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Propagation of Probabilities, Means, and Variances
in Mixed Graphical Association Models

STEFFEN L. LAURITZEN*

A scheme is presented for modeling and local computation of exact probabilities, means, and variances for mixed qualitative and
quantitative variables. The models assume that the conditional distribution of the quantitative variables, given the qualitative, is
multivariate Gaussian. The computational architecture is set up by forming a tree of belief universes, and the calculations are then
performed by local message passing between universes. The asymmetry between the quantitative and qualitative variables sets some
additional limitations for the specification and propagation structure. Approximate methods when these are not appropriately fulfilled
are sketched. It has earlier been shown how to exploit the local structure in the specification of a discrete probability model for fast
and efficient computation, thereby paving the way for exploiting probability-based models as parts of realistic systems for planning
and decision support. The purpose of this article is to extend this computational scheme to networks, where some vertices represent
entities that are measured on a quantitative and some on a qualitative scale. An extension has the advantage of unifying several
known techniques, but allows more flexible and faithful modeling and speeds computation as well. To handle this more general case,
the properties of (CG) conditional Gaussian distributions are exploited. A fictitious but simple example is used for illustration
throughout the paper, concerned with monitoring emissions from a waste incinerator. From optical measurements of the darkness
of the smoke, the concentration of CO,—which are both on a continuous scale—and possible knowledge about qualitative characteristics
such as the type of waste burned, one wants to infer about the state of the incinerator and the current emission of heavy metals.

KEY WORDS: Bayesian methods; Causal network; CG distribution; Expert system; Recursive model; Strongly triangulated graph.

Recent developments have shown that graphical models
provide a flexible framework for specification and compu-
tation in probabilistic expert systems. We abstain from a
detailed survey of the literature in the area but refer to the
bibliographies in Lauritzen and Spiegelhalter (1988); Jensen,
Lauritzen, and Olesen (1990); and Pearl (1988), as well as
the volumes of Oliver and Smith (1990) and Shafer and Pearl
(1990).

For illustrative purposes we discuss a fictitious example
throughout the article. This is taken from a problem con-
nected with controlling the emission of heavy metals from
a waste incinerator:

The emissions from a waste incinerator differ because of com-
positional differences in incoming waste. Another important factor
is the waste burning regimen, which can be monitored by mea-
suring the concentration of CO, in the emissions. The filter effi-
ciency depends on the technical state of the electrofilter and on
the amount and composition of waste. The emission of heavy
metals depends on both the concentration of metals in the in-
coming waste and the emission of dust particulates in general.

The emission of dust is monitored through measuring the pen-
etrability of light.

Here we have ignored the obvious time aspect of the mon-
itoring problem and concentrated on a single point in time,
for the sake of simplicity. The essence of the description is
represented in the network of Figure 1.

The described network could in principle be used for sev-
eral purposes. Typically, the emission of dust and heavy
metals, the filter efficiency, and the actual concentration of
heavy metals in the waste normally would not be directly
available. The filter state might or might not be known, as
is also the case for the type of waste.

* Steffen L. Lauritzen is Professor of Mathematics and Statistics, De-
partment of Mathematics and Computer Science, University of Aalborg,
Fredrik Bajers Vej 7, DK-9220 Aalborg @, Denmark. The author is indebted
to Kristian G. Olesen for computational assistance and helpful technical
discussions on the way. The author is also grateful to Philip Dawid, David
Spiegelhalter, a referee, and an associate editor for helpful comments con-
cerning presentation of the results. This research has been supported in part
by a grant from the SCIENCE program of the EEC.

From the measurements and knowledge available at any
time, the emissions of heavy metals can be predicted—in
particular, the mean and standard deviation of the predictive
distribution for that emission is of interest. Diagnostic prob-
abilities for stability of the burning regimen and/or the state
of the filter could be required. Finally, the network can be
used for management purposes, in that the influence of, for
example filter efficiency and burning regimen on objective
variables, such as the emission of heavy metals, can be com-
puted.

The distributional theory of graphical models with both
quantitative and qualitative variables is fundamental to the
computational methods. A brief account of the basic ele-
ments of this theory is obtained in Section 1.

Another formal element of the computational structure
is the decompositional theory of marked graphs, which are
graphs with two types of vertices, here corresponding to the
discrete and continuous variables. The necessary concepts
are explained in Section 2.

The remaining sections describe in some detail the model
specification and the elements of the computational archi-
tecture. The previously cited example is used to illustrate
the various phases of the process of specification and imple-
mentation of a system based on the methods developed. We
conclude with some remarks on computational complexity
and approximative modifications when conditions for the
exact results are not satisfied.

1. CG DISTRIBUTIONS AND POTENTIALS

The models behind the computations described in this

. article are based on the assumption that the conditional dis-

tribution of the continuous variables given the discrete is
multivariate Gaussian. We briefly review some standard no-
tation but refer the reader to Lauritzen and Wermuth (1989)
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Figure 1. Graphical Representation of the Emission Problem. The vari-
ables Filter State (F), Waste Type (W), and Burning Regimen (B)—cor-
responding to filled circles—are conceived as qualitative variables with
states {intact, defect}, {industrial, household}, and {stable, unstable}.
The remaining variables are measured on a quantitative scale. These are:
Metals in Waste (M,,), Metals Emission (M,,), Filter Efficiency (E), Dust
Emission (D), CO, Concentration in Emission (C), and Light Penetrability

(L).

or Whittaker (1990) for further details and derivations of
formulas.

The set of variables V' is partitioned as V' = A U T into
variables of discrete (A) and continuous (T') type. A typical
element of the joint state space is denoted as in one of the
following possibilities:

X = (Xa)aev = (1, ¥) = ((is)seas (¥y)rer)),

where i; are qualitative and y, are real valued. The particular
combination i = (i;)se, is referred to as a cell, and the set
of cells is denoted by J. The joint distribution of the variables
is supposed to have a density f with

S(x) =f(,y) = x(i)exp{g(i) + h(i)'y — y'K(i)y/2},

where X(i) € {0, 1} indicates whether f is positive at i and
A’ is the transpose of the matrix A. We then say that X
follows a CG distribution, which is equivalent to the state-
ment

£(Xr |Xs = 1) = Nry(§(0), Z(1))
whenever p(i) = P{X, =i} >0,
where X, = (X,)se4 and so on, and
E(1) = K(i)7'h(), (i) =K@, (1

the latter being positive definite. The triple (g, h, K)—de-
fined only for x(i) > O—constitutes the canonical charac-
teristics of the distribution, and {p, &, =} are the moment
characteristics.

