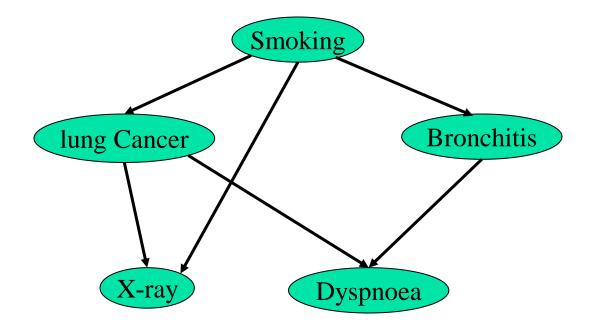
Exact Inference Algorithms Bucket-elimination

COMPSCI 276, Fall 2014

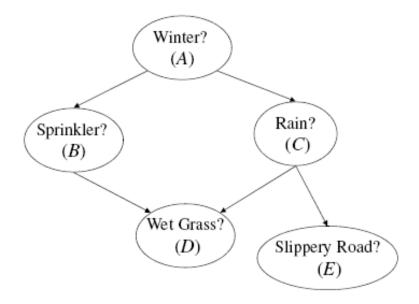
Class 5: Rina Dechter

Belief Updating



P (lung cancer=yes | smoking=no, dyspnoea=yes) = ?

A Bayesian Network



Α	Θ_A
true	.6
false	.4

Α	В	$\Theta_{B A}$
true	true	.2
true	false	.8
false	true	.75
false	false	.25

Α	С	$\Theta_{C A}$
true	true	.8
true	false	.2
false	true	.1
false	false	.9

В	С	D	$\Theta_{D BC}$
true	true	true	.95
true	true	false	.05
true	false	true	.9
true	false	false	.1
false	true	true	.8
false	true	false	.2
false	false	true	0
false	false	false	1

С	Ε	$\Theta_{E C}$
true	true	.7
true	false	.3
false	true	0
false	false	1

Queries

 Posterior marginals, or belief updating. For every X_i not in E the belief is defined by bel(X_i) = P_B(X_i|e).

$$P(X_i|e) = \sum_{\mathbf{X}-X_i} \prod_j P(X_j|X_{pa_j}, e)$$

2. The probability of evidence is $P_B(E = e)$. Formally,

$$P_{\mathcal{B}}(E=e) = \sum_{\mathbf{X}} \prod_{j} P(X_{j}|X_{pa_{j}}, e)$$

3. The most probable explanation (mpe) is an assignment $x^o = (x^o_1, ..., x^o_n)$ satisfying

$$\mathbf{x}^{o} = argmax_{\mathbf{X}} \mathbf{P}_{\mathcal{B}} = argmax_{\mathbf{X}} \prod_{j} P(X_{j}|X_{pa_{j}}, e).$$

The mpe value is $P_{\mathcal{B}}(\mathbf{x}^o)$, sometime also called MAP.

4. Maximum a posteriori hypothesis (marginal map). Given a set of hypothesized variables $A = \{A_1, ..., A_k\}, A \subseteq X$, the map task is to find an assignment $a^o = (a^o_1, ..., a^o_k)$ such that

$$\mathbf{a}^o = argmax_{\mathbf{A}} \sum_{\mathbf{X} - \mathbf{A}} \mathbf{P}(\mathbf{X}|\mathbf{e}) = argmax_{\mathbf{A}} \sum_{\mathbf{X} - \mathbf{A}} \prod_j P(X_j | X_{pa_j}, e)$$

Belief updating is NP-hard

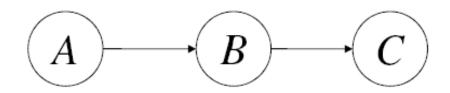
- Each sat formula can be mapped to a Bayesian network query.
- Example: (u,~v,w) and (~u,~w,y) sat?

A simple network

Given: A B C D

- How can we compute P(D)?, P(D|A=0)? P(A|D=0)?
- Brute force O(k^4)
- Maybe O(4k^2)

Elimination as a Basis for Inference



Α	Θ_A
true	.6
false	.4

Α	В	$\Theta_{B A}$
true	true	.9
true	false	.1
false	true	.2
false	false	.8

В	C	$\Theta_{C B}$
true	true	.3
true	false	.7
false	true	.5
false	false	.5

To compute the prior marginal on variable C, Pr(C)

we first eliminate variable A and then variable B

Elimination as a Basis for Inference

- There are two factors that mention variable A, Θ_A and $\Theta_{B|A}$
- We multiply these factors first and then sum out variable A from the resulting factor.
- Multiplying Θ_A and $\Theta_{B|A}$:

Α	В	$\Theta_A\Theta_{B A}$
true	true	.54
true	false	.06
false	true	.08
false	false	.32

Summing out variable A:

В	$\sum_A \Theta_A \Theta_{B A}$
true	.62 = .54 + .08
false	.38 = .06 + .32

Elimination as a Basis for Inference

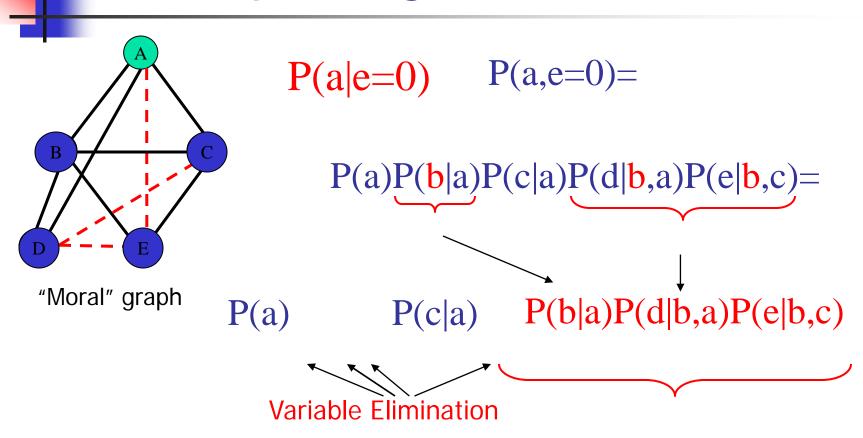
- We now have two factors, $\sum_A \Theta_A \Theta_{B|A}$ and $\Theta_{C|B}$, and we want to eliminate variable B
- Since B appears in both factors, we must multiply them first and then sum out B from the result.
- Multiplying:

В	С	$\Theta_{C B}\sum_{A}\Theta_{A}\Theta_{B A}$
true	true	.186
true	false	.434
false	true	.190
false	false	.190

Summing out:

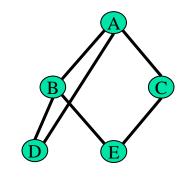
С	$\sum_{B} \Theta_{C B} \sum_{A} \Theta_{A} \Theta_{B A}$
true	.376
false	.624

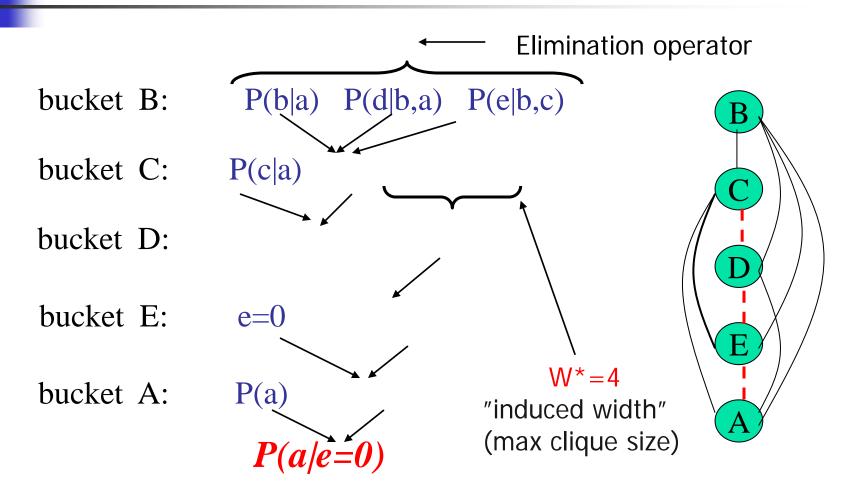
Belief Updating: P(X|evidence)=?



