
Chapter 7

Search Algorithms for Graphical

Models; AND/OR spaces

As discussed before, algorithms for processing graphical models fall into two general types:

inference-based and search-based. Inference-based algorithms (e.g., Variable Elimination,

Tree Clustering discussed already) are good at exploiting the independencies captured by

the underlying graphical model and in avoiding redundant computation. They provide

worst case time guarantee, as they are time exponential in the treewidth of the graph.

Unfortunately, any method that is time-exponential in the treewidth is also space expo-

nential in the treewidth or separator width and, therefore, not practical for models with

large treewidth.

Traditional search-based algorithms (e.g., depth-first branch-and-bound, best-first search)

traverse the model’s search space where each path represents a partial or full solution.

Such search trees were just discussed in towards the end of Chapter ?? when we briefly

looked at the tradeoff between hybrids conditioning and inference. Note that the linear

structure of search spaces does not retain the independencies represented in the under-

lying graphical models and, therefore, algorithms exploring such traditional search-based

algorithms may not be effective. On the other hand, the space requirements of search-

based algorithms may be much less severe than those of inference-based algorithms and

they can accommodate a wide spectrum of space-bounded algorithms. In addition, search

methods require only an implicit, generative, specification of the functional relationship
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(given in a procedural or functional form) while inference schemes often rely on an ex-

plicit tabular representation over the (discrete) variables. For these reasons, search-based

algorithms are the only choice available for models with large treewidth and with implicit

representation.

In this chapter we will show that an AND/OR search spaces, originally developed

for heuristic search [45], can be used to encode some of the information in the graphical

models. We will demonstrate how the independencies captured by the graphical model

may be used to yield AND/OR search trees that are exponentially smaller than the

standard search tree (that can be thought of as an OR tree). Specifically, we show

that the size of the AND/OR search tree is bounded exponentially by the depth of a

spanning pseudo tree over the graphical model. We then show that the search tree contains

significant redundancy. However, if we recognize the search graph underlying the graphical

model additional saving can be results. Indeed we show that the size of the AND/OR

search graph is bounded exponentially by the treewidth,

7.1 AND/OR Search Trees

We will present the AND/OR search space for a graphical model starting with an example

of a constraint network.

Example 7.1.1 Consider the simple tree graphical model (i.e., the primal graph is a

tree) in Figure 7.1(a), over domains {1, 2, 3}, which represents a graph-coloring problem.

Namely, each node should be assigned a value such that adjacent nodes have different

values. Once variable X is assigned the value 1, the search space it roots can be decom-

posed into two independent subproblems, one that is rooted at Y and one that is rooted

at Z, both of which need to be solved independently. Indeed, given X = 1, the two search

subspaces do not interact. The same decomposition can be associated with the other as-

signments to X, ⟨X, 2⟩ and ⟨X, 3⟩. Applying the decomposition along the tree (in Figure

7.1(a) yields the AND/OR search tree in Figure 7.1(c).

In the AND/OR space a full assignment to all the variables is not a path but a subtree.

For comparison, the traditional OR search tree is depicted in Figure 7.1(b). Clearly, the

size of the AND/OR search space is smaller than that of the regular OR space. The OR

search space has 3 · 27 nodes while the AND/OR has 3 · 25 (compare 7.1(b) with 7.1(c)).

If k is the domain size, a balanced binary tree with n nodes has an OR search tree of
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Figure 7.1: OR vs. AND/OR search trees; note the connector for AND arcs

size O(kn). The AND/OR search tree, whose underlying tree graphical model has depth

O(log2 n), has size O((2k)
log2 n) = O(n · klog2 n) = O(n1+log2 k). When k = 2, this becomes

O(n2).

The AND/OR space is not restricted to tree graphical models. It only has to be

guided by a backbone tree which spans the original primal graph of the graphical model

in a particular way. We will define the AND/OR search space relative to a depth-first

search tree (DFS tree) of the primal graph first, and will generalize to a broader class of

backbone spanning trees subsequently.

Definition 7.1.2 (DFS spanning tree) Given a DFS traversal ordering d = (X1, . . . , Xn),

of an undirected graph G = (V,E), the DFS spanning tree T of G is defined as the tree

rooted at the first node, X1, which includes only the traversed (by DFS) arcs of G .

Namely, T = (V,E ′), where E ′ = {(Xi, Xj) | Xj traversed from Xi}.