Note that there is a slight difference between the notation
used here and in Lauritzen and Wermuth (1989), in that we
allow p(i) to be equal to O for some entries i. Also, strictly
speaking, X belongs to the characteristics of the distribution,
but we assume this to be implicitly represented through the
domain where the other components are well defined. In the
case where we have only one kind of variable, the unde-
fined components are denoted by Os; that is, (g, 0, 0) or
(0, h, K).

A basic part of the computational task consists of updating
the joint distribution in the light of evidence, corresponding
to a conditioning process. A simple way of doing this is by
computing with unnormalized density functions. It is also
an important part of the computational process to recognize
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and exploit a product structure in the joint density, with the
factors not necessarily being densities themselves.

For this reason we extend the notion of a CG distribution
to that of a CG potential, which is any function ¢ of the
form

o(x) = ¢(i, y) = x(i)exp{g(i) + h(i)’y — y'’K(i)y/2},

where K (i) is only assumed to be a symmetric matrix. Thus
¢ is not necessarily a density. We still use the triple (g, h,
K) as canonical characteristics for the potential ¢.

A basic difference is that the moment characteristics for
a CG potential are only well defined when K is positive def-
inite for all / with X(i) > 0. Then Z and £ are given as in
(1), whereas

p(i) o {det 2(i)}'exp{g(i) + h(i) 2(i)h(i)/2},

where oc means “proportional to.” Conversely, if the mo-
ment characteristics {p, &, =} are given, then we can calcu-
late the canonical characteristics as K(i) = Z(i)~!, h(i)
= K(i)£&(i), and

g(i) = log p(i)
+ {log det K(i) — |T'|log(27) — £(i)'K(i)&(i)}/2.
2. MARKED GRAPHS AND JUNCTION TREES

In this section we give a brief exposition of the graphtheo-
retic notions used in the article. Many of the graphtheoretic
terms have suggestive names that are really self-evident, and
the reader might want to skip this section at the first reading
of the article. When needing a more accurate understanding
of the graphtheoretic details, the reader can return.

2.1 Notation and Terminology

First we need to establish the terminology, in particular
to ensure accurate understanding of the details in future de-
velopments. A section of this type must necessarily be some-
what terse, so we ask the reader to be patient.

In this article a network or graph is formally a pair § = (V,
E), where V is a finite set of vertices and the set of edges E

“1s a subset of the set V' X V of ordered pairs of distinct vertices.

Thus our graphs have no multiple edges and no loops. Edges
(a, B) € E with both («, 8) and (B, «) in E are called un-
directed, whereas an edge («a, 3) without its opposite (8, a)
being contained in E is called directed.

In particular, we need to work with graphs where the ver-
tices are marked in the sense that they are partitioned into
two groups, A and I'. We use the term marked graph for a
graph of this type.

The vertices in set A are to represent qualitative variables,
those in set I', quantitative variables. Therefore, we say that
the vertices in A are discrete and those in T are continuous.

A marked graph is conveniently represented by a picture,
where we use a dot for a discrete vertex and a circle for a
continuous. Further, a line joining « to 8 represents an un-
directed edge, whereas an arrow from « pointing towards 8
is used for a directed edge («, 3).

If the graph has only undirected edges (lines), it is an un-
directed graph. If all edges are directed (arrows), the graph
is said to be directed.
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A subset C is complete if all vertices in C are joined by an
arrow or a line. A complete subset that is maximal in the
sense that no other vertex in the graph is connected to all its
elements is called a clique. The cliques of the graph can be
considered to be the fundamental blocks of the structure
that the graph describes.

If there is an arrow from « pointing towards 3, then « is
said to be a parent of 8 and 8 a child of «. The set of parents
of B is denoted as pa(3). If there is a line or an arrow between
o and B, then a and B are said to be neighbors. A selection
of graphtheoretic concepts are illustrated in Figure 2.

A path of length n from « to 8 is a sequence a = ay, . . .,
o, = B of distinct vertices such that («;-;, ;) € E for all i
=1,...,n.Anundirected graph is a tree if there is a unique
path between any two vertices.

A n cycle is a path of length » with the modification that
o = (3; that is, it begins and ends in the same point. A graph
is acyclic if it has no cycles. In particular, a directed acyclic
graph will be of interest in that it is the basic structure used
in the model specification.

For a directed graph &, we define its moral graph §™ as
the undirected graph with the same vertex set as § but with
o and B adjacent in €™ if and only if either « is a parent of
B or, conversely, or if « and 8 have a common child . The
moral graph plays the same role in this article as it did in
Lauritzen and Spiegelhalter (1988), in that it identifies groups
of variables that enter simultaneously into the factors of the
expression for the joint density. Figure 3 displays the moral
graph of the network corresponding to the basic example
studied.

2.2 Decomposition of Marked Graphs

The basic trick enabling the computational task to be per-
formed locally is the decomposition of a suitably modified
network into partly independent components formed by the
cliques of that graph. The inherent asymmetry between dis-
crete and continuous variables in the CG distributions im-
plies that one also needs to take into proper account the
behavior of the markings of the graph. We refer the interested
reader to Leimer (1989) for a detailed graphtheoretic study
of the problems as well as all proofs. Here we introduce the
notion of a decomposition by stating the following formal
definition.

Definition 1. A triple (4, B, C) of disjoint subsets of the
vertex set V' of an undirected, marked graph & is said to form

€ ¢

Figure 2. lllustration of Graph Theoretic Concepts. The vertices o and
8 are continuous, and the remaining are discrete. We have pa(x) = {v}.
The vertices ¢ and ¢ are neighbors. The set {«, 38, 8} is a clique. A cycle
is formed by (a, 8, ¢, ¢).
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W Mn Mont W Mn Mout
F D F D
E
B C L B cC L
(a) (b)

Figure 3. Modified Graphs for the Waste Example. The graph obtained
after marrying of parents and dropping directions is shown in (a). When
further a link between B and F is added, the strongly decomposable graph
in (b) is obtained.

a (strong) decomposition of  if V= A U B U C and the
following three conditions all hold:

1. C separates 4 from B.
2. Cis a complete subset of V.
3.Cec AV BcT.

When this is the case, we say that (4, B, C) decomposes §
into the components & ,,c and $yc.