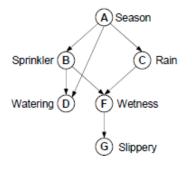
Bucket Elimination

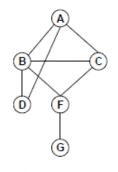
Algorithm *BE-bel* (Dechter 1996)





A Bayesian Network Ordering: A,C,B,E,D,G





(a) Directed acyclic graph

(b) Moral graph

$$P(a,g=1) = \sum_{c,b,e,d,g=1} P(a,b,c,d,e,g) = \sum_{c,b,f,d,g=1} P(g|f)P(f|b,c)P(d|a,b)P(c|a)P(b|a)P(a).$$

$$P(a, g = 1) = P(a) \sum_{c} P(c|a) \sum_{b} P(b|a) \sum_{f} P(f|b, c) \sum_{d} P(d|b, a) \sum_{g=1} P(g|f). \tag{4.1}$$

$$P(a, g = 1) = P(a) \sum_{c} P(c|a) \sum_{b} P(b|a) \sum_{f} P(f|b, c) \lambda_{G}(f) \sum_{d} P(d|b, a).$$
 (4.2)

$$P(a, g = 1) = P(a) \sum_{c} P(c|a) \sum_{b} P(b|a) \lambda_{D}(a, b) \sum_{f} P(f|b, c) \lambda_{G}(f)$$
 (4.3)

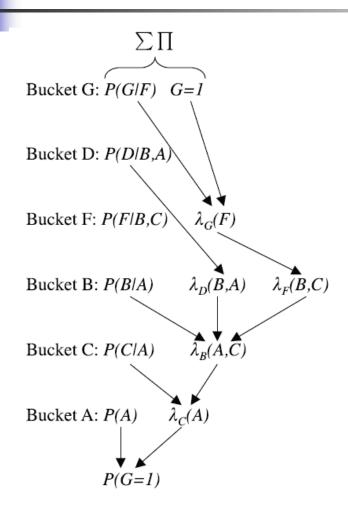
$$P(a, g = 1) = P(a) \sum_{c} P(c|a) \sum_{b} P(b|a) \lambda_D(a, b) \lambda_F(b, c)$$

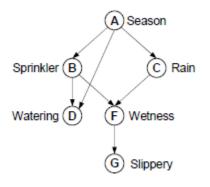
$$(4.4)$$

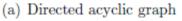
$$P(a, g = 1) = P(a) \sum_{c} P(c|a) \lambda_B(a, c)$$

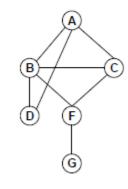
$$(4.5)$$

A Bayesian Network ordering: A,C,B,F,D,G



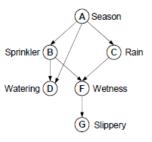


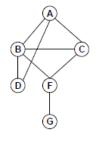




(b) Moral graph

A Different Ordering





(a) Directed acyclic graph

(b) Moral graph

$$P(a, g = 1) = P(a) \sum_{f} \sum_{d} \sum_{c} P(c|a) \sum_{b} P(b|a) P(d|a, b) P(f|b, c) \sum_{g=1} P(g|f)$$

$$= P(a) \sum_{f} \lambda_{G}(f) \sum_{d} \sum_{c} P(c|a) \sum_{b} P(b|a) P(d|a, b) P(f|b, c)$$

$$= P(a) \sum_{f} \lambda_{G}(f) \sum_{d} \sum_{c} P(c|a) \lambda_{B}(a, d, c, f)$$

$$= P(a) \sum_{f} \lambda_{G}(f) \sum_{d} \lambda_{C}(a, d, f)$$

$$= P(a) \sum_{f} \lambda_{G}(f) \lambda_{D}(a, f)$$

$$= P(a) \lambda_{F}(a)$$
Bucket G: $P(G|F)$ $G = I$

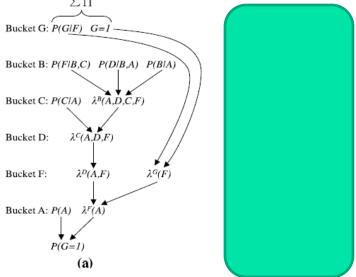
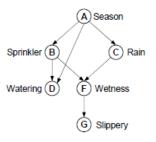
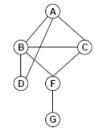


Figure 4.3: The bucket's output when processing along $d_2 = A, F, D, C, B, G$

A Different Ordering





(a) Directed acyclic graph

(b)

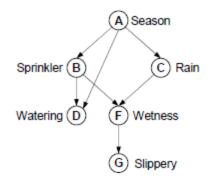
(b) Moral graph

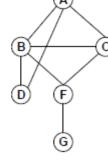
$$\begin{split} P(a,g=1) &= P(a) \sum_{f} \sum_{d} \sum_{c} P(c|a) \sum_{b} P(b|a) \ P(d|a,b) P(f|b,c) \sum_{g=1} P(g|f) \\ &= P(a) \sum_{f} \lambda_{G}(f) \sum_{d} \sum_{c} P(c|a) \sum_{b} P(b|a) \ P(d|a,b) P(f|b,c) \\ &= P(a) \sum_{f} \lambda_{G}(f) \sum_{d} \sum_{c} P(c|a) \lambda_{B}(a,d,c,f) \\ &= P(a) \sum_{f} \lambda_{g}(f) \sum_{d} \lambda_{C}(a,d,f) \\ &= P(a) \sum_{f} \lambda_{G}(f) \lambda_{D}(a,f) \\ &= P(a) \lambda_{F}(a) \end{split}$$

Figure 4.3: The bucket's output when processing along $d_2 = A, F, D, C, B, G$

P(G=1)
(a)

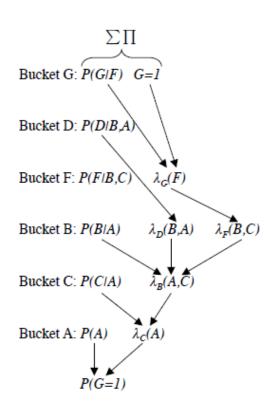
A Bayesian Network Processed Along 2 Orderings





(a) Directed acyclic graph

(b) Moral graph



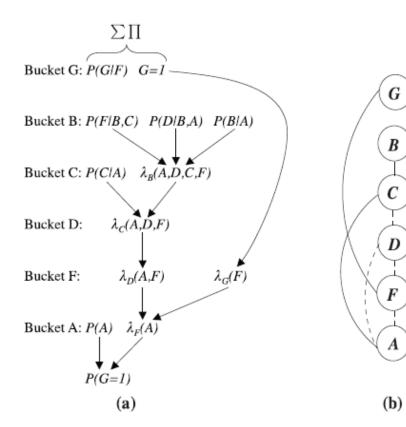


Figure 4.4: The bucket's output when processing along $d_2 = A, F, D, C, B, G$.

Factors: Sum-Out Operation

The sum-out operation is commutative

$$\sum_{Y} \sum_{X} f = \sum_{X} \sum_{Y} f$$

No need to specify the order in which variables are summed out.

If a factor f is defined over disjoint variables X and Y

then $\sum_{\mathbf{X}} f$ is said to marginalize variables \mathbf{X}

If a factor f is defined over disjoint variables X and Y

then $\sum_{\mathbf{X}} f$ is called the result of projecting f on variables \mathbf{Y}

Factors: Multiplication Operation

В	С	D	f_1
true	true	true	.95
true	true	false	.05
true	false	true	.9
true	false	false	.1
false	true	true	.8
false	true	false	.2
false	false	true	0
false	false	false	1

D	Ε	f_2
true	true	0.448
true	false	0.192
false	true	0.112
false	false	0.248

The result of multiplying the above factors:

В	С	D	Ε	$f_1(B,C,D)f_2(D,E)$
true	true	true	true	0.4256 = (.95)(.448)
true	true	true	false	0.1824 = (.95)(.192)
true	true	false	true	0.0056 = (.05)(.112)
:	:	:	:	:
false	false	false	false	0.2480 = (1)(.248)

Factors: Multiplication Operation

The result of multiplying factors $f_1(\mathbf{X})$ and $f_2(\mathbf{Y})$

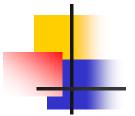
is another factor over variables $\mathbf{Z} = \mathbf{X} \cup \mathbf{Y}$:

$$(f_1f_2)(\mathbf{z}) \stackrel{def}{=} f_1(\mathbf{x})f_2(\mathbf{y}),$$

where x and y are compatible with z; that is, $x \sim z$ and $y \sim z$

Factor multiplication is commutative and associative

It is meaningful to talk about multiplying a number of factors without specifying the order of this multiplication process.