Wenext define the notion of AND/OR search tree for a graphical model.

Definition 7.1.3 (AND/OR search tree) Given a graphical modelR = ⟨X,D, F,
⊗
⟩,

its primal graph G and a backbone DFS tree T of G, the associated AND/OR search tree,

denoted ST (R), has alternating levels of AND and OR nodes. The OR nodes are labeled
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Xi and correspond to the variables. The AND nodes are labeled ⟨Xi, xi⟩ (or simply xi)

and correspond to the value assignments of the variables. The structure of the AND/OR

search tree is based on the underlying backbone tree T . The root of the AND/OR search

tree is an OR node labeled by the root of T . A path from the root of the search tree ST (R)
to a node n is denoted by πn. If n is labeled Xi or xi the path will be denoted πn(Xi) or

πn(xi), respectively. The assignment sequence along path πn, denoted asgn(πn) is the set

of value assignments associated with the sequence of AND nodes along πn:

asgn(πn(Xi)) = {⟨X1, x1⟩, ⟨X2, x2⟩, . . . , ⟨Xi−1, xi−1⟩},
asgn(πn(xi)) = {⟨X1, x1⟩, ⟨X2, x2⟩, . . . , ⟨Xi, xi⟩}.

The set of variables associated with OR nodes along path πn is denoted by var(πn):
var(πn(Xi)) = {X1, . . . , Xi−1}, var(πn(xi)) = {X1, . . . , Xi} . The exact parent-child

relationship between nodes in the search space are defined as follows:

1. An OR node, n, labeled by Xi has a child AND node, m, labeled ⟨Xi, xi⟩ iff ⟨Xi, xi⟩
is consistent with the assignment asgn(πn). Consistency is defined relative to the

flat constraints.

2. An AND node m, labeled ⟨Xi, xi⟩ has a child OR node r labeled Y , iff Y is child of

X in the backbone tree T . Each OR arc, emanating from an OR to an AND node

is associated with a weight to be defined shortly (see Definition 7.1.8).

Clearly, if a node n is labeled Xi (OR node) or xi (AND node), var(πn) is the set of

variables mentioned on the path from the root to Xi in the backbone tree, denoted by

pathT (Xi)
1.

A solution subtree is defined in the usual way:

Definition 7.1.4 (solution subtree) A solution subtree of an AND/OR search tree

contains the root node. For every OR nodes it contains one of its child nodes and for each

of its AND nodes it contains all its child nodes, and all its leaf nodes are consistent.

Example 7.1.5 In the example of Figure 7.1(a), T is the DFS tree which is the tree

rooted at X, and accordingly the root OR node of the AND/OR tree in 7.1(c) is X. Its

child nodes are labeled ⟨X, 1⟩, ⟨X, 2⟩, ⟨X, 3⟩ (only the values are noted in the Figure),

1When the AND/OR tree is extended to dynamic variable orderings the set of variables along different

paths may vary.
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which are AND nodes. From each of these AND nodes emanate two OR nodes, Y and Z,

since these are the child nodes of X in the DFS tree of (7.1(a)). The descendants of Y

along the path from the root, (⟨X, 1⟩), are ⟨Y, 2⟩ and ⟨Y, 3⟩ only, since ⟨Y, 1⟩ is inconsistent
with ⟨X, 1⟩. In the next level, from each node ⟨Y, y⟩ emanate OR nodes labeled T and R

and from ⟨Z, z⟩ emanate nodes labeled L and M as dictated by the DFS tree. In 7.1(c)

a solution tree is highlighted.

7.1.1 Weights of OR-AND Arcs

The arcs in AND/OR trees are associated with weights w that are defined based on

the graphical model’s functions and combination operator. The simplest case is that of

constraint networks.

Definition 7.1.6 (arc weight for constraint networks) Given an AND/OR tree ST (R)
of a constraint network R, each terminal node is assumed to have a single, dummy, out-

going arc. The outgoing arc of a terminal AND node always has the weight “1” (namely

it is consistent and thus solved). An outgoing arc of a terminal OR node has weight “0”,

(there is no consistent value assignments). The weight of any internal OR to AND arc is

“1”. The arcs from AND to OR nodes have no weight.

We next define arc weights for any graphical model using the notion of buckets of

functions.