If only conditions 1 and 2 hold, we say that (4, B, C)
form a weak decomposition. Thus weak decompositions ig-
nore the markings of the graph.

In the pure cases condition 3 holds automatically and all
weak decompositions are also decompositions. Note that
what we have chosen to call a decomposition (without a
qualifier) is what Leimer (1989) called a strong decomposi-
tion. Figure 4 illustrates the notions of (strong) and weak
decompositions.

A decomposable graph is one that can be successively de-
composed into its cliques. Again we choose to state this for-
mally through the following recursive definition.

Definition 2. An undirected, marked graph is said to be
decomposable if it is complete or if there exists a decom-
position (4, B, C), with 4 and B both nonempty, into de-
composable subgraphs & ,,c and $zyc.

Note that the definition makes sense, because both
subgraphs ¢, and §z,c must have fewer vertices than the
original graph §.

Decomposable, unmarked graphs are characterized by
being triangulated; that is, the graphs do not have chordless

A C B A C B
O

(a) I I I I (c)
{4 [ g l
A C B A C B (e
O O L

(b) I I (d)
@ O O @

Figure 4. lllustration of Decomposability. In (a) we see a decomposition
with C < A and in (b) with B C T. In (c) the decomposition is weak only
because none of these two conditions are fulfilled. In (d) we do not have
a decomposition because the separator C is not complete. The graph (e)
displays a path that is forbidden in a decomposable graph.
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cycles of length three or more. Decomposable marked graphs
are characterized further by not having any path of a partic-
ular type.

Proposition 1. An undirected, marked graph is decom-
posable if and only if it is triangulated and does not contain
any path (8, = ag, . . . , a, = 6;) between two discrete vertices
passing through only continuous vertices, with the discrete
vertices not being neighbors.

We have illustrated the typical forbidden path in Fig-
ure 4.

2.3 Junction Trees With Strong Roots

The construction of the computational structure in Laur-
itzen and Spiegelhalter (1988) and Jensen et al. (1990) began
with a directed acyclic graph, formed its moral graph, added
links to make it triangulated, and formed a junction tree of
the cliques of the triangulated graph. This procedure is to
be generalized and modified.

The first part of the manipulations is unchanged in that
we begin with a directed acyclic graph. We then form the
moral graph by adding undirected edges between parents
that are not already linked and drop directions to obtain an
undirected graph. Finally, we add further links such that we
obtain a decomposable, marked graph. In our example we
have made this modification in Figure 3. Note that the link
between B and F is necessary to remove the forbidden path
(B, E, F) and make the graph decomposable, whereas it is
(weakly) triangulated even without this. In this particular
example the discrete variables end up forming a complete
subset, but this is not always the case.

The next step is constructing the junction tree, an orga-
nization of a collection of subsets of the set of variables V'
into a tree that satisfies the condition that A N B is a subset
of all sets on the path in the tree between 4 and B. When a
collection of subsets is organized in a junction tree, one can
show that it must be a set of complete subsets of a triangulated
graph containing the cliques. For any two sets C and D that
are neighbors in the junction tree, their intersection S = C
N D is called their separator because it separates C\ D from
D\ C in the graph. When we make a picture of the junction
tree, the separators are drawn as rectangles (see Fig. 5).

The junction tree is the basic computational structure,
but the asymmetry between continuous and discrete variables
make a further condition necessary for the propagation
scheme to work properly. Again we present a formal defi-
nition.

Definition 3. A subset R on a junction tree is a strong
root if any pair A, B of neighbors on the tree with 4 closer
to R than B satisfies

(B\A)cT V (BN A)<cA. )

The condition (2) is equivalent to the triple (4\ B, B\A4,
A N B) forming a strong decomposition of & 4, 5. In words,
it expresses that when a separator between two neighboring
cliques is not purely discrete, the clique furthest away from
the root has only continuous vertices beyond the separator.

Statement (iii)’ of Theorem 2’ of Leimer (1989) ensures
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that the cliques of a decomposable marked graph can be or-
ganized in a junction tree with at least one strong root. We
assume henceforth that this has been done.

Figure 5 displays a junction tree for our example. The
clique {W, E, B, F} could be used as a strong root. For
example, { W, M,,, D} has only the continuous variable M,
beyond the separator { W, D}.

3. MODEL SPECIFICATION

As in the discrete case, the qualitative part of the model
is initially specified by a directed acyclic graph, such as the
one in Figure 1. The graph specifies the basic dependencies
among the variables by assuming that the joint distribution
of these has the directed Markov property with respect to
the graph. In other words, we assume that the density is
equal to the product of the conditional densities of the vari-
ables attached to each vertex in the graph, given the states
at their parent vertices (Kiiveri, Speed, and Carlin 1984,
Lauritzen, Dawid, Larsen and Leimer 1990).

To exploit the properties of CG potentials, we need to
further assume that the graph satisfies the constraint that no
continuous vertices have discrete children. If this assumption
is not fulfilled, we have to use approximate methods in the
specification phase (see Section 6). In our example the as-
sumption is clearly satisfied.

Next we specify, for each discrete variable 4, the condi-
tional distribution at A given the states at its parent vertices
(which are then all discrete). In the case where A4 is contin-
uous, we assume the conditional distribution of the response
variable Y associated with A4 to be of the type

£(Y[pa(4)) = N(a(i) + B(i)'z, ¥(i)).

Here pa(A) is a short notation for the combination of discrete
and continuous states (i, z) of the variables that are parents
of A. In this formula (i) > 0, «(i) is a real number, and
B(i) is a vector of the same dimension as the continuous
part z of the parent variables.

Note that we assume that the mean depends linearly on
continuous parent variables and that the variance does not
depend on the continuous part of the parent variables. The
linear function, like the variance, is allowed to depend on
the discrete part of the parent variables.