ALGORITHM BE-BEL

Input: A belief network $\mathcal{B} = \langle \mathbf{X}, \mathbf{D}, \mathbf{P}_G, \prod \rangle$, an ordering $d = (X_1, \dots, X_n)$; evidence e **output:** The belief $P(X_1|e)$ and probability of evidence P(e)

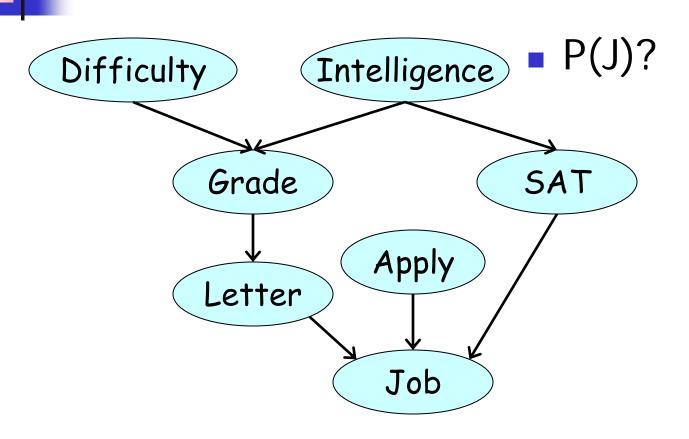
- Partition the input functions (CPTs) into bucket₁, ..., bucketn as follows: for i ← n downto 1, put in bucketi all unplaced functions mentioning Xi.
 Put each observed variable in its bucket. Denote by ψi the product of input functions in bucketi.
- backward: for p ← n downto 1 do
- 3. for all the functions ψ_{S0}, λ_{S1},...,λ_{Sj} in bucket_p do
 If (observed variable) X_p = x_p appears in bucket_p,
 assign X_p = x_p to each function in bucket_p and then
 put each resulting function in the bucket of the closest variable in its scope.
 else,
- 4. $\lambda_p \leftarrow \sum_{X_p} \psi_p \cdot \prod_{i=1}^j \lambda_{S_i}$
- 5. place λ_p in bucket of the latest variable in scope(λ_p),
- return (as a result of processing bucket₁):

$$P(\mathbf{e}) = \alpha = \sum_{X_1} \psi_1 \cdot \prod_{\lambda \in bucket_1} \lambda$$

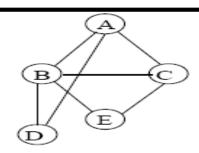
$$P(X_1|\mathbf{e}) = \frac{1}{\alpha} \psi_1 \cdot \prod_{\lambda \in bucket_1} \lambda$$

Figure 4.5: BE-bel: a sum-product bucket-elimination algorithm.

Student Network example

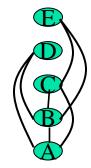


Bucket Elimination and Induced Width



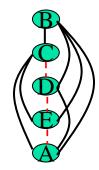
Ordering: a, b, c, d, e

 $\begin{array}{ll} bucket(E) = & P(e|b,c), \ e = 0 \\ bucket(D) = & P(d|a,b) \\ bucket(C) = & P(c|a) \mid \mid P(e = 0|b,c) \\ bucket(B) = & P(b|a) \mid \mid \lambda_D(a,b), \lambda_C(b,c) \\ bucket(A) = & P(a) \mid \mid \lambda_B(a) \end{array}$

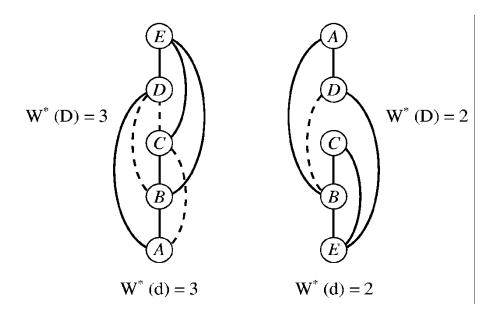


Ordering: a, e, d, c, b

 $\begin{array}{ll} bucket(B) = & P(e|b,c), P(d|a,b), P(b|a) \\ bucket(C) = & P(c|a) \mid \mid \lambda_B(a,c,d,e) \\ bucket(D) = & \mid \mid \lambda_C(a,d,e) \\ bucket(E) = & e = 0 \mid \mid \lambda_D(a,c) \\ bucket(A) = & P(a) \mid \mid \lambda_E(a) \end{array}$

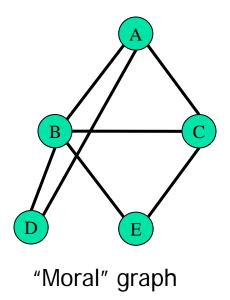


The Induced-Width

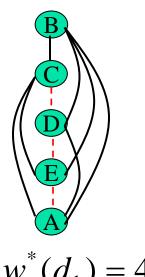


- width: is the max number of parents in the ordered graph
- Induced-width: width of induced graph: recursively connecting parents going from last node to first.
- Induced-width w*(d) = the max induced-width over all nodes
- Induced-width of a graph: max w*(d) over all d

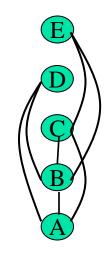
Complexity of elimination



The effect of the ordering:



$$w^*(d_1) = 4$$



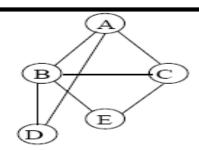
$$w^*(d_2) = 2$$

Complexity of BE-bel

Theorem 4.6 Complexity of BE-bel. Given a Byaesian network whose moral graph is G, let $w^*(d)$ be its induced width of G along ordering d, k the maximum domain size, and r be the number of input CPTs. The time complexity of BE-bel is $O(r \cdot k^{w^*(d)+1})$ and its space complexity is $O(n \cdot k^{w^*(d)})$ (see Appendix for a proof).

More accurately: $O(r \exp(w^*(d)))$ where r is the number of cpts. For Bayesian networks r=n. For Markov networks?

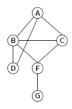
Handling Observations



Observing b = 1

```
Ordering: a, e, d, c, b bucket(B) = P(e|b,c), P(d|a,b), P(b|a), b = 1 bucket(C) = P(c|a), || P(e|b = 1,c) bucket(D) = || P(d|a,b = 1) bucket(E) = e = 0 || \lambda_C(e,a) bucket(A) = P(a), || P(b = 1|a) \lambda_D(a), \lambda_E(e,a)
```

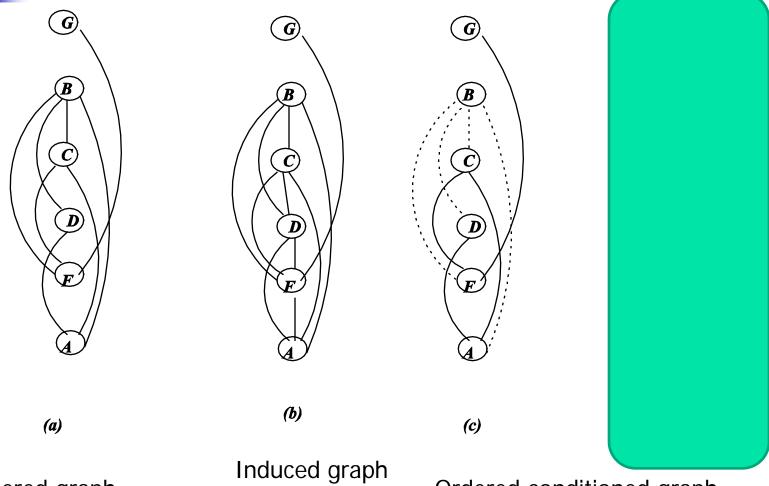
Ordering: a, b, c, d, e bucket(E) = P(e|b,c), e = 0bucket(D) = P(d|a,b)bucket(C) = $P(c|a) \mid \lambda_E(b,c)$ bucket(B) = P(b|a), $b = 1 \mid \lambda_D(a,b)$, $\lambda_C(a,b)$ bucket(A) = $P(a) \mid \lambda_B(a)$

