Constraint Networks Chapters 1-2

Compsci-275

Winter 2016

Winter 2016

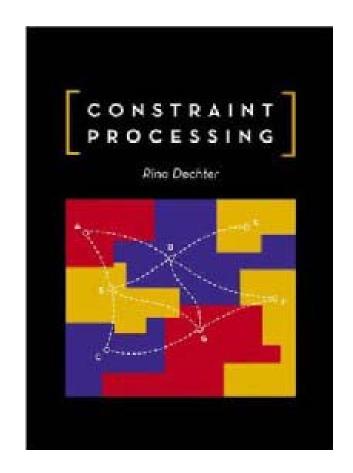
Class Information

Instructor: Rina Dechter

Lectures: Monay & Wednesday

• Time: 11:00 - 12:20 pm

Discussion (optional): Wednesdays 12:30-1:20

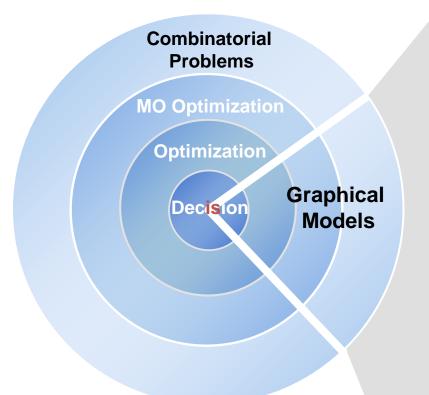

• Class page: http://www.ics.uci.edu/~dechter/courses/ics-275a/spring-2014/

Text book (required)

Rina Dechter,

Constraint Processing,

Morgan Kaufmann


Outline

- ✓ Motivation, applications, history
- ✓ CSP: Definition, and simple modeling examples
- ✓ Mathematical concepts (relations, graphs)
- ✓ Representing constraints
- ✓ Constraint graphs
- ✓ The binary Constraint Networks properties

Outline

- ✓ Motivation, applications, history
- ✓ CSP: Definition, representation and simple modeling examples
- ✓ Mathematical concepts (relations, graphs)
- ✓ Representing constraints
- ✓ Constraint graphs
- ✓ The binary Constraint Networks properties

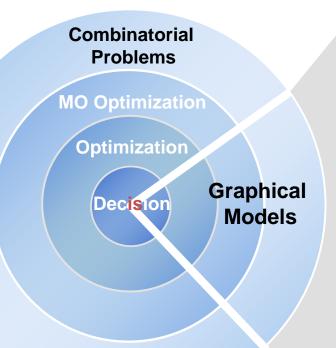
Combinatorial Problems

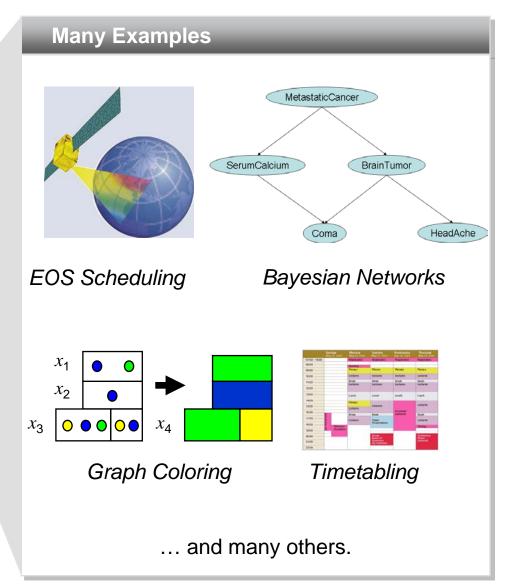
Graphical Models

Those problems that can be expressed as:

A set of variables

Each variable takes its values from a finite set of domain values


A set of local functions


Main advantage:

They provide unifying algorithms:

- o Search
- o Complete Inference
- o Incomplete Inference

Combinatorial Problems

Example: student course selection

- Context: You are a senior in college
- **Problem**: You need to register in 4 courses for the Spring semester
- Possibilities: Many courses offered in Math, CSE, EE, CBA, etc.
- **Constraints**: restrict the choices you can make
 - Courses have prerequisites you have/don't have Courses/instructors you like/dislike
 - Courses are scheduled at the same time
 - In CE: 4 courses from 5 tracks such as at least 3 tracks are covered
- You have choices, but are restricted by constraints
 - Make the right decisions!!
 - ICS Graduate program

Student course selection (continued)

Given

- A set of variables: 4 courses at your college
- For each variable, a set of choices (values): the available classes.
- A set of constraints that restrict the combinations of values the variables can take at the same time