The conditional density then corresponds to a CG poten-
tial ¢, with defined on the combination (i, z, y) of parent
variables (i, z) and response variable y with canonical char-

WeOF
BeoC B BeeF
W,E,B
WeOFE
LooD D BeoD

Figure 5. A Junction Tree of the Waste Example. The separators are
drawn as rectangular boxes. Possible strong roots are {B, C } and {W,
E, B, F}.
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acteristics (g4, hy, K,), where

£\2
auli) =~ 15— log 2@/ ()
a1
ha(i) = 22 , 4
#() v(i)(—ﬂ(i)) @
and
N
K, (i) = —— .
A v(i)<—ﬁ(i) 6(i)ﬁ(i)’) )

This follows from direct calculation using the expression for
the normal density. We simply write

(i, z, y)
= {2mv(1)} ' exp[—{y — a(i) — B()2}*/{2v(D}],

resolve the parentheses, take logarithms, and identify terms.
Note that K (i) has rank one and is, therefore, typically not
positive definite.

In our basic example we specify the conditional distri-
butions as follows.

1. Burning regimen. This variable is discrete and denoted
by B. We let

P(B = stable) = .85 = 1| — P(B = unstable).
2. Filter state. This is discrete and denoted by F. We let
P(F = intact) = .95 = 1 — P(F = defect).
3. Waste type. This is discrete and denoted by W. We let
P(W = industrial) = 2/7 = 1 — P(W = household).

4. Filter efficiency. This is represented on a logarithmic
scale and denoted by E. We assume the relation dust,,,
= dust;, X p and get in the logarithmic scale that log dust,,,
= log dust;, + log p. We let E = log p and admit that filter
inefficiency might be a better word for the variable E. We
then specify

£(E|intact, household) = N(—3.2, .00002),
£(E|defect, household) = N (—.5, .0001),
£(FE|intact, industrial) = N (3.9, .00002),
and
£(E|defect, industrial) = N (—.4, .0001).

This corresponds to filter efficiencies 1 — p on about 96%,
39%, 98%, and 33%. For example, when the filter is defect
and household waste is burnt, the filter removes a fraction
of 1 — exp(—.5) = .39 of the dust.

5. Dust emission. This is represented on a logarithmic
scale as a variable D. We let

£(D|stable, industrial, e) = N (6.5 + e, .03),

£(D|stable, household, e) = N (6.0 + e, .04),

£(D|unstable, industrial, e) = N (1.5 + e, .1),
and

£(D|unstable, household, e) = N (7.0 + e, .1).

Journal of the American Statistical Association, December 1992

Thus on a day when household waste is burned under a
stable regimen and the filter works perfectly, the typical con-
centration will be exp (6.0 — 3.2) = 16.4 mg/Nm?. Similarly,
if the filter is defective on a day with industrial waste and
the burning regimen is unstable, we typically will see an out-
put concentration of dust on exp(7.5 — 4) = 1,212
mg/Nm?.

6. CO, concentration. This is represented on a logarithmic
scale as a variable C. We let

£(C|stable) = N(=2,.1), £(C|unstable) = N(—1, .3).

Thus the concentration of CO, is typically around 14% under
a stable regimen and 37% when the burning process is un-
stable.

7. Light penetrability. This is represented on a logarithmic
scale as a variable L. We let

£(LID=d)=N@3—d/2,.25).

This corresponds to the penetrability being roughly inversely
proportional to the square root of the dust concentration.

8. Metal in waste. The concentration of heavy metals in
the waste is represented as a continuous variable M; on a
logarithmic scale. We let

£(M,;,|industrial) = N (.5, .01),
£(M;,| household) = N (.5, .005).

The precise interpretation is unit dependent, but the main
point is that industrial waste tends to contain heavy metals
in concentrations about three times as high as in household
waste. Also the variability of the metals concentrations is
higher in industrial waste.

9. Metal emission. This is a continuous variable M,,, on
a logarithmic scale. We let

£(Myy,ld, my) = N(d + my,, .002).

Thus we simply assume that the concentration of emitted
metals is about the same in the dust emitted as in the original
waste.

The numbers have been constructed with a view to infor-
mation from Hansen and Dalager (1985), but are otherwise
purely fictitious.

4. BASIC OPERATIONS ON CG POTENTIALS

The basis for the computational scheme consists partly of
a set of fundamental operations on the CG potentials, partly
on a message-passing scheme in the junction tree. The latter
is described in Section 5. Here we describe the elements of
the local computations.

Recall from Section 1 that a CG potential is any function
¢ of the form

¢(x) = ¢(i, y) = X(i)exp{g(i) + h(i)’y — y'K(i)y/2},

where K (i) is a symmetric matrix. The triple (g, h, K) rep-
resents the canonical characteristics for the potential ¢.

4.1 Extension

If (g, h, K) are the characteristics of a CG potential ¢
defined on the variables (i, y), then we need sometimes to
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operate on this as if it was defined on a larger set (i, j, y, z)
of variables. This is formally done by extending it to ¢, letting
é(i, j,y, z) = ¢(i, y). Clearly, the corresponding charac-
teristics are

I . . h(i)
g, j) = g(i), h(i, J)=( 0 )
- ... (K@) 0
K(l3 J) _( 0 0) .

Hence the extension essentially amounts to adjoining Os to
the characteristics such as to give them the desired dimen-
sions.

4.2 Multiplication and Division

Multiplication of two functions is defined the natural way,
after the functions have been extended to be defined on the
same space of variables. Expressed in terms of the canonical
characteristics, multiplication becomes simple addition:

(g1, hy, K))*(g2, hy, K3) = (g, + g2, by + hy, K, + K5).

Division likewise is defined in the obvious way, but special
care must be taken when dividing by 0. Thus for x = (i, y)
we let

(¢/¥)(x) =0 if o(x) =0
= (o(x)/¥(x)) if y(x) # 0
= undefined otherwise.

4.3 Marginalization

An essential difference between the pure discrete case and
the situation described in this article is due to fact that adding
two CG potentials generally will result in a function of a
different structure. Hence there will be some complications.

We distinguish several cases. First, we discuss marginals
over continuous variables. In this case we simply integrate.