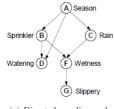


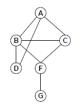
(a) Directed acyclic graph

(b) Moral graph

The impact of observations







(a) Directed acyclic graph

(b) Moral graph

The impact of observations

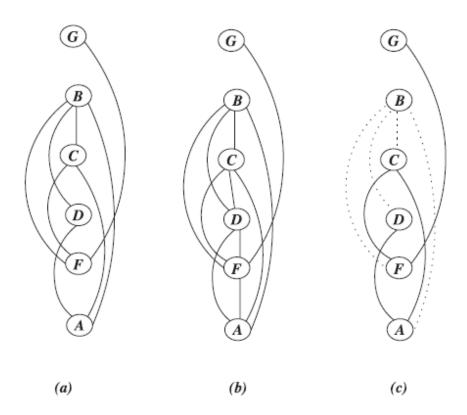
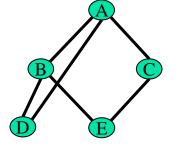


Figure 4.9: Adjusted induced graph relative to observing *B*.



"Moral" graph

Irrelevant buckets for

BE-BEL

Buckets that sum to 1 are irrelevant.

Identification: no evidence, no new functions.

Recursive recognition: (bel(a|e)) bucket(E) = P(e|b,c), e = 0 bucket(D) = P(d|a,b),...skipable bucket bucket(C) = P(c|a) bucket(B) = P(b|a)bucket(A) = P(a)

Complexity: Use induced width in moral graph without irrelevant nodes, then update for evidence arcs.

Use the ancestral graph only

Pruning Nodes

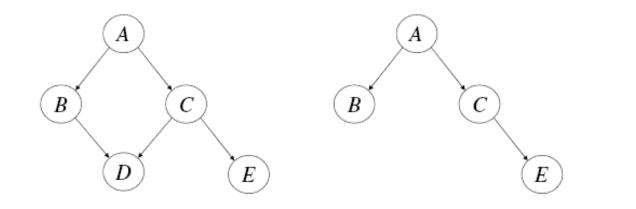
Given a Bayesian network \mathcal{N} and query (\mathbf{Q}, \mathbf{e})

one can remove any leaf node (with its CPT) from the network as long as it does not belong to variables $\mathbf{Q} \cup \mathbf{E}$, yet not affect the ability of the network to answer the query correctly.

If $\mathcal{N}' = \text{pruneNodes}(\mathcal{N}, \mathbf{Q} \cup \mathbf{E})$

then $\Pr(\mathbf{Q}, \mathbf{e}) = \Pr'(\mathbf{Q}, \mathbf{e})$, where \Pr and \Pr' are the probability distributions induced by networks \mathcal{N} and \mathcal{N}' , respectively.

Pruning Nodes: Example



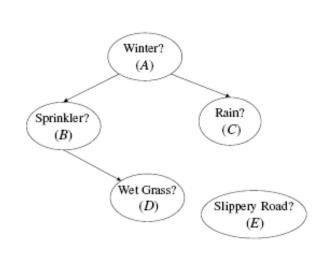
network structure

joint on B, E

joint on B

Pruning Edges: Example

Α	В	$\Theta_{B A}$
true	true	.2
true	false	.8
false	true	.75
false	false	.25



Α	С	$\Theta_{C A}$
true	true	.8
true	false	.2
false	true	.1
false	false	.9

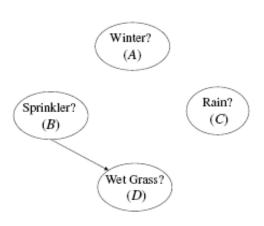
Α	Θ_A
true	.6
false	.4

В	D	$\sum_C \Theta_{D BC}^{C ightarrow false}$
true	true	.9
true	false	.1
false	true	0
false	false	1

Ε	$\sum_C \Theta_{E C}^{C ightarrow false}$
true	0
false	1

Pruning Nodes and Edges: Example

В	$\Theta_B' = \sum_A \Theta_{B A}^{A\! =\! true}$
true	.2
false	.8



С	$\Theta_{\mathcal{C}}' = \sum_{\mathcal{A}} \Theta_{\mathcal{C} \mathcal{A}}^{\mathcal{A}\!=\!true}$
true	.8
false	.2

Α	Θ_A
true	.6
false	.4

$$\begin{array}{cccc} B & D & \Theta'_{D|B} = \sum_{\mathcal{C}} \Theta^{\mathcal{C}=\mathsf{false}}_{D|B\mathcal{C}} \\ \text{true} & \text{true} & .9 \\ \text{true} & \text{false} & .1 \\ \text{false} & \text{true} & 0 \\ \text{false} & \text{false} & 1 \\ \end{array}$$

Query $\mathbf{Q} = \{D\}$ and $\mathbf{e} : A = \text{true}, C = \text{false}$

A Mini-school in Lifted Algorithms for Probabilistic Programming at UCI

In the week of November 3rd we will have a mini-school in lifted algorithms for probabilistic programming.

Location 4011/3-11 DBH. Afternoon discussions TBD.

Two Expert in this area will visit us:

Rodrigo de Salvo Braz: http://www.ai.sri.com/~braz/

Vibhav Gogate: http://www.hlt.utdallas.edu/~vgogate/

Schedule:

November 3: Rodrigo gives a talk 1-2 in AI/ML seminar. Afternoon: discussion

November 4: Rodrigo: 10-1, 3011: tutorial, afternoon: discussion November 5: Vibhav: 10-12, 4011: tutorial, afternoon: discussion November 6: Vibhav, 10-12, 4011: Tutorial, afternoon: discussion.

Probabilistic Inference Tasks

Belief updating:

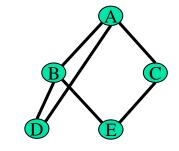
Finding most probable explanation (MPE)

Finding maximum a-posteriory hypothesis

 $A \subseteq X$:

hypothesis variables

Finding

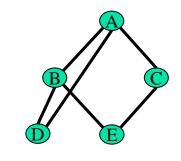


Algorithm BE-mpe

$$\sum_{a,e,d,c,b} \text{ is replaced by } \boldsymbol{max} :$$

$$MPE = \max_{a,e,d,c,b} P(a)P(c \mid a)P(b \mid a)P(d \mid a,b)P(e \mid b,c)$$

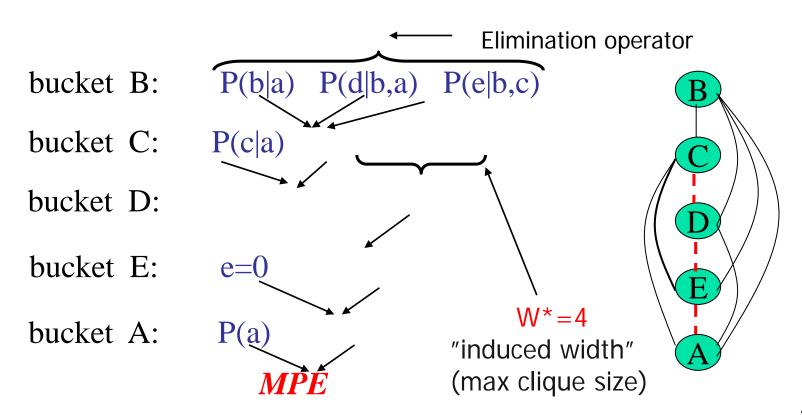
Finding



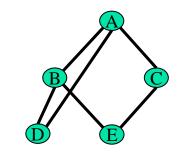
Algorithm *elim-mpe* (Dechter 1996)