Definition 7.1.7 (buckets relative to a backbone tree) Given a graphical modelR =

⟨X,D,F,
⊗
⟩ and a backbone tree T , the bucket of Xi relative to T , denoted BT (Xi), is

the set of functions whose scopes contain Xi and are included in pathT (Xi), which is the

set of variables from the root to Xi in T . Namely,

BT (Xi) = {f ∈ F |Xi ∈ scope(f), scope(f) ⊆ pathT (Xi)}.

Definition 7.1.8 (OR-to-AND weights) Given an AND/OR tree ST (R), of a graph-

ical model R, the weight w(n,m)(Xi, xi) of arc (n,m) where Xi labels n and xi labels m,

is the combination of all the functions in BT (Xi) assigned by values along πm. Formally,

w(n,m)(Xi, xi) =
⊗

f∈BT (Xi)
f(asgn(πm)[scope(f)]).
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Figure 7.2: Arc weights for probabilistic networks
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Figure 7.3: Arc weights for constraint networks

Definition 7.1.9 (weight of a solution subtree) Given a weighted AND/OR tree ST (R),
of a graphical model R, and given a solution subtree t having OR-to-AND set of arcs

arcs(t), the weight of t is defined by w(t) =
⊗

e∈arcs(t)w(e).

Example 7.1.10 Figure 7.2 shows a belief network, a DFS tree that drives its weighted

AND/OR search tree, and a portion of the AND/OR search tree with the appropriate

weights on the arcs expressed symbolically. In this case the bucket of E contains the

function P (E|A,B), and the bucket of C contains two functions, P (C|A) and P (D|B,C).
Note that P (D|B,C) belongs neither to the bucket of B nor to the bucket of D, but it

is contained in the bucket of C, which is the last variable in its scope to be instantiated

in a path from the root of the tree. We see indeed that the weights on the arcs from

the OR node E and any of its AND value assignments include only the instantiated

function P (E|A,B), while the weights on the arcs connecting C to its AND child nodes

are the products of the two functions in its bucket instantiated appropriately. Figure
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Figure 7.4: Labeled AND/OR search tree for belief networks

7.3 shows a constraint network with four relations, a backbone DFS tree and a portion

of the AND/OR search tree with weights on the arcs. Note that the complex weights

would reduce to “0”s and “1”s in this case. However, since we use the convention that

arcs appear in the search tree only if they represent a consistent extension of a partial

solution, we will not see arcs having zero weights.

In Figure 7.4(b) we show the numerical values of the weights on the weighted AND/OR

tree for the same belief network where 7.4(a) shows the conditional probability tables.

7.1.2 Properties of AND/OR Search Tree

Any DFS tree T of a graph G has the property that the arcs of G which are not in T are

backarcs. Namely, they connect a node and one of its ancestors in the backbone tree. This

ensures that each scope of F will be fully assigned on some path in T , a property that

is essential for the validity of the AND/OR search tree. We can show that the AND/OR

search tree is an alternative equivalent representation of the graphical model.
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Theorem 7.1.11 (correctness) Given a graphical model R having a primal graph G

and a DFS spanning tree T of G, its weighted AND/OR search tree ST (R) then 1) there

is a one-to-one correspondence between solution subtrees of ST (R) and solutions of R; 2)
the weight of any solution tree equals the cost of the full solution it denotes; namely, if

t is a solution tree of ST (R) then F (assn(t)) = w(t), where assn(t) is the full solution

defined by tree t.

Proof: Prove as an exercise

The virtue of an AND/OR search tree representation is that its size may be far smaller

than the traditional OR search tree. The size of an AND/OR search tree depends on the

depth of its backbone DFS tree T . Therefore, DFS trees of smaller depth should be

preferred to drive the AND/OR search tree. An AND/OR search tree becomes an OR

search tree when its DFS tree is a chain.

Theorem 7.1.12 (size bounds of AND/OR search tree) Given a graphical model

R, with domains size bounded by k, and a DFS spanning tree T having depth m and l

leaves, the size of its AND/OR search tree ST (R) is O(l ·km) (and therefore also O(nkm)

and O((bk)m) when b bounds the branching degree of T and n bounds the number of nodes).

In contrast the size of its OR search tree along any ordering is O(kn). The above bounds

are tight and realizable for fully consistent graphical models. Namely, one whose all full

assignments are consistent.