Let
h K, K
) ) )
Y2 h, Ky Kx
with y; having dimension p and y, having dimension g. We

then have the following.

Lemma 1. The integral f o(i, y1, y2) dy; is finite if and
only if K;, is positive definite. It is then equal to a CG po-
tential ¢ with canonical characteristics given as

g(i) = g(i)
+ {p log(27) — log det K, (i) + h;(i)’K,, (i) 'h,(i)}/2,
h(i) = hy(i) — Ko ()Ky1 () "'hy (i),
and
K(i) = Kpn(i) — Ko (1)K (1) 'K 2 (i).
Proof. Let

p(i) = =K (i) 'Ki2(i)y2 + Kii (i) 7'hy (i).
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Then we find by direct calculation that
o(i, y) = exp{—(y: — u(i))'K;; (i) (y: — w(i))/2}
X exp{ya(ha(i) — Ko ()Kii () "'y (1)) }
X exp { —y5 (K (i) — Ko () Kii (1) 7'Ki2(1)) y2/2}

X exp{g(i) + h (i)’K.: () "'hi (i)/2}.

Now y, appears only in the first factor. This can be integrated
by letting z = y, — u(i) and recalling that if z € R” and K
is positive definite, then

f e M2 dg = (2w )" *(det K)™'/2.

The result follows.

When calculating marginals over discrete variables, we
distinguish two cases. First, if h and K do not depend on j—
that is, h(i, j) = h(i) and K(i, j) = K(i)—we define the
marginal ¢ of ¢ over j the direct way:

é(i, y) = X ¢(i, j, y)
i

= 2 X(i, pPexp{g(i, j) + h(i)y — y'K(i)y/2}

J

=exp{h(i)'y — yK(@i)y/2} 2 x(i, j)exp g(i, j),
J

which leads to the following canonical characteristics for the
marginal

g(iy=1log 2
iix(i,j)=1

h(i) = h(i), K@) = K(i).

exp g(i, j),

Second, if either h or K depends on j, then the marginaliza-
tion process is more subtle, because simple addition of CG
potentials will not result in a CG potential. The procedure
we shall then use is only well defined for K(i, j) positive
definite and is best described in terms of the moment char-
acteristics {p, £, =}. The marginal ¢ is defined as the po-
tential with moment characteristics {p, &, i} , where

pG) =2 p(i, ),  EG) =X &G, HpG, i)/5(i)
i i
and
2(i) = X 23, j)p(i, §)/5()
i
+ 2 (83, §) — EWD)'(&G, §) — EGQ))p(, §)/P3).
i
The “marginalized” density will then have the correct mo-
ments; that is,
P =i)=p5@), E(Y|I=i)=E3),
V(Y |I=1i)=23),

where expectations are taken with respect to the CG distri-
bution determined by ¢. This is a direct consequence of the
familiar relations

E(Y|I=1i)=E{EY|I, ) =i} (6)
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and
V(Y|I=i)= E{V(YI|(L, )| =i}
+ V{EY (LI =i}. (7)

When marginalizing over both continuous and discrete
variables, we first marginalize over the continuous variables
and then over the discrete. If in the second of these. stages
we have (h, K) independent of j, we say that we have a
strong marginalization. In the other case we must use the
marginalization process just described, and we speak of a
weak marginalization. In both cases we use the symbol
2wy ¢w for the marginalized potential, where ¥ denotes
the set of variables marginalized to and W\ V denotes the
set of variables marginalized over.

We leave to the reader to verify that the weak marginal-
ization satisfies the standard composition rule such that when
vcvrvcw,

WA\U

However, only the strong marginalizations behave well when
products are involved. In general we have

> ¢W).

WAV

2 (dwey) # ¢V( ®

wWA\V

A consequence is that the axioms of Shenoy and Shafer
(1990) are not fulfilled. Hence we must establish correctness
of our propagation scheme directly without exploiting their
general computational theory.

In the special case of strong marginalizations, equality
holds in (9). This follows by elementary calculations, because
strong marginalizations are just ordinary integrations.

5. OPERATING IN THE JUNCTION TREE

When the model has been specified, the handling of in-
coming evidence and calculation of specific probabilities is
done in the junction tree representation using the elementary
operations described in the previous section. Essentially, the
junction tree representation of the cliques in the strongly
triangulated, moralized graph captures the computationally
interesting aspects of the product structure in the joint density
of the variables involved. Then the computations can be
performed locally within the cliques and between the cliques
that are neighbors in the junction tree. Hence we assume
that a junction tree with strong root has been established on
the basis of the original graphs, such as discussed in Sec-
tion 2.

Each subset of variables in the junction tree is referred to
as a belief universe. The set of all variables is termed the
total universe. The collection of belief universes in the junc-
tion tree is denoted by @, to indicate that it is the set of
cliques in a strongly decomposable graph.

Recall from Section 2 that the intersections of neighbors
in the junction tree are called separators. The collection of
separators is denoted by &, where this may involve multiple
copies of the same separator set. Both the belief universes
and the separators can have belief potentials ¢ attached to
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them, and these are all assumed to be CG potentials defined
on the corresponding spaces of variables. The joint system
belief ¢ associated with the given attachment of potentials
is defined as

_ ITvee ¢v
Ises ¢s

and is assumed to be proportional to the joint density of all
the variables. Because all potentials involved are CG poten-
tials, the joint density will be a CG density itself.

We always assume that the tree is supportive, meaning
that for any universe V" with neighboring separator S' we
have ¢s(x) = 0= ¢,(x) = 0. This enables us to deal correctly
with cases in which some states are ruled out as impossible
by having potentials equal to 0.

du (10)

5.1

As a first step, the junction tree with strong root must be
initialized according to the model specification, to make sure
that the tree is supportive and the joint system belief given
by (10) is the joint density specified by the model, as in Sec-
tion 3. This is done as follows.

First, we assign each vertex A4 in the original graph to a
universe ¥ in the tree. This must be done in such a way that
(4 U pa(A4)) = V but is otherwise arbitrary. This ensures
that the universe is so large that the CG potential ¢, obtained
from the conditional density of 4 given pa(A4) can be ex-
tended to V.