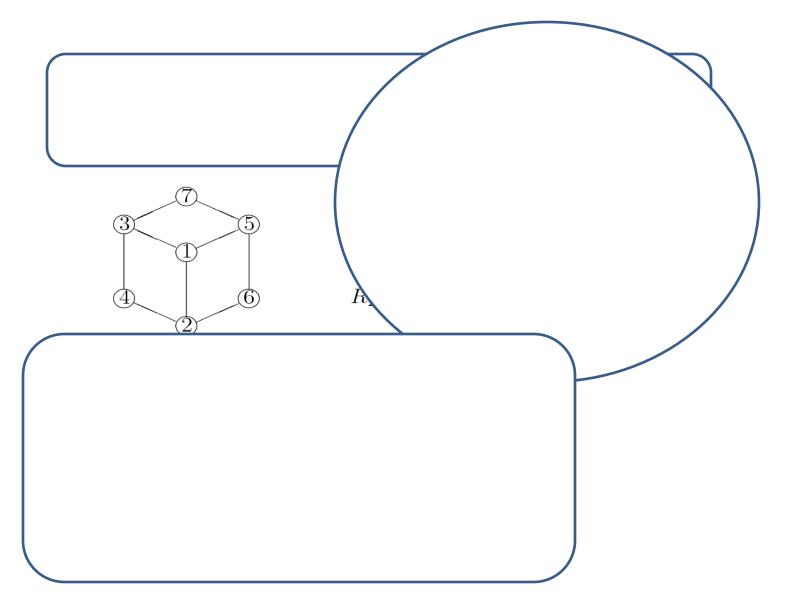
Questions

- Does a solution exist? (classical decision problem)
- How many solutions exists? (counting)
- How two or more solutions differ?
- Which solution is preferable?

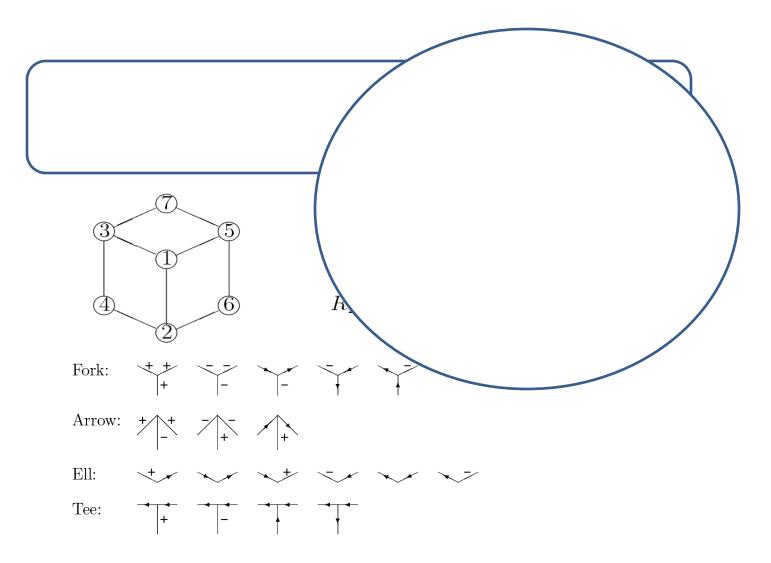
etc.

Winter 2016

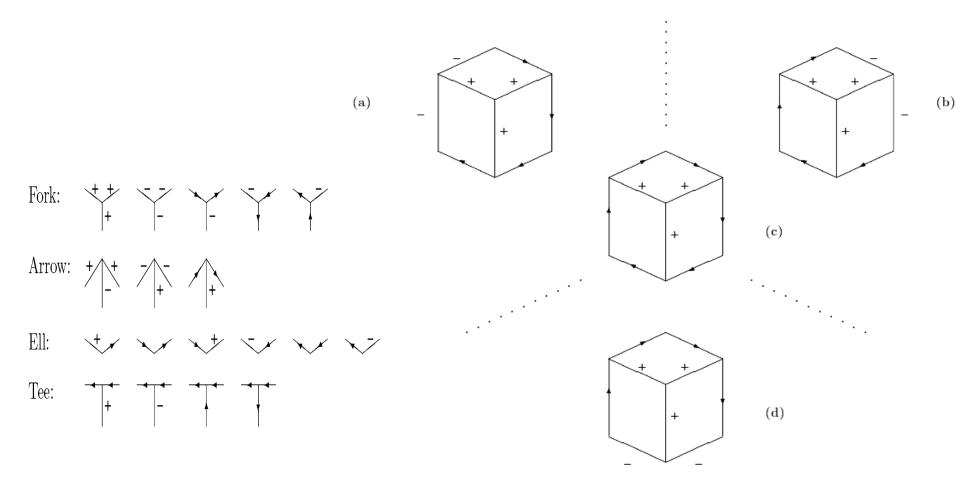
The field of Constraint Programming


How did it started:

- Artificial Intelligence (vision)
- Programming Languages (Logic Programming),
- Databases (deductive, relational)
- Logic-based languages (propositional logic)
- SATisfiability


Related areas:

- Hardware and software verification
- Operation Research (Integer Programming)
- Answer set programming
- Graphical Models; deterministic


Scene labeling constraint network

Scene labeling constraint network

3-dimentional interpretation of 2-dimentional drawings

The field of Constraint Programming

How did it start:

- Artificial Intelligence (vision)
- Programming Languages (Logic Programming),
- Databases (deductive, relational)
- Logic-based languages (propositional logic)
- SATisfiability

