

Width vs local consistency: solving trees

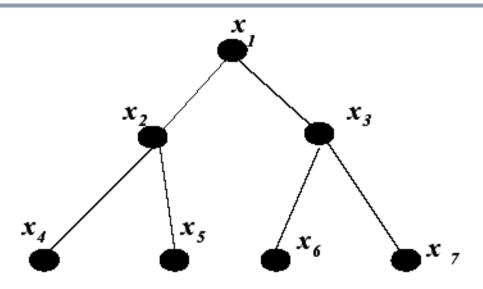


Figure 4.10: A tree network

Theorem 4.4.1 If a binary constraint network has a width of 1 and if it is arc-consistent, then it is backtrack-free along any width-1 ordering.

Tree-solving

Tree-solving

```
Input: A tree network T = (X, D, C).

Output: A backtrack-free network along an ordering d.

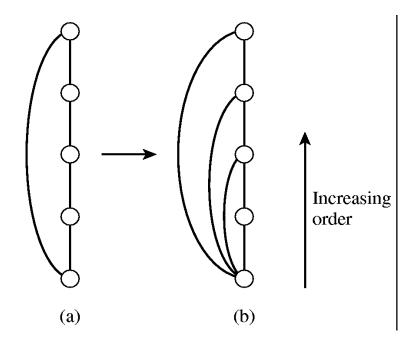
1. generate a width-1 ordering, d = x_1, \ldots, x_n.
```

- 2. let $x_{p(i)}$ denote the parent of x_i in the rooted ordered tree.
- 3. for i = n to 1 do
- 4. $Revise((x_{p(i)}), x_i);$
- 5. if the domain of $x_{p(i)}$ is empty, exit. (no solution exists).
- endfor

Figure 4.11: Tree-solving algorithm

 $complexity: O(nk^2)$

Width-2 and DPC



Theorem 4.4.3 (Width-2 and directional path-consistency) If \mathcal{R} is directional arc and path-consistent along d, and if it also has width-2 along d, then it is backtrack-free along d. \square

Width vs directional consistency

(Freuder 82)

Theorem 4.4.5 (Width (i-1) and directional i-consistency) Given a general network \mathcal{R} , its ordered constraint graph along d has a width of i-1 and if it is also strong directional i-consistent, then \mathcal{R} is backtrack-free along d.

Width vs i-consistency

- DAC and width-1
- DPC and width-2
- DIC_i and with-(i-1)
- backtrack-free representation
- If a problem has width 2, will DPC make it backtrack-free?
- Adaptive-consistency: applies i-consistency when i is adapted to the number of parents

Adaptive-consistency

Adaptive-Consistency (ac1)

Input: a constraint network $\mathcal{R}=(X,D,C)$, its constraint graph $G=(V,E),\ d=(\ x_1,\ldots,x_n).$

output: A backtrack-free network along d

Initialize: $C' \leftarrow C, E' \leftarrow E$

```
1. for j = n to 1 do
```

2. Let $S \leftarrow parents(x_j)$.

3. $R_S \leftarrow Revise(S, x_j)$ (generate all partial solutions over S that can extend to x_j).

4. $C' \leftarrow C' \cup R_S$

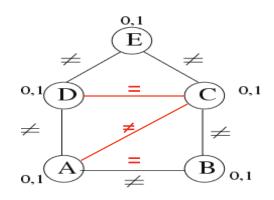
5. $E' \leftarrow E' \cup \{(x_k, x_r) | x_k, x_r \in parents(x_j)\}\$ (connect all parents of x_j)

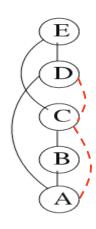
endfor.