Second, for each universe V we let ¢y be the product of
all the (extensions of)) potentials ¢, for vertices assigned to
it. On the separators we let ¢ = 1; that is, the potential with
canonical characteristic (0, 0, 0). This is also the potential
on universes with no vertices assigned to them.

In our basic example are several possibilities for initializing
the junction tree in Figure 5. An assignment of vertices to
universes could be B and Cto {B, C}; F, W, and E to
{B,F,W,E};Dto {B, W,E,D}; Lto {L, D}; M, to
{W,D, M;,}; and M, to {D, M,, My, }.

The potentials in the belief universes are then obtained as
follows: The assignment of B to the universe gives for the
value stable a potential with characteristics (log .85, 0, 0)
= (—.16252, 0, 0). The assignment of C gives for the same
value a potential where from (3)

(=2
2X.1
= —20 + .23235 = —19.76765,

and from (4) and (5) we get h(cy(stable) = —2/.1 = 20 and
kicy(stable) = (1)/.1 = 10. Adding these numbers and
rounding off leads to the potentials

g8,c;(stable) = —19.930,
hp,cy(stable) = =20, k¢ (stable) = 10.

Initializing the Junction Tree

8&ic)(stable) = — {log(27 X .1)}/2

Analogously, for the unstable case we find
&8,c;(unstable) = —3.881,
hp cy(unstable) = —3.333, kg c,(unstable) = 3.333.
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Only the variable L was assigned to the universe {L, D},
and this has no discrete parents. Hence only hy; 5 and
K. p, are needed. From (4) we find that

po 3 (12
{L,D} 25\—5 - 6 s

and from (5) we find that

K L1 5\ _ (4 2
DY 95\ 5 25 2 1)

Similar calculations must be performed for the remaining
belief universes.

The basic computational structure is now established. The
belief universes are objects carrying information in the form
of potentials, and the separators are communication channels
through which inférmation can flow. The computational
scheme described in the next section is a combination of
entering evidence to relevant universes and a message-passing
algorithm.

5.2 Entering Evidence

Incoming evidence is envisaged to be of the type such that
certain states are impossible for particular discrete variables
or combinations of these, and that certain continuous vari-
ables are in specific states.

To be able to handle evidence in our local computational
scheme, each item of evidence must be concerned with
groups of variables that are members of the same universe
in the junction tree. Thus an item of evidence is one of the
following:

1. afunction Xy (iw) € {0, 1}, where Wis a set of discrete
variables that is a subset of some universe V in the junction
tree

2. a statement that Y, = y% for a particular continuous
variable 4.

The first type of evidence—which we shall term discrete
evidence—is entered simply by multiplying X - onto the po-
tential ¢,. Then it holds that the joint system belief will be
proportional to the conditional density, given that the states
for which X, is equal to 0, are impossible; that is, it represents
the conditional belief, given the evidence.

If the second type of evidence— continuous evidence—is
entered, then the potentials must be modified in all universes
V containing 4. We must modify the potentials to become
those where y , becomes fixed at the value y% . If the potential
¢ has canonical characteristics (g, h, K) with

() o (Ku() KuG)
h(i) = K(i) = ,
) (hAa))’ ) (KAl(i) KAAi))

then the transformed potentials ¢* will have canonical char-
acteristics (g*, h*, K*) given as

K*(i) = K, (i),
h*(i) = h,(i) — y:KAl(i),
and

g*(i) = g(i) + ha(1)y% — Kau(D)(¥%)?/2.
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Note that a continuous item of evidence must be entered to
all universes and separators of which A4 is a member.

In the example, we could know that the waste burned was
of industrial type and enter this information as the function
Xw with X(industrial) = 1 and Xy (household) = 0. Sim-
ilarly, we might have measured the light penetration to be
1.1 and the concentration of CO, to be —.9, both on the
logarithmic scale applied when specifying the conditional
distributions. The latter translates to a CO, concentration
in the emission of 41%. Then the potentials from the ini-
tialization are modified to become, for example,

g'ts(stable) = —19.930 + 18 — 4.050 = —5.980

and

&'tz (unstable) = —3.881 + 3 — 1.350 = —-2.231,

as well as

Wipy=6—1.1Xx2=38, kip =1

5.3 Absorption

The fundamental process in the message-passing algorithm
is that of a universe absorbing information from its neighbors
in the junction tree. So consider a tree of belief universes
with collection @ and separators & assumed to be supportive.
Let ¥V € @ and let Wy, ..., W,, be neighbors of V' with
separators Sy, . . ., S,,. The universe Vis said to absorb from
Wi, ..., Wy, if the following operations are performed on
the belief potentials,

o5, = 2 ow,

WAV

and

oy = dv*(dls, /ds)x+ - *(P5,/ bs,)-

In words, the potentials of all the neighbors are marginalized
to the separators, and the ratio between the new and old
separator potential is passed on as a ‘‘likelihood ratio” and
multiplied onto the potential at V.

We note that after an absorption, the belief potential for
S; is the marginal of W, with respect to S;, and the tree re-
mains supportive. We also have that ¢y /(¢s * -« - *dg,)
= ¢y /(P's,*- - - *¢%,), whence the joint system belief is
unchanged by the absorption process.

In the particular case where m = 1, the universes V and
W will (under certain circumstances) after absorption “con-
tain the same information” on common variables. More
precisely, we say that ¥ and W are consistent if Zy\s ¢y
o ¢s o¢ Zuns dw, and a tree of belief universes is locally
consistent if all mutual neighbors in the tree are consistent.
We then have the following lemma.

Lemma 2. If V absorbs from W and ¢g is the strong
marginal of ¢, then ¥ and W are consistent after absorption.
In fact, 2\ w @Y = ds = Zuv dw.

Proof. Because the marginalization over V'\ Wis strong,
it is composed of integrations and summations only. Hence
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we find that
2 dv= 2 dvx(ds/ds) = (ds/ds)* 2 dv = ¢5s.
W VAW V\W

The other equality is trivial.

We emphasize that the corresponding result is false when
¢s is only the weak marginal of ¢y; see (9). The necessity of
using junction trees with strong roots to obtain exact prop-
agation is a consequence of this fact. In the situation de-
scribed in the lemma, we say that V has calibrated to W.