Related areas:

- Hardware and software verification
- Operation Research (Integer Programming)
- Answer set programming
- Graphical Models; deterministic

Applications

- Radio resource management (RRM)
- Databases (computing joins, view updates)
- Temporal and spatial reasoning
- Planning, scheduling, resource allocation
- Design and configuration
- Graphics, visualization, interfaces
- Hardware verification and software engineering
- HC Interaction and decision support
- Molecular biology
- Robotics, machine vision and computational linguistics
- Transportation
- Qualitative and diagnostic reasoning

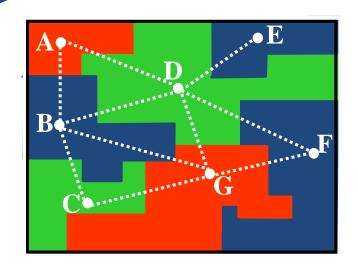
Outline

- ✓ Motivation, applications, history
- ✓ CSP: Definitions and simple modeling examples
- ✓ Mathematical concepts (relations, graphs)
- ✓ Representing constraints
- ✓ Constraint graphs
- ✓ The binary Constraint Networks properties

Constraint Networks

A

Example: map coloring


Variables - countries (A,B,C,etc.)

Values - colors (red, green, blue)

Constraints:

 $A \neq B$, $A \neq D$, $D \neq E$, etc.

red green red green red green yellow green yellow green yellow red

B

Constraint graph

Constraint Satisfaction Tasks

Example: map coloring

Variables - countries (A,B,C,etc.)

Values - colors (e.g., red, green, yellow)

Constraints:

 $A \neq B$, $A \neq D$, $D \neq E$, etc.

Are the constraints consistent?

Find a solution, find all solutions

Count all solutions

Find a good solution

A	В	C	D	E
red	green	red	green	blue
red	blue	green	green	blue
•••	•••	•••	•••	green
				red
red	blue	red	green	red

Information as Constraints

- I have to finish my class in 50 minutes
- 180 degrees in a triangle
- Memory in our computer is limited
- The four nucleotides that makes up a DNA only combine in a particular sequence
- Sentences in English must obey the rules of syntax
- Susan cannot be married to both John and Bill
- Alexander the Great died in 333 B.C.

Constraint Network; Definition

- A constraint network is: R=(X,D,C)
 - X variables

$$X = \{X_1, ..., X_n\}$$

D domain

$$D = \{D_1, ..., D_n\}, D_i = \{v_1, ..., v_k\}$$

C constraints

$$C = \{C_1, ..., C_t\}, , , C_i = (S_i, R_i)$$

- R expresses allowed tuples over scopes
- A solution is an assignment to all variables that satisfies all constraints (join of all relations).
- Tasks: consistency?, one or all solutions, counting, optimization

The N-queens problem

The network has four variables, all with domains $D_i = \{1, 2, 3, 4\}$. (a) The labeled chess board. (b) The constraints between variables.

	x_1	x_2	x_3	x_4
1				
2				
3				
4				

(a)

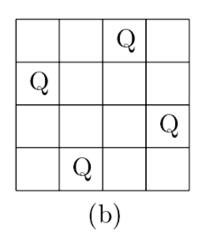
$$R_{12} = \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\}$$

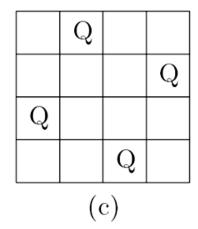
$$R_{13} = \{(1,2), (1,4), (2,1), (2,3), (3,2), (3,4), (4,1), (4,3)\}$$

$$R_{14} = \{(1,2), (1,3), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,2), (4,3)\}$$

$$R_{23} = \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\}$$

$$R_{24} = \{(1,2), (1,4), (2,1), (2,3), (3,2), (3,4), (4,1), (4,3)\}$$


$$R_{34} = \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\}$$
(b)


A solution and a partial consistent tuple

Not all consistent instantiations are part of a solution:

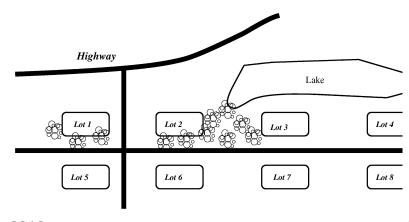
- (a) A consistent instantiation that is not part of a solution.
- (b) The placement of the queens corresponding to the solution (2, 4, 1,3).
- c) The placement of the queens corresponding to the solution (3, 1, 4, 2).