Figure 4.13: Algorithm adaptive-consistency—version 1

Bucket Elimination

Adaptive Consistency (Dechter & Pearl, 1987)





Bucket E: $E \neq D$, $E \neq C$

Bucket D: $D \neq A$

Bucket C: $C \neq B$ $A \neq C$

Bucket B: $B \neq A$ $B \neq A$

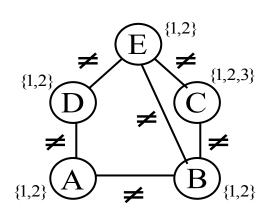
Bucket A: contradiction

Complexity: nk^{w^*+1}

 w^* is the induced-width along the ordering

Bucket Elimination

Adaptive Consistency (Dechter & Pearl, 1987)



Bucket(E): E \neq D, E \neq C, E \neq B

 $Bucket(D): D \neq A // R_{DCB}$

 $Bucket(C): C \neq B // R_{ACB}$

 $Bucket(B) \colon B \neq A // R_{AB}$

Bucket(A): R_A

 $Bucket(D): D \neq E // R_{DB}$

 $Bucket(C): C \neq B, C \neq E$

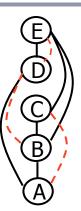
 $Bucket(B): B \neq E \parallel R^{D}_{BE}, R^{C}_{BE}$

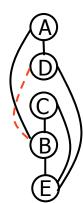
 $Bucket(E): \parallel R_E$

Time: $O(n \exp(w^*(d) + 1))$,

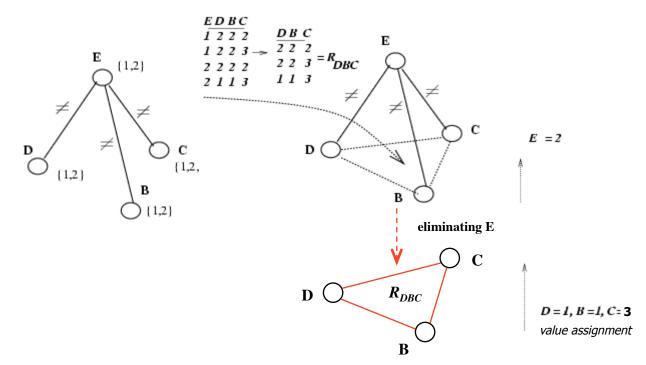
space: $O(n \exp(w^*(d)))$

w*(d) - induced - width - along - ordering - d





The Idea of Elimination

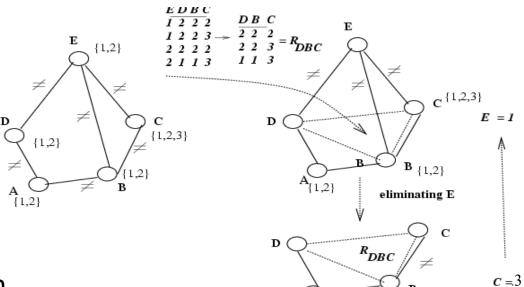


$$R_{DBC} = \prod\nolimits_{DBC} R_{ED} \bowtie R_{EB} \bowtie R_{EC}$$

Eliminate variable $E \Leftrightarrow join and project$

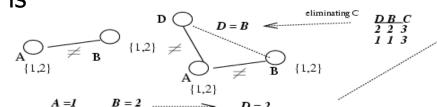
Variable Elimination

Eliminate variables one by one: "constraint propagation"



{1,2}A

Solution generation after elimination is backtrack-free



{1,2}

Adaptive-consistency, bucket-elimination Adaptive-Consistency (AC)

Input: a constraint network \mathcal{R} , an ordering $d = (x_1, \ldots, x_n)$

output: A backtrack-free network, denoted $E_d(\mathcal{R})$, along d, if the empty constraint was not generated. Else, the problem is inconsistent

- Partition constraints into $bucket_1, \ldots, bucket_n$ as follows: for $i \leftarrow n$ downto 1, put in $bucket_i$ all unplaced constraints mentioning x_i .
- for $p \leftarrow n$ downto 1 do 2 .
- for all the constraints R_{S_1}, \ldots, R_{S_j} in $bucket_p$ do 3.
- $A \leftarrow \bigcup_{i=1}^{j} S_i \{x_p\}$ 4.
- $R_A \leftarrow \Pi_A(\bowtie_{i=1}^j R_{S_i})$ 5.
- 6. if R_A is not the empty relation then add R_A to the bucket of the latest variable in scope A,
- 7. else exit and return the empty network
- $\mathbf{return}\ E_d(\mathcal{R}) = (X, D, bucket_1 \cup bucket_2 \cup \cdots \cup bucket_n)$ 8.