$$\sum_{a,e,d,c,b} \text{ is replaced by } \boldsymbol{max} :$$

$$MPE = \max_{a,e,d,c,b} P(a)P(c \mid a)P(b \mid a)P(d \mid a,b)P(e \mid b,c)$$



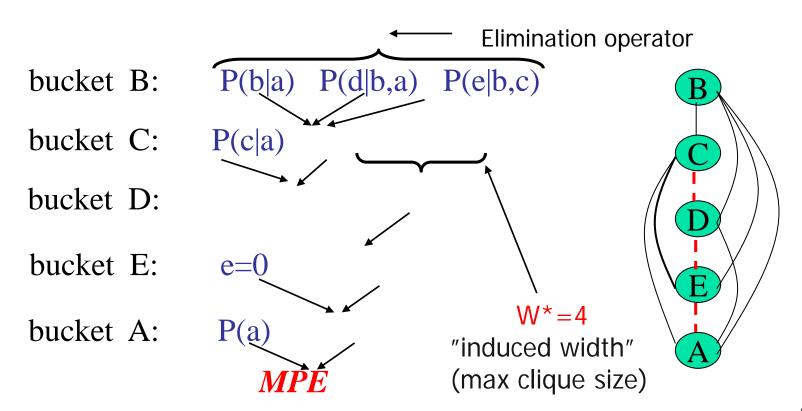
Finding



Algorithm *elim-mpe* (Dechter 1996)

$$\sum_{a,e,d,c,b} \text{ is replaced by } \boldsymbol{max} :$$

$$MPE = \max_{a,e,d,c,b} P(a)P(c \mid a)P(b \mid a)P(d \mid a,b)P(e \mid b,c)$$



Generating the MPE-tuple

5.
$$b' = arg \max_{b} P(b | a') \times P(d' | b, a') \times P(e' | b, c')$$

4.
$$c' = arg max P(c | a') \times h^{B}(a', d', c, e')$$

3.
$$d' = arg \max_{d} h^{c}(a', d, e')$$

2.
$$e' = 0$$

1.
$$a' = arg \max_{a} P(a) \cdot h^{E}(a)$$

B:
$$P(b|a)$$
 $P(d|b,a)$ $P(e|b,c)$

C:
$$P(c|a)$$
 $h^B(a,d,c,e)$

D:
$$h^c(a,d,e)$$

E:
$$e=0$$
 $h^D(a,e)$

A:
$$P(a)$$
 $h^{\epsilon}(a)$

Ijcai 2011

Algorithm BE-mpe

Input: A belief network $\mathcal{B} = \langle X, D, G, \mathcal{P} \rangle$, where $\mathcal{P} = \{P_1, ..., P_n\}$; an ordering of the variables, $d = X_1, ..., X_n$; observations e.

Output: The most probable assignment given the evidence.

1. **Initialize:** Generate an ordered partition of the conditional probability function, $bucket_1, \ldots, bucket_n$, where $bucket_i$ contains all functions whose highest variable is X_i . Put each observed variable in its bucket. Let ψ_i be the input function in a bucket and let h_i be the messages in the bucket.

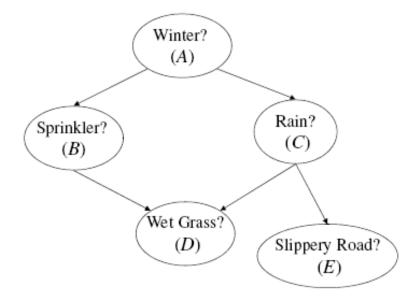
2. Backward: For $p \leftarrow n$ downto 1, do for all the functions $h_1, h_2, ..., h_j$ in $bucket_p$, do

- If (observed variable) bucket_p contains $X_p = x_p$, assign $X_p = x_p$ to each function and put each in appropriate bucket.
- else, $S_p \leftarrow \bigcup_{i=1}^j scope(h_i) \cup scope(\psi_p) \{X_p\}$. Generate functions $h_p \Leftarrow \max_{X_p} \psi_p \cdot \prod_{i=1}^j h_i$ Add h_p to the bucket of the largest-index variable in S_p .

3. Forward:

- Generate the mpe cost by maximizing over X_1 , the product in $bucket_1$.
- (generate an mpe tuple) For i=1 to n along d do: Given $\overline{x}_{i-1}=(x_1,...,x_{i-1})$ Choose $x_i=argmax_{X_i}\psi_i\cdot \prod_{\{h_j\in\ bucket_i\}}h_j(\overline{x}_{i-1})$

Try to compute MPE when E=0



Α	Θ_A
true	.6
false	.4

Α	В	$\Theta_{B A}$
true	true	.2
true	false	.8
false	true	.75
false	false	.25

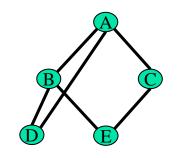
Α	С	$\Theta_{C A}$
true	true	.8
true	false	.2
false	true	.1
false	false	.9

В	С	D	$\Theta_{D BC}$
true	true	true	.95
true	true	false	.05
true	false	true	.9
true	false	false	.1
false	true	true	.8
false	true	false	.2
false	false	true	0
false	false	false	1

С	Ε	$\Theta_{E C}$
true	true	.7
true	false	.3
false	true	0
false	false	1

Finding MAP

Algorithm *BE-map*

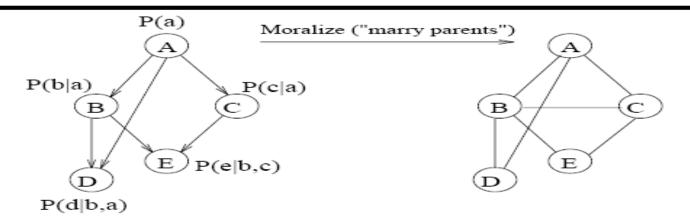


$$\sum$$
 and max:

$$MPE = \max_{a,c} P(a)P(c \mid a) \sum_{e,d,b} P(b \mid a)P(d \mid a,b)P(e \mid b,c)$$

Finding the MAP

(An optimization task)



Variables A and B are the hypothesis variables. **Ordering:** a, b, c, d, e $\max_{a,b} P(a,b,e=0) = \max_{a,b} \sum_{c,d,e=0} P(a,b,c,d,e)$ $= \max_a P(a) \max_b P(b|a) \sum_c P(c|a) \sum_d P(d|b,a)$ $\sum_{e=0} P(e|b,c)$

Ordering: a, e, d, c, b illegal ordering $\max_{a,b} P(a,e,e=0) = \max_{a,b} \sum_{P} (a,b,c,d,e)$ $\max_{a,b} P(a,b,e=0) = \max_{a} P(a) \max_{b} P(b|a) \sum_{d} P(c|a) P(d|a,b) P(e=0|b,c)$

Algorithm BE-map

Variable ordering: Restricted: Max buckets should Be processed after sum buckets

Algorithm BE-map

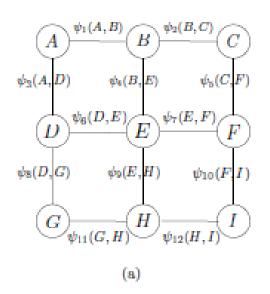
Input: A Bayesian network $\mathcal{B} = \langle \mathbf{X}, \mathbf{D}, \mathbf{P}_G, \prod \rangle$, $P = \{P_1, ..., P_n\}$; a subset of hypothesis variables $A = \{A_1, ..., A_k\}$; an ordering of the variables, d, in which the A's are first in the ordering; observations e. ψ_i is the product of input function in the bucket of X_i .

Output: A most probable assignment A = a.