Q					
		Q			
	Q				
(a)					

Example: Crossword puzzle

• Variables: x₁, ..., x₁₃

Domains: letters


Constraints: words from

1	2	3	4	5
		6		7
	8	9	10	11
		12	13	

{HOSES, LASER, SHEET, SNAIL, STEER, ALSO, EARN, HIKE, IRON, SAME, EAT, LET, RUN, SUN, TEN, YES, BE, IT, NO, US}

Configuration and Design

- Want to build: recreation area, apartment complex, a cluster of 50 single-family houses, cemetery, and a dump
 - Recreation area near lake
 - Steep slopes avoided except for recreation area
 - Poor soil avoided for developments
 - Highway far from apartments, houses and recreation
 - Dump not visible from apartments, houses and lake
 - Lots 3 and 4 have poor soil
 - Lots 3, 4, 7, 8 are on steep slopes
 - Lots 2, 3, 4 are near lake
 - Lots 1, 2 are near highway

Example: Sudoku (constraint propagation)

Constraint propagation

		2	4		6			
8	6	5	1			2		
	1				8	6		9
9				4		8	6	
	4	7				1	9	
	5	8		6				3
4		6	9				7	2-3 A-6
		9			4	5	8	1
			3		2	9		

Variables: 81 slots

•Domains = {1,2,3,4,5,6,7,8,9}

Constraints:27 not-equal

Each row, column and major block must be all different

"Well posed" if it has unique solution: 27 constraints

Sudoku (inference)

		2	1	5				6
			3	6	8		(1)	
6	1	8			2			4
		5		2				3
	9	3				5	4	
1				3		6		
3			8			4		7
	8		6	4	3			
5				1	7	9		

Each row, column and major block must be all different "Well posed" if it has unique solution

Outline

- ✓ Motivation, applications, history
- ✓ CSP: Definition, representation and simple modeling examples
- ✓ Mathematical concepts (relations, graphs)
- ✓ Representing constraints
- ✓ Constraint graphs
- ✓ The binary Constraint Networks properties

Mathematical background

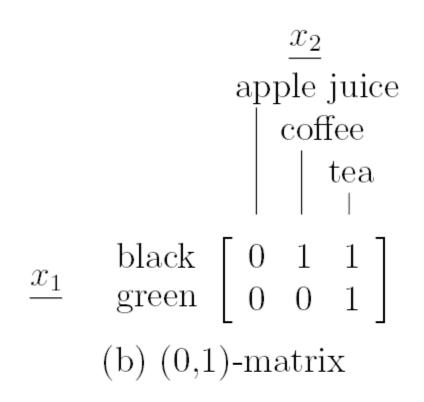
- Sets, domains, tuples
- Relations
- Operations on relations
- Graphs
- Complexity

Two Representations of a relation: $R = \{(black, coffee), (black, tea), (green, tea)\}.$

Variables: Drink, color

x_1	x_2
black	coffee
black	tea
green	tea

(a) table



Two Representations of a relation: R = {(black, coffee), (black, tea), (green, tea)}.

Variables: Drink, color

x_1	x_2
black	coffee
black	tea
green	tea

(a) table

Three Relations

$$egin{array}{c|cccc} x_1 & x_2 & x_3 \\ a & b & c \\ b & b & c \\ c & b & c \\ c & b & s \\ \hline \end{array}$$

$$\begin{array}{c|cccc} x_1 & x_2 & x_3 \\ \hline b & b & c \\ c & b & c \\ c & n & n \\ \hline \end{array}$$

$$\begin{array}{c|cccc} x_2 & x_3 & x_4 \\ \hline a & a & 1 \\ b & c & 2 \\ b & c & 3 \\ \end{array}$$

- (a) Relation R
- (b) Relation R'

(c) Relation R''

Operations with relations

- Intersection
- Union
- Difference
- Selection
- Projection
- Join
- Composition

Relations are Local Functions

Relations are special case of a Local function

$$f: \prod_{x_i \in Y} D_i \to A$$

where

 $var(f) = Y \subseteq X$: scope of function f

A: is a set of valuations

In constraint networks: functions are boolean

X_1	\mathbf{X}_{2}	f	nolation	\mathbf{x}_1	X_2
a	а	true	relation	a	a
а	b	false		b	b
b	a	false			
b	b	true	Winter 2016		

Example of Set Operations: intersection, union, and difference applied to relations.

x_1	x_2	x_3
a	b	c
b	b	С
\mathbf{c}	b	С
\mathbf{c}	b	\mathbf{s}

$$\begin{array}{c|ccc} x_1 & x_2 & x_3 \\ \hline b & b & c \\ c & b & c \\ c & n & n \\ \hline \end{array}$$

$$\begin{array}{c|cccc} x_2 & x_3 & x_4 \\ \hline a & a & 1 \\ b & c & 2 \\ b & c & 3 \\ \end{array}$$

(a) Relation R

(b) Relation
$$R'$$

(c) Relation
$$R''$$

$$\begin{array}{c|cccc}
x_1 & x_2 & x_3 \\
b & b & c \\
c & b & c
\end{array}$$

$$\begin{array}{c|ccc} x_1 & x_2 & x_3 \\ \hline a & b & c \\ b & b & c \\ c & b & c \\ c & b & s \\ c & n & n \\ \end{array}$$