Proof: Let p be an arbitrary directed path in the DFS tree T that starts with the root

and ends with a leaf. This path induces an OR search subtree which is included in the

AND/OR search tree ST , and its size is O(km) when m bounds the path length. The

DFS tree T is covered by l such directed paths, whose lengths are bounded by m. The

union of their individual search trees covers the whole AND/OR search tree ST , where

every distinct full path in the AND/OR tree appears exactly once, and therefore, the size

of the AND/OR search tree is bounded by O(l · km). Since l ≤ n and l ≤ bm, it concludes

the proof.

Table 7.1 demonstrates the size saving of AND/OR vs. OR search spaces for 5 random

networks having 20 bivalued variables, 18 CPTs with 2 parents per child and 2 root

nodes, when all the assignments are consistent (remember that this is the case when the
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Table 7.1: OR vs. AND/OR search size, 20 nodes

OR space AND/OR space

treewidth height time (sec.) nodes time (sec.) AND nodes OR nodes

5 10 3.154 2,097,151 0.03 10,494 5,247

4 9 3.135 2,097,151 0.01 5,102 2,551

5 10 3.124 2,097,151 0.03 8,926 4,463

5 10 3.125 2,097,151 0.02 7,806 3,903

6 9 3.124 2,097,151 0.02 6,318 3,159

probability distribution is strictly positive). The size of the OR space is the full binary

tree of depth 20. The size of the full AND/OR space varies based on the backbone DFS

tree.

We can give a better analytic bound on the search space size by spelling out the depth

mi of each leaf node Li in T as follows. Given a graphical model R, with domains size

bounded by k, and a backbone spanning tree T having L = {L1, . . . , Ll} leaves, where

depth of leaf Li is mi, then the size of its full AND/OR search tree ST (R) is O(
∑l

k=1 k
mi).

Alternatively, we can use the exact domain sizes for each variable yielding an even more

accurate expression O(
∑

Lk∈LΠ{Xj |Xj∈pathT (Lk)}|D(Xj)|).

7.1.3 From DFS Trees to Pseudo Trees

You may wonder if DFS trees are the only type of trees that can serve as backbone trees

to guide the AND?oR decomposition. You were right! Indeed, there is a larger class of

trees that can be used as backbones for AND/OR search trees, called pseudo trees [27]

and they just need to obey the above mentioned back-arc property.

Definition 7.1.13 (pseudo tree, extended graph) Given an undirected graph G =

(V,E), a directed rooted tree T = (V,E ′) defined on all its nodes is a pseudo tree if any

arc of G which is not included in E ′ is a back-arc in T , namely it connects a node in T
to an ancestor in T . The arcs in E ′ may not all be included in E. Given a pseudo tree

T of G, the extended graph of G relative to T is defined as GT = (V,E ∪ E ′).

Clearly, any DFS tree and any chain of a graph are pseudo trees.
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Figure 7.5: (a) A graph; (b) a DFS tree T1; (c) a pseudo tree T2; (d) a chain pseudo tree

T3

Example 7.1.14 Consider the graph G displayed in Figure 7.5(a). Ordering d1 =

(1, 2, 3, 4, 7, 5, 6) is a DFS ordering of a DFS tree T1 having the smallest DFS tree depth

of 3 (Figure 7.5(b)). The tree T2 in Figure 7.5(c) is a pseudo tree and has a tree depth

of 2 only. The two tree-arcs (1,3) and (1,5) are not in G. Tree T3 in Figure 7.5(d), is a

chain. The extended graphs GT1 , GT2 and GT3 are presented in Figure 7.5(b),(c),(d) when

we ignore directionality and include the dotted arcs.

It is easy to see that the weighted AND/OR search tree is well defined when the

backbone trees is a pseudo tree. Namely, the correctness properties (proposition 7.1.11)

hold and the size bounds are extendible.

Theorem 7.1.15 (properties of AND/OR search trees) Given a graphical modelR
and a backbone pseudo tree T , its weighted AND/OR search tree ST (R) obey the correct-

ness properties (1) and (2) of Proposition 7.1.11 and its size is O(l · km) where m is the

depth of the pseudo tree, l bounds its number of leaves, and k bounds the domain size.

Proof: All the arguments in the proof for Theorem 7.1.11 carry immediately to AND/OR

search spaces that are defined relative to a pseudo tree. Likewise, the bound size argument

in the proof of Theorem 7.1.12 holds relative to the depth of the more general pseudo

tree.