- 1. **Initialize:** Generate an ordered partition of the conditional probability functions, $bucket_1$, ..., $bucket_n$, where $bucket_i$ contains all functions whose highest variable is X_i .
- 2. Backwards For $p \leftarrow n$ downto 1, do for all the message functions $\beta_1, \beta_2, ..., \beta_j$ in *bucket*_p and for ψ_p do
 - If (observed variable) $bucket_p$ contains the observation $X_p = x_p$, assign $X_p = x_p$ to each β_i and ψ_p and put each in appropriate bucket.
 - else, If X_p is not in A, then $\beta_p \Leftarrow \sum_{X_p} \psi_p \cdot \Pi_{i=1}^j \beta_i$; else, $(X_p \in A)$, $\beta_p \Leftarrow \max_{X_p} \psi_p \cdot \prod_{i=1}^j \beta_i$ Place β_p in the bucket of the largest-index variable in $scope(\beta_p)$.
- 3. Forward: Assign values, in the ordering $d = A_1, ..., A_k$, using the information recorded in each bucket in a similar way to the forward pass in BE-mpe.
- 4. Output: Map and the corresponding configuration over A.

Theorem 4.16 Algorithm BE-map is complete for the map task for orderings started by the hypothesis variables. Its time and space complexity are $O(r \cdot k^{w_E^*(d)+1})$ and $O(n \cdot k^{w_E^*(d)})$, respectively, where n is the number of variables in graph, k bounds the domain size and $w_E^*(d)$ is the conditioned induced width of its moral graph along d, relative to evidence variables E. (Prove as an exercise.) \square

BE for Markov networks queries



D	E	$\psi_6(D, E)$
0	0	20.2
0	1	12
1	0	23.4
1	1	11.7

Complexity of bucket elimination

Theorem

Given a belief network having n variables, observations e, the complexity of elim-mpe, elimbel, elim-map along d, is time and space

 $O(nexp(w^*+1))$ and $O(nexp(w^*))$, respectively

where w*(d) is the induced width of the moral graph whose edges connecting evidence to earlier nodes, were deleted.

More accurately: $O(r \exp(w^*(d)))$ where r is the number of cpts. For Bayesian networks r=n. For Markov networks?

Finding Small Induced-Width

(Dechter 3.4-3.5)

- NP-complete
- A tree has induced-width of?
- Greedy algorithms:
 - Min width
 - Min induced-width
 - Max-cardinality and chordal graphs
 - Fill-in (thought as the best)
 - See anytime min-width (Gogate and Dechter)

Type of graphs

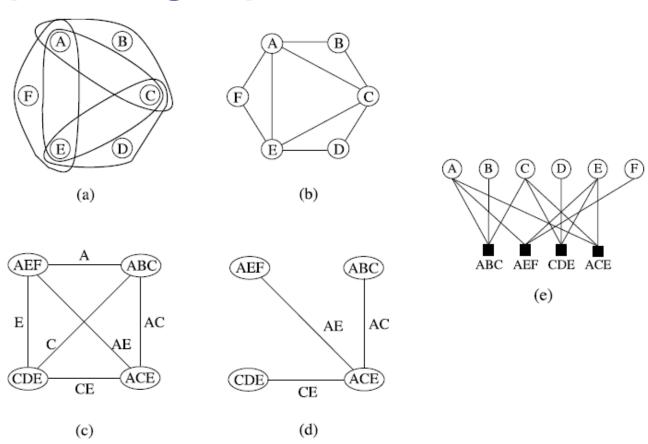


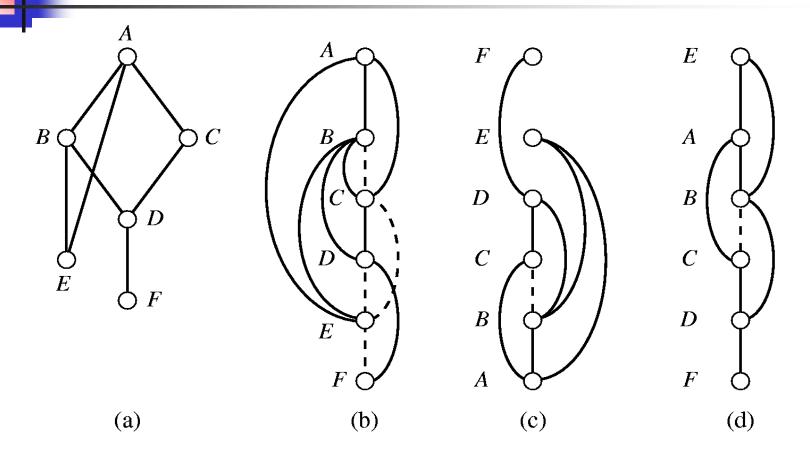
Figure 5.1: (a) Hyper, (b) Primal, (c) Dual and (d) Join-tree of a graphical model having scopes ABC, AEF, CDE and ACE. (e) the factor graph

The induced width

Definition 5.2.1 (width) Given an undirected graph G = (V, E), an ordered graph is a pair (G, d), where $V = \{v_1, ..., v_n\}$ is the set of nodes, E is a set of arcs over V, and $d = (v_1, ..., v_n)$ is an ordering of the nodes. The nodes adjacent to v that precede it in the ordering are called its parents. The width of a node in an ordered graph is its number of parents. The width of an ordering d of G, denoted $w_d(G)$ (or w_d for short) is the maximum width over all nodes. The width of a graph is the minimum width over all the orderings of the graph.

Definition 5.2.3 (induced width) The induced width of an ordered graph (G, d), denoted w^*_d , is the width of the induced ordered graph along d obtained as follows: nodes are processed from last to first; when node v is processed, all its parents are connected. The induced width of a graph, denoted by w^* , is the minimal induced width over all its orderings. Formally

$$w^*(G) = \min_{d \in orderings} w^*_{d}(G)$$



Min-Width Ordering

```
MIN-WIDTH (MW)
```

```
input: a graph G = (V, E), V = \{v_1, ..., v_n\}
```

output: A min-width ordering of the nodes $d = (v_1, ..., v_n)$.

- 1. **for** j = n to 1 by -1 do
- 2. $r \leftarrow$ a node in G with smallest degree.
- 3. put r in position j and $G \leftarrow G r$. (Delete from V node r and from E all its adjacent edges)
- 4. endfor

Proposition: (Freuder 1982) algorithm min-width finds a min-width ordering of a graph. Complexity O(|E|)

Greedy Orderings Heuristics

MIN-INDUCED-WIDTH (MIW)

```
input: a graph G = (V, E), V = \{v_1, ..., v_n\}
```

output: An ordering of the nodes $d = (v_1, ..., v_n)$.

- 1. **for** j = n to 1 by -1 do
- 2. $r \leftarrow$ a node in V with smallest degree.
- 3. put r in position j.
- 4. connect r's neighbors: $E \leftarrow E \cup \{(v_i, v_j) | (v_i, r) \in E, (v_j, r) \in E\},$
- 5. remove r from the resulting graph: $V \leftarrow V \{r\}$.

Theorem: A graph is a tree iff it has both width and induced-width of 1.

Complexity?

$O(n^3)$

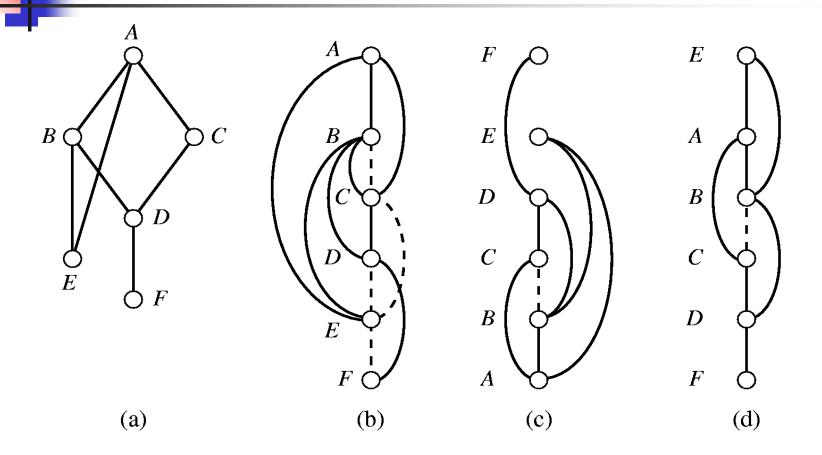
```
MIN-FILL (MIN-FILL)
```

input: a graph $G = (V, E), V = \{v_1, ..., v_n\}$

output: An ordering of the nodes $d = (v_1, ..., v_n)$.