$$\begin{array}{c|ccc}
x_1 & x_2 & x_3 \\
a & b & c \\
c & b & s
\end{array}$$

(a) $R \cap R'$

(b)
$$R \cup R'$$

(b)
$$R - R'$$

Selection, Projection, and Join

x_1	x_2	x_3
a	b	c
b	b	c
$^{\mathrm{c}}$	b	c
\mathbf{c}	b	\mathbf{s}

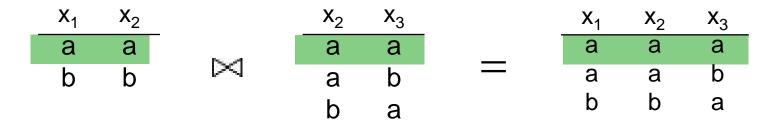
$$\begin{array}{c|ccc} x_1 & x_2 & x_3 \\ \hline b & b & c \\ c & b & c \\ c & n & n \\ \hline \end{array}$$

$$\begin{array}{c|cccc} x_2 & x_3 & x_4 \\ \hline a & a & 1 \\ b & c & 2 \\ b & c & 3 \\ \end{array}$$

- (a) Relation R
- (b) Relation R'
- (c) Relation R''

$$\begin{array}{c|cccc} x_1 & x_2 & x_3 \\ b & b & c \\ c & b & c \end{array}$$

$$\begin{array}{c|c} x_2 & x_3 \\ \hline b & c \\ n & n \end{array}$$


- (a) $\sigma_{x_3=c}(R')$ (b) $\pi_{\{x_2,x_3\}}(R')$
- (c) R' ⋈ R"

Winter 2016 38

Local Functions

Combination

Join: $f \bowtie g$

Logical AND: $f \wedge g$

								x ₁	\mathbf{x}_2	x_3	n
		l £				l a .	•	а	а	а	true
X ₁	X ₂	T	_	X ₂	X ₃	9		а	а	b	true
а	a	true		a	a	true		а	b	а	false
а	b	false	\wedge	a	b	true	=	a	b	b	false
b	a	false	, .	b	a	true		b	а	а	false
b	b	true		b	b	false		b	a	b	false
								b	b	а	true
					Wint	er 2016		b	b	b	false

Outline

- ✓ Motivation, applications, history
- ✓ CSP: Definition, representation and simple modeling examples
- ✓ Mathematical concepts (relations, graphs)
- ✓ Representing constraints/ Languages
- ✓ Constraint graphs
- ✓ The binary Constraint Networks properties

Modeling; Representing a problems

- If a CSP M = <X,D,C> represents a real problem P, then every solution of M corresponds to a solution of P and every solution of P can be derived from at least one solution of M
- The variables and values of M represent entities in P
- The constraints of M ensure the correspondence between solutions
- The aim is to find a model M that can be solved as quickly as possible
- goal of modeling: choose a set of variables and values that allows the constraints to be expressed easily and concisely

Propositional Satisfiability

Given a proposition theory

$$\varphi = \{(A \lor B), (C \lor \neg B)\}$$

does it have a model?

Can it be encoded as a constraint network?

Variables: {A, B, C}

Domains: $D_A = D_B = D_C = \{0, 1\}$

Relations:

 A
 B
 B
 C

 0
 1
 0
 0

 1
 0
 0
 1

 1
 1
 1
 1

If this constraint network has a solution, then the propositional theory has a model

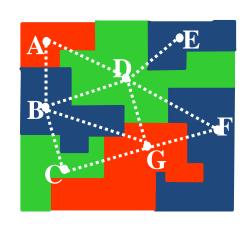
Constraint's representations

• Relation: allowed tuples

• Algebraic expression:

$$X + Y^2 \le 10, X \ne Y$$

• Propositional formula:

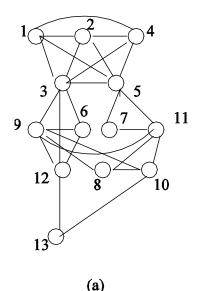

$$(a \lor b) \rightarrow \neg c$$

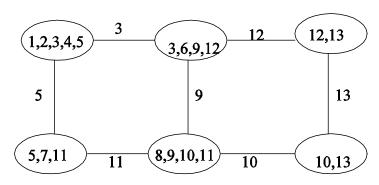
A decision tree, a procedure

Semantics: by a relation

Outline

- ✓ Motivation, applications, history
- ✓ CSP: Definition, representation and simple modeling examples
- ✓ Mathematical concepts (relations, graphs)
- ✓ Representing constraints
- ✓ Constraint graphs
- ✓ The binary Constraint Networks properties

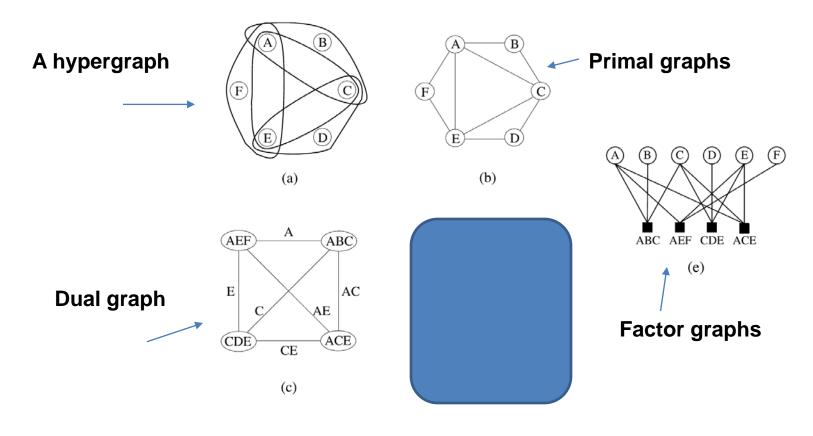



Constraint Graphs:

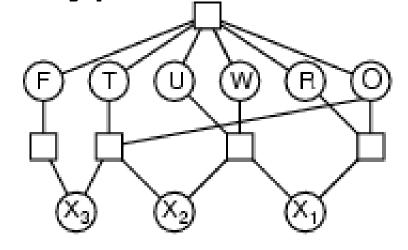
Primal, Dual and Hypergraphs

- •A (primal) constraint graph: a node per variable, arcs connect constrained variables.
- •A dual constraint graph: a node per constraint's scope, an arc connect nodes sharing variables =hypergraph

1	2	3	4	5
		6		7
	8	9	10	11
		12	13	



(HOSES, LASER, SHEET, SNAIL, STEER, ALSO, EARN, HIKE, IRON, SAME, EAT, LET, RUN, SUN, TEN, YES, BE, IT, NO, US)

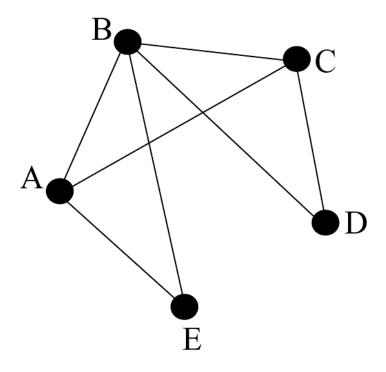

Graph Concepts Reviews:

Hyper Graphs and Dual Graphs

Example: Cryptarithmetic

Variables: FTUW $ROX_1X_2X_3$

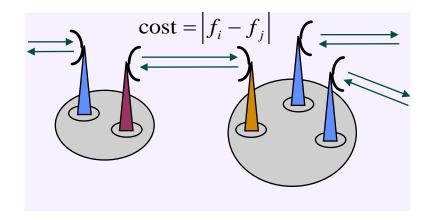
Domains: {0,1,2,3,4,5,6,7,8,9}


Constraints: Alldiff (F,T,U,W,R,O)

$$O + O = R + 10 \cdot X_1$$

 $X_1 + W + W = U + 10 \cdot X_2$
 $X_2 + T + T = O + 10 \cdot X_3$
 $X_3 = F, T \neq 0, F \neq 0$

What is the primal graph? What is the dual graph?


Propositional Satisfiability

 $\varphi = \{(\neg C), (A \lor B \lor C), (\neg A \lor B \lor E), (\neg B \lor C \lor D)\}.$

Examples

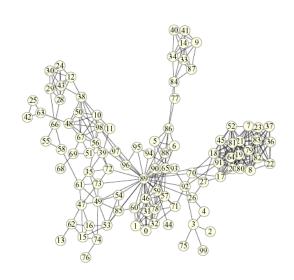
Radio Link Assignment

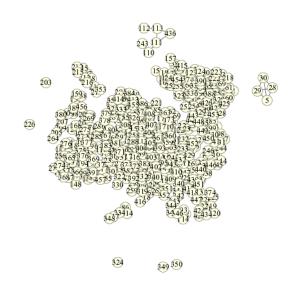
Given a telecommunication network (where each communication link has various antenas), assign a frequency to each antenna in such a way that all antennas may operate together without noticeable interference.

Encoding?

Variables: one for each antenna

Domains: the set of available frequencies


Constraints: the ones referring to the antennas in the same communication link


Winter 2016

56

Constraint graphs of 3 instances of the Radio frequency assignment problem in CELAR's benchmark

Examples

Scheduling problem

Five tasks: T1, T2, T3, T4, T5

Each one takes one hour to complete

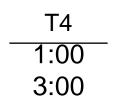
The tasks may start at 1:00, 2:00 or 3:00

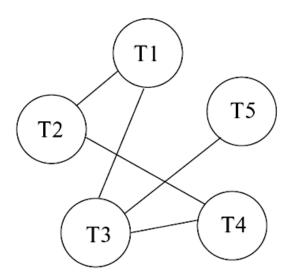
Requirements:

T1 must start after T3

T3 must start before T4 and after T5

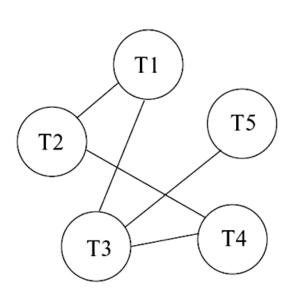
T2 cannot execute at the same time as T1 or T4