Figure 7.6 shows the AND/OR search trees along the pseudo trees T1 and T2 from

Figure 7.5. The domains of the variables are {a, b, c} and the constraints are universal,

namely this can represent a positive graphical model. We see that the AND/OR search
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Figure 7.6: AND/OR search tree along pseudo trees T1 and T2

tree based on T2 is smaller, because T2 has a smaller depth than T1. The weights are not

specified here.

Clearly, the question we should address is how can we find good pseudo-tree, namely,

those having minimal depth. This is yet another graph problem (appended to finding good

induced-width and cycle-cutset sizes) which was explored in the past 2 decades and I am

sure the reader may not be surprised to learn that, finding a pseudo tree or a DFS tree of

minimal depth is NP-complete, like other relevant graph problems which we encountered.

Greedy algorithms and polynomial time strategies were developed in the graph literature

and some will be discussed shortly (see section 7.1.4). A general approach to obtaining

pseudo trees is by generating an induced graph along an ordering d and then traversing

it in a depth-first manner, breaking ties in favor of earlier variables [5].

Interestingly, a pseudo-tree and the bucket-tree as defined in 6.1.1 are highly related.

In fact. it is easy to show that a bucket tree yields a pseudo tree.

Proposition 7.1.16 Given a graphical model R =< X,D, F > and a bucket-tree TB =

({BXi
|Xi ∈ X}, EB), the tree T = (X,E) whose arcs are E = {(Xi, Xj)|(BXi

, BXj
) ∈ EB}

is a pseudo tree of R.
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Table 7.2: Average depth of pseudo trees vs. DFS trees; 100 instances of each random

model. N is the number of variables, P is the number of variables in the scope of a

function and C is the number of functions.
Model (DAG) width Pseudo tree depth DFS tree depth

(N=50, P=2, C=48) 9.5 16.82 36.03

(N=50, P=3, C=47) 16.1 23.34 40.60

(N=50, P=4, C=46) 20.9 28.31 43.19

(N=100, P=2, C=98) 18.3 27.59 72.36

(N=100, P=3, C=97) 31.0 41.12 80.47

(N=100, P=4, C=96) 40.3 50.53 86.54

Proof: All one need to show is that all the arcs in R which are not in T are back-arcs,

which is easy to verify based on the construction of a bucket-tree (prove formally as an

exercise).

Interestingly, there is a known relationship between the treewidth and the depth of

pseudo trees. To gain intuition the reader should prove that a chain graph of size n has

a pseudo-tree whose depth is logn.

Proposition 7.1.17 [5, 30] The minimal depth m over all pseudo trees of a given graph

G satisfies m ≤ w∗ · log n, where w∗ is the treewidth of G, which is the primal graph of

the given graphical model.

This property suggets a bound on the size of the AND/OR search tree of a graphical

model in terms of its treewidth.

Theorem 7.1.18 A graphical model that has a treewidth w∗ has an AND/OR search tree

whose size is O(n · k(w∗·logn)), where k bounds the domain size and n is the number of

variables.

To illustrate, Table 7.2 shows the effect of DFS spanning trees against pseudo trees,

both generated using brute-force heuristics over randomly generated graphs.

7.1.4 Finding Good Pseudo Trees

We describe next two heuristics for generating pseudo trees with relatively small depths/induced-

widths which are common in practice.



7.1. AND/OR SEARCH TREES 143

Network hypergraph min-fill Network hypergraph min-fill

width depth width depth width depth width depth

barley 7 13 7 23 spot 5 47 152 39 204

diabetes 7 16 4 77 spot 28 108 138 79 199

link 21 40 15 53 spot 29 16 23 14 42

mildew 5 9 4 13 spot 42 36 48 33 87

munin1 12 17 12 29 spot 54 12 16 11 33

munin2 9 16 9 32 spot 404 19 26 19 42

munin3 9 15 9 30 spot 408 47 52 35 97

munin4 9 18 9 30 spot 503 11 20 9 39

water 11 16 10 15 spot 505 29 42 23 74

pigs 11 20 11 26 spot 507 70 122 59 160

Table 7.3: Bayesian Networks Repository (left); SPOT5 benchmarks (right).

Min-Fill Heuristic

As we discussed in Chapter ?? Min-Fill is one of the best and most widely used heuristics

for creating small induced width elimination orders. An ordering is generated by placing

the variable with the smallest fill set (which is number of induced edges that need be

added to fully connect the neighbors of a node) at the end of the ordering, connecting all

of its neighbors and then removing the variable from the graph. The process continues

until all variables have been eliminated.