- 1. **for** j = n to 1 by -1 do
- 2. $r \leftarrow$ a node in V with smallest fill edges for his parents.
- 3. put r in position j.
- 4. connect r's neighbors: $E \leftarrow E \cup \{(v_i, v_j) | (v_i, r) \in E, (v_j, r) \in E\},$
- 5. remove r from the resulting graph: $V \leftarrow V \{r\}$.

Different Induced-Graphs



Induced-width for chordal graphs

- Definition: A graph is chordal if every cycle of length at least 4 has a chord
- Finding w* over chordal graph is easy using the maxcardinality ordering: order vertices from 1 to n, always assigning the next number to the node connected to a largest set of previously numbered nodes. Lets d be such an ordering
- A graph along max-cardinality order has no fill-in edges iff it is chordal.
- On chordal graphs width=induced-width.

-

Max-cardinality ordering

MAX-CARDINALITY (MC)

input: a graph $G = (V, E), V = \{v_1, ..., v_n\}$ output: An ordering of the nodes $d = (v_1, ..., v_n)$.

- 1. Place an arbitrary node in position 0.
- 2. for j = 1 to n do
- 3. $r \leftarrow$ a node in G that is connected to a largest subset of nodes in positions 1 to j-1, breaking ties arbitrarily.

4. endfor

Proposition 5.3.3 [56] Given a graph G = (V, E) the complexity of max-cardinality search is O(n+m) when |V| = n and |E| = m.

K-trees

Definition 5.3.4 (k-trees) A subclass of chordal graphs are k-trees. A k-tree is a chordal graph whose maximal cliques are of size k+1, and it can be defined recursively as follows:

(1) A complete graph with k vertices is a k-tree. (2) A k-tree with r vertices can be extended to r+1 vertices by connecting the new vertex to all the vertices in any clique of size k. A partial k-tree is a k-tree having some of its arcs removed. Namely it will clique of size smaller than k.

Which greedy algorithm is best?

- MinFill, prefers a node who add the least number of fill-in arcs.
- Empirically, fill-in is the best among the greedy algorithms (MW,MIW,MF,MC)
- Complexity of greedy orderings?
 - MW is $O(n^2)$...maybe O(nlogn + m)?
 - MIW: $O(O(n^3),$
 - MF $(O(n^3),$
 - MC is O(m+n), m edges.

Recent work in my group

- Vibhav Gogate and Rina Dechter. "A Complete <u>Anytime</u> Algorithm for Treewidth". *In UAI 2004.*
- Andrew E. Gelfand, Kalev Kask, and Rina Dechter.
 "Stopping Rules for Randomized Greedy Triangulation Schemes" in *Proceedings of AAAI 2011.*
- Potential project

Mixed Networks

- Augmenting Probabilistic networks with constraints because:
 - Some information in the world is deterministic and undirected (X not-eq Y)
 - Some queries are complex or evidence are complex (cnfs)
- Queries are probabilistic queries

Mixed Beliefs and Constraints

- Assume the CN is a cnf formula
- Queries over hybrid network:
- Complex evidence structure

$$\varphi = (G \lor D) \land (\neg D \lor B)$$

$$P(\varphi) = ?$$

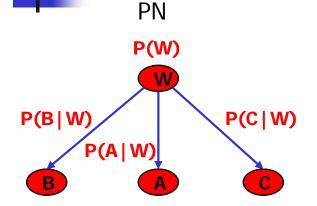
$$P(\overline{x} \mid \varphi) = ?$$

$$P(x_1 \mid \varphi) = ?$$

- All reduce to CNF queries over a Belief network:
 - CPE (CNF probability evaluation): Given a belief network, and a cnf, find its probability.

4

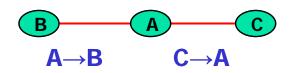
Party example again



Semantics?

Algorithms?

CN



Query:

Is it likely that Chris goes to the party if Becky does not but the weather is bad?

$$P(C, \neg B \mid w = bad, A \rightarrow B, C \rightarrow A)$$

Bucket Elimination for Mixed networks

The CPE query

$$P_{\mathcal{B}}(\varphi) = \sum_{\mathbf{x}_{\varphi} \in Mod(\varphi)} P(\mathbf{x}_{\varphi})$$

Using the belief network product form we get:

$$P_{\mathcal{B}}(\varphi) = \sum_{\{\mathbf{x} \mid \mathbf{x}_{\varphi} \in Mod(\varphi)\}} \prod_{i=1}^{n} P(x_i \mid \mathbf{x}_{pa_i}).$$

 $P((C \rightarrow B) \text{ and } P(A \rightarrow C))$

```
Algorithm 1: BE-CPE
```

Input: A belief network $\mathcal{M} = (\mathcal{B}, \simeq)$, $\mathcal{B} = \langle X, D, P_G, \prod \rangle$, where $\mathcal{B} = \{P_1, ..., P_n\}$; a CNF formula on k propositions $\varphi = \{\alpha_1, ..., \alpha_m\}$ defined over k propositions; an ordering of the variables, $d = \{X_1, ..., X_n\}$.

Output: The belief $P(\varphi)$.

1 Place buckets with unit clauses last in the ordering (to be processed first).

// Initialize

Partition \mathcal{B} and φ into $bucket_1, \ldots, bucket_n$, where $bucket_i$ contains all the CPTs and clauses whose highest variable is X_i .

Put each observed variable into its appropriate bucket. (We denote probabilistic functions by λs and clauses by αs).

2 for $p \leftarrow n$ downto 1 do // Backward Let $\lambda_1, \ldots, \lambda_j$ be the functions and $\alpha_1, \ldots, \alpha_r$ be the clauses in $bucket_p$ Process-bucket $_p(\sum, (\lambda_1, \ldots, \lambda_j), (\alpha_1, \ldots, \alpha_r))$

3 **return** $P(\varphi)$ as the result of processing *bucket*₁.

Procedure Process-bucket_p $(\sum, (\lambda_1, \ldots, \lambda_j), (\alpha_1, \ldots, \alpha_r))$.

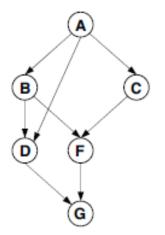
if bucket_p contains evidence $X_p = x_p$ then

- 1. Assign $X_p = x_p$ to each λ_i and put each resulting function in the bucket of its latest variable
- 2. Resolve each α_i with the unit clause, put non-tautology resolvents in the buckets of their latest variable and move any bucket with unit clause to top of processing

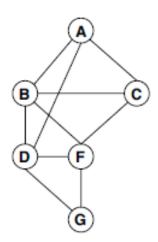
else

$$\lambda_p \leftarrow \sum_{\{x_p \mid \mathbf{x}_{U_p} \in Mod(\alpha_1,...,\alpha_r)\}} \prod_{i=1}^j \lambda_i$$

Add λ_p to the bucket of the latest variable in S_p , where $S_p = scope(\lambda_1,...,\lambda_j,\alpha_1,...,\alpha_r)$, $U_p = scope(\alpha_1,...,\alpha_r)$.