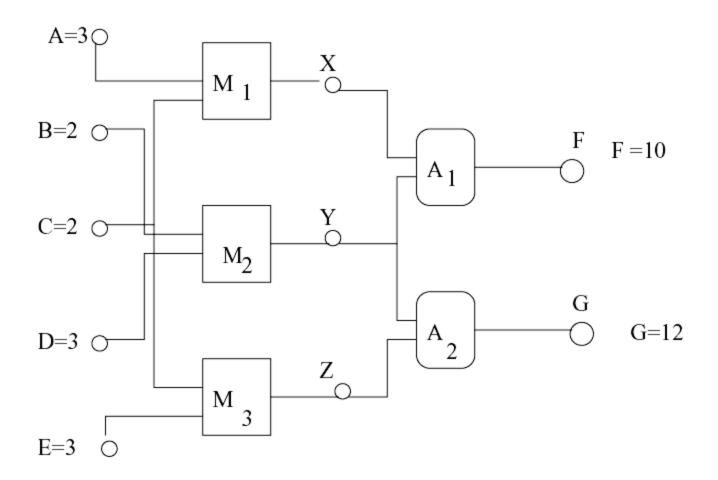

T4 cannot start at 2:00


Encoding?

Variables: one for each task

Domains: $D_{T1} = D_{T2} = D_{T3} = D_{T3} = \{1:00, 2:00, 3:00\}$

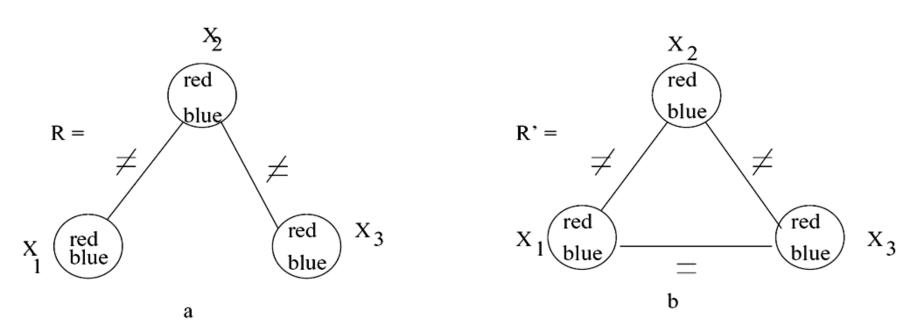

Constraints:


Winter 2016

The constraint graph and relations of scheduling problem


```
Unary constraint
D_{T4} = \{1:00, 3:00\}
Binary constraints
R_{\{T1,T2\}}: {(1:00,2:00), (1:00,3:00), (2:00,1:00),
          (2:00,3:00), (3:00,1:00), (3:00,2:00)
              \{(2:00,1:00), (3:00,1:00),
R_{\{T1,T3\}}:
(3:00,2:00)
R_{T2,T4}: {(1:00,2:00), (1:00,3:00), (2:00,1:00),
          (2:00,3:00), (3:00,1:00), (3:00,2:00)
               \{(1:00,2:00), (1:00,3:00),\}
R_{\{T3,T4\}}:
(2:00,3:00)
R_{\{T3,T5\}}:
                  \{(2:00,1:00),
                                    (3:00,1:00),
(3:00,2:00)
```

A combinatorial circuit: M is a multiplier, A is an adder



Outline

- ✓ Motivation, applications, history
- ✓ CSP: Definition, representation and simple modeling examples
- ✓ Mathematical concepts (relations, graphs)
- ✓ Representing constraints
- ✓ Constraint graphs
- ✓ The binary Constraint Networks properties

Properties of Binary Constraint Networks

A graph \Re to be colored by two colors, an equivalent representation \Re ' having a newly inferred constraint between x1 and x3.

Equivalence and deduction with constraints (composition)

Composition of relations (Montanari'74)

Input: two binary relations $R_{\rm ab}$ and $R_{\rm bc}$ with 1 variable in common.

Output: a new induced relation $R_{\rm ac}$ (to be combined by intersection to a pre-existing relation between them, if any).

Bit-matrix operation: matrix multiplication

$$R_{ac} = R_{ab} \cdot R_{bc}$$

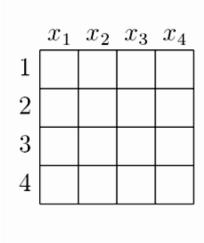
$$R_{ab} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad R_{bc} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad R_{ac} = ?$$

Equivalence, Redundancy, Composition

- Equivalence: Two constraint networks are equivalent if they have the same set of solutions.
- Composition in matrix notation

$$R_{xz} = R_{xy} \cdot R_{yz}$$

Composition in relational operation


$$R_{xz} = \pi_{xz} (R_{xy} \bowtie R_{yz})$$

Relations vs Networks

- Can we represent by binary constraint networks the relations
- $R(x1,x2,x3) = \{(0,0,0)(0,1,1)(1,0,1)(1,1,0)\}$
- $R(X1,x2,x3,x4) = \{(1,0,0,0)(0,1,0,0)(0,0,1,0)(0,0,0,1)\}$
- Number of relations 2^{k^n}
- Number of networks: 2^{n^2k}
- Most relations cannot be represented by binary constraint networks

The N-queens constraint network Is there a tighter network?