Once an elimination order is given and once the induced-graph is generated, the pseudo

tree can be extracted as a depth-first traversal of the induced graph, starting with the

variable that initiated the ordering, always preferring as successor of a node the earliest

adjacent node in the induced graph. This way a given ordering uniquely determines a

pseudo tree. This approach was first used by [49].

Hypergraph Decomposition Heuristic

An alternative heuristic for generating a low height balanced pseudo tree is based on the

recursive decomposition of the dual hypergraph associated with the graphical model.
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Definition 7.1.19 (dual hypergraph) The dual hypergraph of a graphical model ⟨X,D,F⟩,
is a pair H = (V,E), where each function in F is a vertex vi ∈ V and Two functions are

connected if they share variables.

Definition 7.1.20 (hypergraph separators) Given a dual hypergraph H = (V,E) of

a graphical model, a hypergraph separator decomposition of size k by a nodes S is ob-

tained if removing S yields a hypergaph having k disconnected components. S is called a

separator.

It is well known that the problem of finding the minimal size hypergraph separator is

hard. However heuristic approaches were developed over the years. 2.

Table7.3 illustrates the induced width and depth of the pseudo tree obtained with the

hypergraph and min-fill heuristics for 10 Bayesian networks from the Bayesian Networks

Repository3 and 10 constraint networks derived from the SPOT5 benchmark [7] which

are typical. In all the accumulated experience it is observed that the min-fill heuristic

generates lower induced width pseudo trees, while the hypergraph heuristic produces much

smaller depth pseudo trees.

7.2 AND/OR Search Graphs

It is often the case that a search space that is a tree can become a graph if nodes that

root identical search subspaces, or correspond to identical reasoning subproblems, are

identified. Any two such nodes can be merged, reducing the size of the search graph. For

example, in Figure 7.1(c), the search trees below any appearance of ⟨Y, 2⟩ are all identical,
and therefore can be merged.

Sometimes, two nodes may not root identical subtrees, but they could still root search

subspaces that correspond to equivalent subproblems. Such nodes that root equivalent

subproblems can be unified even if their explicit weighted subtrees are not identical,

yielding an even smaller search graph. We next formalize the notions of merging and

unifying nodes and define the minimal AND/OR search graph.

2A good package hMeTiS is Available at: http://www-users.cs.umn.edu/karypis/metis/hmetis
3Available at: http://www.cs.huji.ac.il/labs/compbio/Repository
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In general two graphical models are equivalent if they have the same set of solutions,

and if each is associated with the same cost when the cost defined by the combination

(e.g., product) of the functions components in F . Formally,

Definition 7.2.1 (universal equivalent graphical model) Given a graphical model

R = ⟨X,D, F,
⊗
⟩ the universal equivalent model ofR is u(R) = ⟨X,D,F = {

⊗r
i=1 fi},

⊗
⟩.

we also need to define the cost of a partial solution and a graphical model conditioned

on a partial assignment. Informally, a conditioned graphical model on a particular partial

assignment is obtained by assigning all the variables and modifying cost in the obvious

way.

Definition 7.2.2 (cost of an assignment, conditional model) Given a graphical model

R,

1. the cost of a full assignment x = (x1, ..., xn) is defined by c(x) =
⊗

f∈F f(x[scope(f)]).

The cost of a partial assignment y, over Y ⊆ X is the combination of all the func-

tions whose scopes are included in Y (FY ) evaluated at the assigned values. Namely,

c(y) =
⊗

f∈FY
f(y[scope(f)]).

2. The conditional graphical model give Y = y is R|y = ⟨X,D|y, F |y,
⊗
⟩, where D|y =

{Di ∈ D,Xi /∈ Y } and F |y = {f |Y=y, f ∈ F , and scope(f) ̸⊆ Y }.

7.2.1 Minimal AND/OR Search Graphs

Next, we characterize the smallest search graph that may result from merging nodes.

By construction, a graphical model R is equivalent to its AND/OR search tree, ST (R)
if u(R) coincides with the weighted solution substrees of ST (R), (see Definition 7.1.4).

We will next define merge and unify operations that transform AND/OR search trees into

graphs that preserve equivalence.