5.4 Collecting Evidence

Based on the notion of absorption, the propagation scheme
can now be constructed exactly as in the discrete case. Each
V € @ is given the action COLLECTEVIDENCE. When COL-
LECTEVIDENCE in V is called from a neighbor W, then V
calls COLLECTEVIDENCE in all its other neighbors. When
these neighbors have finished their COLLECTEVIDENCE, V'
absorbs from them (see Fig. 6). We note that because COL-
LECTEVIDENCE is composed of absorptions only, after COL-
LECTEVIDENCE the joint system belief is unchanged and the
tree remains supportive.

The idea is now to evoke COLLECTEVIDENCE from a
strong root R in the junction tree. A flow of activation of
neighbors will move through the tree, and a flow of absorp-
tions towards the root will take place. When the flow ter-
minates, the root R will have absorbed the information
available from all parts of the tree.

If COLLECTEVIDENCE is evoked from a strong root R and
W and W* are neighbors with separator S such that W is
closer in the tree to R than W*, then the COLLECTEVIDENCE
from R has caused W to absorb from W *. Thus, after COL-
LECTEVIDENCE, the belief potential for S is the marginal of
W* with respect to S. Because the root is strong, the marginal
will be strong. This can be exploited for a second flow through
the tree, to be described subsequently.

5.5 Distributing Evidence

- After COLLECTEVIDENCE, the root R has absorbed all in-
formation available. Next, it must pass this information on
to the remaining universes in the tree, formalized as the op-
eration DISTRIBUTEEVIDENCE.

Each V' € @ is given the action DISTRIBUTEEVIDENCE.
When DISTRIBUTEEVIDENCE is called in V from a neighbor
W, then V absorbs from W and calls DISTRIBUTEEVIDENCE
in all its other neighbors.

The activation of DISTRIBUTEEVIDENCE from the root R
will create an outward flow of absorptions that will stop when
it reaches the leaves of the tree. Again, the joint system belief

? ? ?
w [BH w HH = HH v

Figure 6. The Calls and Message Passing in COLLECTEVIDENCE.
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and supportiveness remain unchanged under DISTRIBUTE-
EVIDENCE. But when DISTRIBUTEEVIDENCE has terminated,
the resulting tree of belief universes will be locally consistent.

This follows because after COLLECTEVIDENCE, all sepa-
rator potentials will be strong marginals of potentials further
away from the strong root. When DISTRIBUTEEVIDENCE is
subsequently performed, Lemma 2 ensures that all absorp-
tions are calibrations.

We shall now argue that this locally consistent tree is the
representation we are aiming for. Ideally, we would want a
tree of belief universes such that the probability distributions
can be directly inferred from the local belief potentials with-
out having to calculate the joint system belief. This is clearly
too much to demand, because the true marginal distribution
at any universe would be a mixture of CG distributions and
not a CG distribution itself. What we oan hope to get is an
equality of moments; that is, for each local potential to be
the correct (weak) marginal of the joint system belief. That
this is in fact true is the main result of this article.

Theorem 1. Let T be a locally consistent junction tree
of belief universes with a strong root R and collection €. Let
¢y be the joint system belief for 7', and let V' € €. Then

2 du x oy (1)

U\V

Proof. Let n denote the number of universes in the col-
lection @. We first realize that it is enough to consider the
case n = 2: If n = 1, then the statement obviously holds. If
n> 2, we can find a leaf L in the tree and use the case n = 2
on the junction tree with strong root R' = Upee\(zy V
and one leaf L. By induction, the case gets reduced to
n=2.

So assume that U = R U L, where R is a strong root, and
let S = RN L be the separator. The marginal to R is a strong
marginal, and we find by Lemma 2 that

=2£2 ér = dr.

¢S L\R

z ¢U= z ¢L¢R

L\R L\R bs

If S contains only discrete variables, then the marginal to L
is also strong and the same calculation applies.

If S contains continuous variables, then L\R contains
only continuous variables. Then L\ S < T'; that is, only con-
tinuous vertices are in the external part of the leaf. Denote
the states of the variables in S by (i, y) and those in L\ .S by
z. Because ¢5 in the weak marginal of ¢y, the moments
p(i), E(Y |I=1i),and V(Y |I =) are correct when calculated
according to ¢ or, because these are identical, also according
to ¢. That the remaining moments now are correct follows
because

E(Z|1=1i)=E{EZ|Y,1=1i)}
=E{A(i)+B>H)Y|I=i}

=A@)+BHEY[I=1),
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where A (i) and B(i) are determined from ¢, / ¢salone. Sim-
ilarly,

E(Z'Y|1=1i)= E{E(Z'Y|Y,1=1i)}
= E{(A(i) + BO)Y)'Y|I =i}
= AG)E(Y|I=1)+ E(Y'BH)Y|I = i)
= AG)YE(Y|I=1)
+ E(Y|I=i)BG)E(Y|I=1i)
+{BHV(Y|I=1)}.
Finally,
V(Z|1=i)=E{V(Z|Y,1=1)} + V{E(Z|Y,1=i)}
= C(i) + B(i)'C(i)B(i),

where the conditional covariance C(i) also is determined
from ¢; /¢s alone, whence the moments are correct.

In summary, after entering evidence the junction tree can
be made consistent by evoking COLLECTEVIDENCE and then
DISTRIBUTEEVIDENCE from a strong root. The weak mar-
ginal of the belief at a vertex A subsequently can be obtained
from any universe (or even separator) containing A by further
weak marginalization. In particular, this gives the correct
updated probabilities of the states of any discrete variable
and the correct updated mean and variance of any contin-
uous variable.

If the full marginal density is required for a continuous
variable, then further computations are needed. These typ-
ically involve all variables on the path between a strong root
and a universe containing the variable in question. In general,
both the density itself and the problem of its computation
can be forbiddingly complex.

We want to point out that although the marginal density
of variables cannot be obtained explicitly in practice, the
tree still contains a fully correct representation of the joint
system belief, given the evidence. No information is lost dur-
ing the flow of evidence. Hence the system remains ready
for a correct, exact updating of beliefs when more evidence
is obtained.

In the example we have displayed the initial and updated
marginal probabilities, the means, and the standard devia-
tions in Table 1.