The network has four variables, all with domains $Di = \{1, 2, 3, 4\}$. (a) The labeled chess board. (b) The constraints between variables.

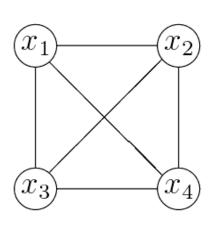
(a)

$$R_{12} = \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\}$$

$$R_{13} = \{(1,2), (1,4), (2,1), (2,3), (3,2), (3,4), (4,1), (4,3)\}$$

$$R_{14} = \{(1,2), (1,3), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,2), (4,3)\}$$

$$R_{23} = \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\}$$


$$R_{24} = \{(1,2), (1,4), (2,1), (2,3), (3,2), (3,4), (4,1), (4,3)\}$$

$$R_{34} = \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\}$$
(b)

Solutions are: (2,4,1,3) (3,1,4,2)

The 4-queens constraint network:

- (a) The constraint graph. (b) The minimal binary constraints.
- (c) The minimal unary constraints (the domains).

$$M_{12} = \{(2,4), (3,1)\}$$

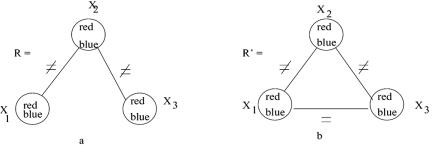
 $M_{13} = \{(2,1), (3,4)\}$
 $M_{14} = \{(2,3), (3,2)\}$
 $M_{23} = \{(1,4), (4,1)\}$
 $M_{24} = \{(1,2), (4,3)\}$
 $M_{34} = \{(1,3), (4,2)\}$

$$D_1 = \{23\}$$
 $D_2 = \{1,4\}$
 $D_3 = \{1,4\}$
 $D_4 = \{2,3\}$

(c)

Solutions are: (2,4,1,3) (3,1,4,2)

The projection networks


- The projection network of a relation is obtained by projecting it onto each pair of its variables (yielding a binary network).
- Relation = $\{(1,1,2)(1,2,2)(1,2,1)\}$
 - What is the projection network?
- What is the relationship between a relation and its projection network?
- {(1,1,2)(1,2,2)(2,1,3)(2,2,2)} are the solutions of its projection network?

Projection network (continued)

- **Theorem**: Every relation is included in the set of solutions of its projection network.
- **Theorem**: The projection network is the tightest upper bound binary networks representation of the relation.

Therefore, If a network cannot be represented by its projection network it has no binary network representation

Partial Order between networks, The Minimal Network

Definition 2.3.10 Given two binary networks, \mathcal{R}' and \mathcal{R} , on the same set of variables $x_1, ..., x_n$, \mathcal{R}' is at least as tight as \mathcal{R} iff for every i and j, $R'_{ij} \subseteq R_{ij}$.

- •An intersection of two networks is tighter (as tight) than both
- •An intersection of two equivalent networks is equivalent to both

Definition 2.3.14 Let $\{\mathcal{R}_1, ... \mathcal{R}_l\}$ be the set of all networks equivalent to \mathcal{R}_0 and let $\rho = sol(\mathcal{R}_0)$. Then the minimal network M of \mathcal{R}_0 is defined by $M(\mathcal{R}_0) = \cap_{i=1}^l \mathcal{R}_i$.

Theorem 2.3.15 For every binary network \mathcal{R} s.t. $\rho = sol(\mathcal{R})$, $M(\rho) = P(\rho)$.

The N-queens constraint network.

The network has four variables, all with domains $Di = \{1, 2, 3, 4\}$. (a) The labeled chess board. (b) The constraints between variables.

(b)

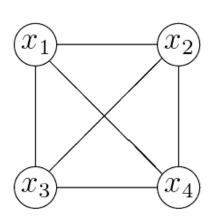
	x_1	x_2	x_3	x_4
1				
2				
3				
4				

(a)

$$R_{12} = \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\}$$

$$R_{13} = \{(1,2), (1,4), (2,1), (2,3), (3,2), (3,4), (4,1), (4,3)\}$$

$$R_{14} = \{(1,2), (1,3), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,2), (4,3)\}$$


$$R_{23} = \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\}$$

$$R_{24} = \{(1,2), (1,4), (2,1), (2,3), (3,2), (3,4), (4,1), (4,3)\}$$

$$R_{34} = \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\}$$

The 4-queens constraint network:

- (a) The constraint graph. (b) The minimal binary constraints.
- (c) The minimal unary constraints (the domains).

$$M_{12} = \{(2,4), (3,1)\}$$

 $M_{13} = \{(2,1), (3,4)\}$
 $M_{14} = \{(2,3), (3,2)\}$
 $M_{23} = \{(1,4), (4,1)\}$
 $M_{24} = \{(1,2), (4,3)\}$
 $M_{34} = \{(1,3), (4,2)\}$

$$D_1 = \{23\}$$
 $D_2 = \{1,4\}$
 $D_3 = \{1,4\}$
 $D_4 = \{2,3\}$

(a)

(b)

(c)

Solutions are: (2,4,1,3) (3,1,4,2)