Definition 7.2.3 (merge,unify) Assume a given weighted AND/OR search graph S ′
T

of a graphical model (R). and assume two paths π1 = πn1(xi) and π2 = πn2(xi) ending by

AND nodes at level i having the same label xi.
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Figure 7.7: Merge vs. unify operators

1. Nodes n1 and n2 can be merged iff the weighted search subgraphs rooted at n1 and n2

are identical. The merge operator, merge(n1, n2), redirects all the arcs going into

n2 into n1 and removes n2 and its subgraph. It thus transforms S ′
T into a smaller

graph. When we merge AND nodes only we call the operation AND-merge. The

same reasoning can be applied to OR nodes, and we call the operation OR-merge.

2. Nodes n1 and n2 are unifiable, iff they root equivalent conditioned subproblems (Def-

inition 2). Namely, if R|asgn(π1) = R|asgn(π2).

Example 7.2.4 Let’s follow the example in Figure 7.7 to clarify the difference between

merge and unify. We have a graphical model defined by two functions (e.g. cost functions)

over three variables. The search tree given in Figure 7.7(c) cannot be reduced to a graph

by merge, because of the different arc weights. However, the two OR nodes labeled A

root equivalent conditioned subproblems (the cost of each individual solution is given at

the leaves). Therefore, the nodes labeled A can be unified, but they cannot be recognized

as identical by the merge operator.

Proposition 7.2.5 (minimal AND/OR graphs) Given a weighted AND/OR search

graph G based on pseudo tree T :

1. The merge operator has a unique fix point, called the merge-minimal AND/OR

search graph and denoted by Mmerge
T (G).
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2. The unify operator has a unique fix point, called the unify-minimal AND/OR

search graph and denoted by Munify
T (G).

3. Any two nodes n1 and n2 of G that can be merged can also be unified.

Proof: All we need to show for (1) and (2) is that the merge and unify operators are not

depandant on the order of their application (the details are left as an exercise). Claim (3)

is clear because if two nodes can be merged they root identical subgraphs and therefore

must correspond to a the same conditioned subproblems,thus unifiable.

The unify-minimal AND/OR search graph of R relative to T is called the minimal

AND/OR search graph and denoted by MT (R). When T is a chain pseudo tree,

the above definitions are applicable to the traditional OR search tree as well. However,

note that we may not be able to reach the same compression as in some AND/OR cases,

because of the linear structure imposed by the OR search tree.

Example 7.2.6 The smallest OR search graph of the graph-coloring problem in Fig-

ure 7.1(a) is given in Figure 7.9 along the DFS order X, Y, T,R, Z, L,M . The smallest

AND/OR graph of the same problem along the DFS tree is given in Figure 7.11. We

see that some variable-value pairs (AND nodes) must be repeated in Figure 7.9 while in

the AND/OR case they appear just once. In particular, the subgraph below the paths

(⟨X, 1⟩, ⟨Y, 2⟩) and (⟨X, 3⟩, ⟨Y, 2⟩) in the OR tree cannot be merged at ⟨Y, 2⟩. You can

now compare all the four search space representations side by side in Figures 7.8-7.11.

7.2.2 Building AND/OR Search Graphs

The merging rule above seems operational: we can generate the AND?OR search tree

and then recursively merge identical subtrees going from leaves to root. This however,

requires generating the whole search tree first, and is quite impractical.

Some unifiable nodes can be identified based on their contexts, however. We can

define graph-based contexts for both OR and AND nodes, identifying the set of ancestors

variables in T that completely determine the conditioned subproblems. This leads to

merging rules generating a small AND/OR graph called the context minimal graph without
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Figure 7.9: The minimal OR search graph of the

tree graphical model in Figure 7.1(a)

creating the whole search tree ST first. It is easiest to demonstrate the notion of context

and the rule for unification when the graphical models are trees, and which are called tree

models.

Example 7.2.7 Consider again the graph in Figure 7.1(a) and its AND/OR search tree

in Figure 7.1(c) representing a constraint network. Observe that at level 3, node ⟨Y, 1⟩
appears twice, (and so are ⟨Y, 2⟩ and ⟨Y, 3⟩). Clearly however, the subtrees rooted at

each of these two AND nodes are identical and we can reason that they can be merged

because any specific assignment to Y uniquely determines its rooted subtree. Indeed, the

AND/OR search graph in Figure 7.11 is equivalent to the AND/OR search tree in Figure

7.8 (same as Figure 7.1(c)).