As was to be expected from measuring a CO, emission of
41%, there is strong evidence for an unstable burning regi-
men, whereas the filter must be intact to explain the pene-
trability. This, combined with the fact that industrial waste
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is burned, means that the expected emission of heavy metals
has been increased with a factor of exp 1.3 ~ 3.7.

6. FURTHER TOPICS

We shall first briefly touch on the issues involving feasi-
bility of the computations. The most complex operation is
the weak marginalization over a given clique. If the clique
contains discrete variables 6 € d with state spaces of cardi-
nality n; and g continuous variables, then the computational
complexity of marginalization is of the order of magnitude
q> Tlsca ns, whereas the storage requirements are about
q* Tlscq ns. This is because matrix inversion of a ¢ X ¢
matrix takes about g3 operations and about g2 space, and
this must be performed for every cell in the table of discrete
configurations. These quantities should be compared with
29 11,4 n;, which is the complexity (of both computation
and storage) when the g variables are discretized as much as
to a binary variable. Thus when g is large, dramatic savings
are possible.

It should be remembered, however, that extra links may
have to be added to make the graph strongly triangulated
instead of just triangulated. In some cases these extra links
may increase clique size so much that the savings are thereby
lost.

Another possibility is to ignore the constraint that the
junction tree needs a strong root and use an ordinary trian-
gulation for constructing the tree. Then COLLECTEVIDENCE
also would involve weak marginalization and, after propa-
gation, the tree would be only approximately consistent. The
quality of such an approximation is to be explored. In par-
ticular the approximative methods could give rise to pa-
thologies such as nonpositive definite covariance matrices.

In the case where the original directed graph has contin-
uous variables with discrete children, the initialization will

‘have to be done approximately rather than exactly to take

advantage of the CG distributions in the previously described
computational scheme. So let i denote a typical state for a
discrete variable with discrete parent states j and continuous
parent states z, where z € 9. We then must approximate
log p(i| j, z) with a second degree polynomial in z for such
pairs (i, j), where p(i] j, z) is strictly positive. In particular
the positivity is not allowed to depend on z.

An obvious suggestion is to use a CG regression model
for the conditional probabilities and let

log p(il j, z) = a(il §) + b(il j)z + 2’C(i] ))z — «(i, 2),

Table 1. Probabilities, Means, and Standard Deviations of Single Variables in Our Example Before and After Evidence Has Been Entered

Means and standard deviations

F w B
Status p(i) p(h) p(s) M, Mot E D c L
Initial values .95 71 .85 -.21 2.83 -3.25 3.04 -1.85 1.48
.46 .86 7 77 .51 .63
Updated values .9995 0 .01 .50 411 -3.90 3.61 -0.90 1.10
10 .35 .07 .33 0 0

NOTE: The information strongly suggests that the filter is intact but the burning regimen is unstable. Consequently, there is increased emission of dust and metals.
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where

k(j, z) = log 2 exp{a(il j) + b(il j)z + 2'C(i| j)z}.
i

This seems natural, because CG regressions occur as con-
ditional distributions in CG distributions (see Lauritzen and
Wermuth 1989). :

Because « is not a quadratic in z, log p is to be approxi-
mated by its second-order Taylor expansion around its max-
imal value. Various optimization methods can be used to
find this maximal value; we abstain from discussing this point
in detail here.

When the approximate initialization has been performed
and one recalculates the conditional distribution of i given
the parent states, this will be of the same type as initially
specified but the coefficients may have changed slightly. This
can be used indirectly to indicate the quality of the approx-
imation. We believe that the error of approximation is neg-
ligible compared to the general uncertainty involved in the
model building itself.

REFERENCES

Hansen, J. A., and Dalager, S. (eds.) (1985), Emission fra affalds-
Jorbreendingsanleeg (in Danish), Copenhagen: DAKOFA.

Journal of the American Statistical Association, December 1992

Jensen, F. V., Lauritzen, S. L., and Olesen, K. G. (1990), “Bayesian Updating
in Causal Probabilistic Networks by Local Computations,” Computational
Statistics Quarterly, 4, 269-282.

Kiiveri, H., Speed, T. P., and Carlin, J. B. (1984), “Recursive Causal Models,”
Journal of the Australian Mathematical Society, Ser. A, 36, 30-52.

Lauritzen, S. L. (1989), “Mixed Graphical Association Models” (with dis-
cussion), Scandinavian Journal of Statistics, 16, 273-306.

Lauritzen, S. L., Dawid, A. P, Larsen, B. N., and Leimer, H.-G. (1990),
“Independence Properties of Directed Markov Fields,” Networks, 20, 491-
505.

Lauritzen, S. L., and Spiegelhalter, D. J. (1988), “Local Computations With
Probabilities on Graphical Structures and Their Application to Expert
Systems” (with discussion), Journal of the Royal Statistical Society, Ser.
B, 50, 157-224.

Lauritzen, S. L., and Wermuth, N. (1989), “Graphical Models for Associ-
ations Between Variables, Some of Which Are Qualitative and Some
Quantitative,” The Annals of Statistics, 17, 31-57.

Leimer, H.-G. (1989), “Triangulated Graphs With Marked Vertices,” in
Graph Theory in Memory of G. A. Dirac, eds. L. D. Andersen, C. Tho-
massen, B. Toft, and P. D. Vestergaard. Annals of Discrete Mathematics,
41, 311-324.

Oliver, R., and Smith, J. Q. (eds.) (1990), Influence Diagrams, Belief Nets
and Decision Analysis, Chichester, U.K.: John Wiley.

Pearl, J. (1988), Probabilistic Inference in Intelligent Systems, San Mateo,
CA: Morgan Kaufmann.

Shafer, G. R., and Pearl, J. (eds.) (1990), Readings in Uncertain Reasoning,
San Mateo, CA: Morgan Kaufmann.

Shenoy, P. P., and Shafer, G. R. (1990), “Axioms for Probability and Belief-
Function Propagation,” in Uncertainty in Artificial Intelligence, 4, eds.
R. D. Shachter, T. S. Levitt, L. N. Kanal, and J. F. Lemmer. Amsterdam:
North-Holland, pp. 169-198.

Whittaker, J. (1990), Graphical Models in Applied Multivariate Statistics,
Chichester, U.K.: John Wiley.