(a) Directed acyclic graph



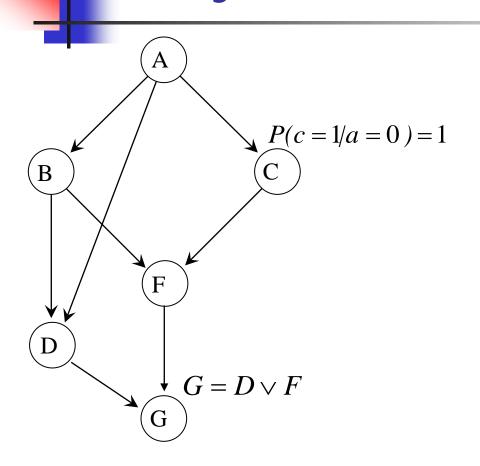
(b) Moral graph

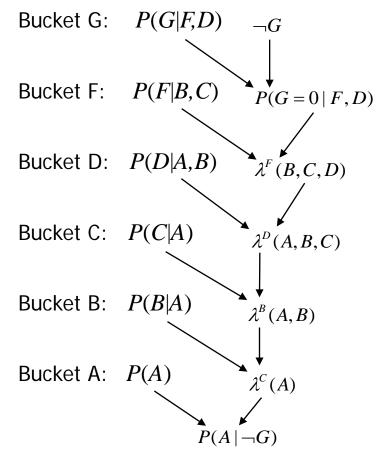
Processing Mixed Buckets

```
In Bucket G: \lambda_G(f,d) = \sum_{\{g|g \lor d = true\}} P(g|f)
In Bucket_F: \lambda_F(b,c,d) = \sum_f P(f|b,c)\lambda_G(f,d)
In Bucket_D: \lambda_D(a,b,c) = \sum_{\{d|\neg d \lor \neg b = true\}} P(d|a,b)\lambda_F(b,c,d)
In Bucket_B: \lambda_B(a,c) = \sum_{\{b|b \lor c = true\}} P(b|a)\lambda_D(a,b,c)\lambda_F(b,c)
In Bucket_C: \lambda_C(a) = \sum_c P(c|a)\lambda_B(a,c)
In Bucket_A: \lambda_A = \sum_a P(a)\lambda_C(a)
```

For example in $bucket_G$, $\lambda_G(f, d = 0) = P(g = 1|f)$, because if D = 0 g must get the value "1", while $\lambda_G(f, d = 1) = P(g = 0|f) + P(g = 1|f)$. In summary, we have the following.

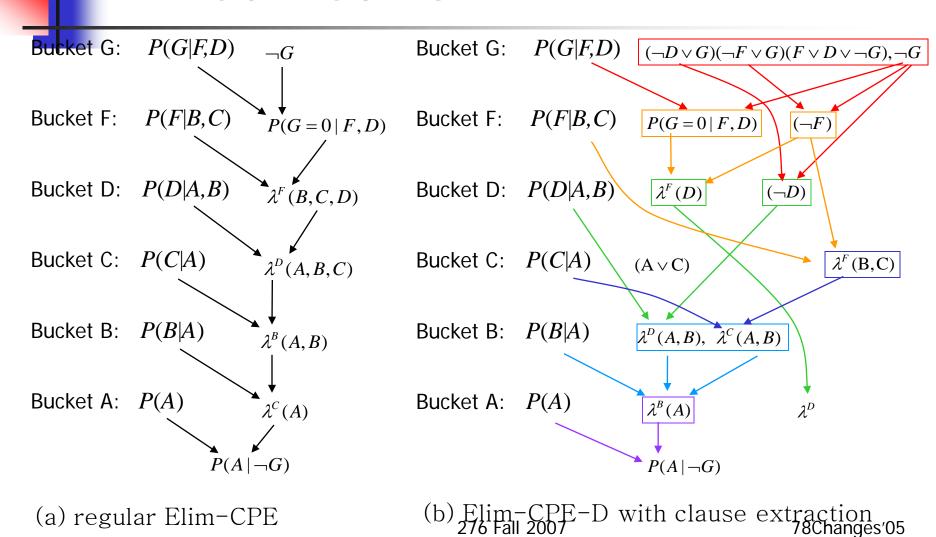
A Hybrid Belief Network



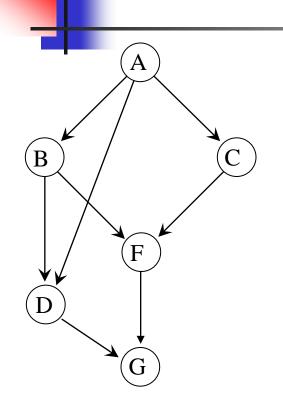


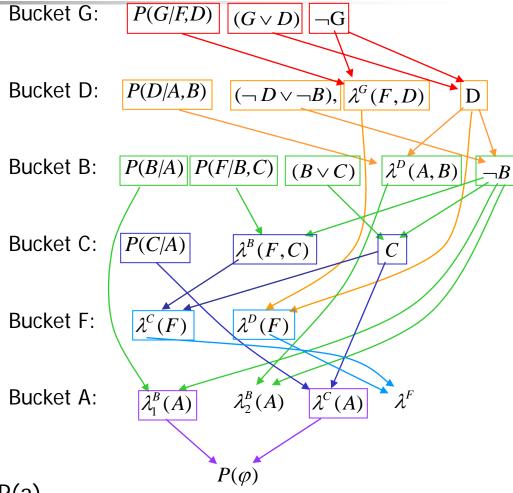
Belief network P(g,f,d,c,b,a)=P(g|f,d)P(f|c,b)P(d|b,a)P(b|a)P(c|a)P(a) _{276 Fall 2007}

Variable elimination for a mixed network:



Trace of Elim-CPE





Belief network P(g,f,d,c,b,a)

=P(g|f,d)P(f|c,b)P(d|b,a)P(b|a)P(c|a)P(a)276 Fall 2007

79Changes'05

Bucket-elimination example for a mixed network

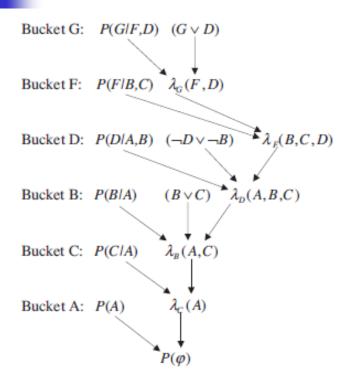


Figure 4.15: Execution of BE-CPE.

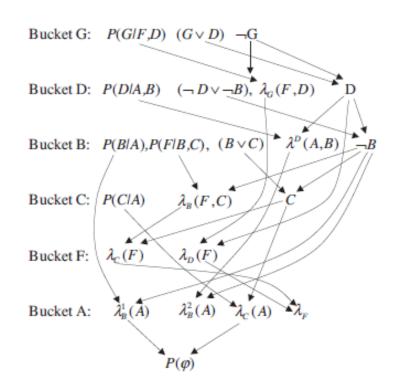


Figure 4.16: Execution of BE-CPE (evidence $\neg G$).

4

Markov Networks

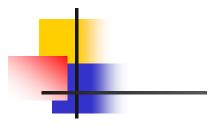
Definition 2.23 Markov networks. A Markov network is a graphical model $\mathcal{M} = \langle \mathbf{X}, \mathbf{D}, \mathbf{H}, \Pi \rangle$ where $\mathbf{H} = \{\psi_1, \dots, \psi_m\}$ is a set of potential functions where each potential ψ_i is a non-negative real-valued function defined over a scope of variables $\mathcal{S} = \{\mathbf{S}_1, \dots, \mathbf{S}_m\}$. \mathbf{S}_i . The Markov network represents a global joint distribution over the variables \mathbf{X} given by:

$$P_{\mathcal{M}} = \frac{1}{Z} \prod_{i=1}^{m} \psi_i \quad , \quad Z = \sum_{\mathbf{X}} \prod_{i=1}^{m} \psi_i$$

where the normalizing constant Z is called the partition function.

Complexity

Theorem 4.21 Complexity of BE-cpe. Given a mixed network $M_{B,\varphi}$ having mixed graph is G, with $w^*(d)$ its induced width along ordering d, k the maximum domain size and r be the number of input functions. The time complexity of BE-cpe is $O(r \cdot k^{w^*(d)+1})$ and its space complexity is $O(n \cdot k^{w^*(d)})$. (Prove as an exercise.)



DEFINITION: An undirected graph G = (V, E) is said to be *chordal* if every cycle of length four or more has a chord, i.e., an edge joining two nonconsecutive vertices.

THEOREM 7: Let G be an undirected graph G = (V, E). The following four conditions are equivalent:

- G is chordal.
- The edges of G can be directed acyclically so that every pair of converging arrows emanates from two adjacent vertices.
- All vertices of G can be deleted by arranging them in separate piles, one for each clique, and then repeatedly applying the following two operations:
 - Delete a vertex that occurs in only one pile.
 - Delete a pile if all its vertices appear in another pile.
- 4. There is a tree T (called a join tree) with the cliques of G as vertices, such that for every vertex v of G, if we remove from T all cliques not containing v, the remaining subtree stays connected. In other words, any two cliques containing v are either adjacent in T or connected by a path made entirely of cliques that contain v.

The running intersection property