Figure 4.14: Adaptive-Consistency as a bucket-elimination algorithm

Properties of bucket-elimination (adaptive consistency)

- Adaptive consistency generates a constraint network
- that is backtrack-free (can be solved without deadends).
- The time and space complexity of adaptive consistency along ordering d is $O(n (2k)^{w^*+1}), O(n (k)^{w^*+1})$ respectively, or $O(r k^{w^*+1})$) when r is the number of constraints.
- Therefore, problems having bounded induced width are tractable (solved in polynomial time)
- Special cases: trees (w*=1), series-parallel networks (w*=2), and in general k-trees (w*=k).

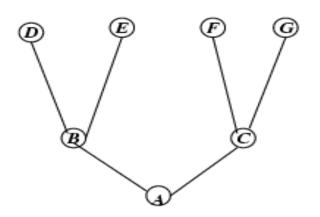
Back to Induced width

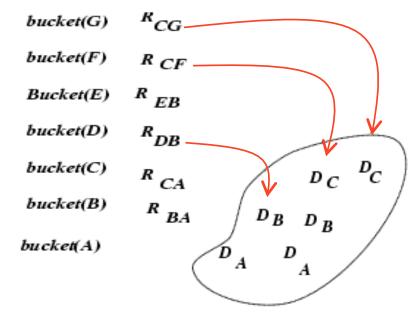
- Finding minimum-w* ordering is NP-complete (Arnborg, 1985)
- Greedy ordering heuristics: min-width, min-degree, max-cardinality (Bertele and Briochi, 1972; Freuder 1982), Min-fill.

Solving Trees

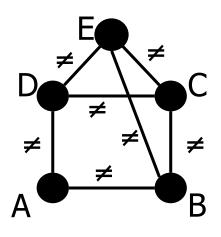
(Mackworth and Freuder, 1985)

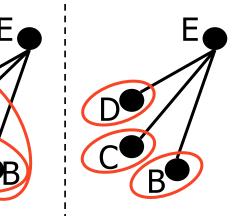
Adaptive consistency is linear for trees and equivalent to enforcing directional arc-consistency (recording only unary constraints)





Summary: directional i-consistency





 $E: E \neq D, E \neq C, E \neq B$

Adaptive

d-arc

 $D: D \neq C, D \neq A$

 $\rightarrow R_{DCB}$

 $C: C \neq B$

 $B: A \neq B$

 R_{DC} , R_{DB}

d-path

Relational consistency (Chapter 8)

- Relational arc-consistency
- Relational path-consistency
- Relational m-consistency
- Relational consistency for Boolean and linear constraints:
 - Unit-resolution is relational-arc-consistency
 - Pair-wise resolution is relational pathconsistency

Sudoku's propagation

- http://www.websudoku.com/
- What kind of propagation we do?

Sudoku

Con	stra	int	
pro	paga	atior	

		2	4		6			
8	6	5	1			2		
	1				8	6		9
9				4		8	6	
	4	7				1	9	
	5	8		6				3
4		6	9				7	23
		9			4	5	8	1
			3		2	9		
			3		2	9		

•Variables: 81 slots

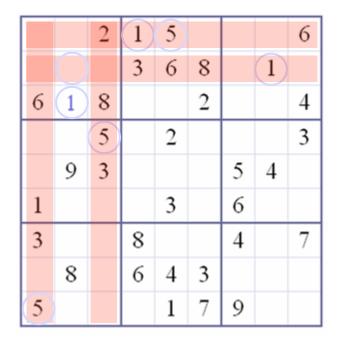
•Domains = {1,2,3,4,5,6,7,8,9}

•Constraints:

• 27 not-equal

Each row, column and major block must be alldifferent

Sudoku



Each row, column and major block must be all different "Well posed" if it has unique solution