Indeed, in general, the AND/OR graph of a constraint tree model whose tree is T can

be obtained by merging all AND nodes having the same label ⟨X, x⟩. This rule can be

extended to any general weighted tree graphical models, and the AND/OR graph obtained

by this rule is equivalent to ST and that its size is O(nk). We can now derive a merging

rule for non-tree graphical models by generating a tree-decomposition of the graphical

model first, and then applying the above merging rule to a tree over meta-variables.

Instead, we propose a direct yet equivalent merging rule using the notion of context. The

idea is to find a minimal set of variables from the current path to the node such that for
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the same assignment will always generate the same conditioned subproblem, regardless of

value assigned to other assignments.

Definition 7.2.8 (OR context) Given a pseudo tree T of an AND/OR search space,

context(X) = [X1 . . . Xp] is the set of ancestors of X in T , ordered descendingly, that are

connected in the primal graph to X or to descendants of X.

Theorem 7.2.9 (context based merge) Let πn1 and πn2 be any two partial paths in

an AND/OR search graph guided by T , ending with two nodes, n1 and n2.

If n1 and n2 are OR nodes annotated by Xi and

asgn(πn1)[context(Xi)] = asgn(πn2)[context(Xi)] (7.1)

then the AND/OR search subtrees rooted by n1 and n2 are identical and n1 and n2 can be

merged.

Proof: The variables in context(Xi) disconnect the subproblem below Xi from the

ancestors of Xi along the pseudo-tree. Therefore the problem below Xi conditioned on

context(Xi) is independent of the rest of the ancestor variables, meaning that the context

variables completely determines the subproblem below Xi.

From Theorem 7.2.2 it is clear that in an AND/OR search graph, two OR nodes n1

and n2 are context unifiable if they have the same variable label X and the assignments
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of their contexts is identical. The context minimal AND/OR graph is obtained from the

AND/OR search tree by merging all the context unifiable OR nodes.

Definition 7.2.10 (context minimal AND/OR search graph) The AND/OR search

graph of R based on T that is closed under context-based merge is called context minimal

AND/OR search graph and is denoted CT (R).

As we have already seen (Example 7.2.4) that there exist nodes that can be unified

but not merged. Here we give an example that shows that contexts can not identify all

the nodes that can be merged. There could be paths whose contexts are not identical, yet

they might root identical subgraphs.

Example 7.2.11 Let’s return to the example of the Bayesian network given in Figure

7.12(a), where P (D|B,C) is given in the table, and the OR-context of each node in the

pseudo tree is given in square brackets. Figure 7.12(b) shows the context minimal graph.

However, we can see that P (D = 0|B = 0, C = 0) = P (D = 0|B = 1, C = 0) = x and

P (D = 1|B = 0, C = 0) = P (D = 1|B = 1, C = 0) = y. This allows the unification of the

corresponding OR nodes labeled with D, and Figure 7.12(c) shows the (unify) minimal

graph.
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Since the number of nodes in the context minimal AND/OR search graph cannot

exceed the number of different contexts, we can therefore bound the size of the context

minimal graph.

Theorem 7.2.12 Given a graphical model R, its primal graph G, and a pseudo tree T
such that the induced width of the graph along a DFS ordering dT of T is w, the size

of the context minimal AND/OR search graph based on T , CT (R), is O(n · kw), when k
bounds the domain size.

Proof: For any variable, the number of contexts is bounded by the number of possible

instantiations of the largest context in G along a dfs traversal of the pseudo-tree which is

bounded by O(kw). For all the n variables, the bound O(n · kw) follows.

Therefore context based merge offers a powerful way of bounding the size of the

minimal-context AND/OR search graph, and therefore also the minimal AND/OR search

graph.

Theorem 7.2.13 The context minimal AND/OR search graph CT of a graphical model

having a pseudo tree with bounded treewidth w can be generated in time and space O(nkw).

Proof: We can generate CT using depth-first or breadth first search which caches all

nodes via their contexts and avoids generating duplicate searches for the same contexts.

Therefore, the generation of the search graph is linear in its size, which is exponential in

w and linear in n.

Since the unify minimal AND/OR graph Munify
T and the merge minimal AND/OR

graph Mmerge
T are subsets of CT , both are bounded by O(n · kw), where w is determined

along ordering dT . It is easy to see that minT {w(dT )} = w∗, the treewidth of the graph,

while minT ∈ chains{w(dT }) = pw∗, the pathwidth of G, we get:

Corollary 7.2.14 Given a graphical model R, there exists apseudo tree T such that the

unify minimal, merge minimal and context minimal AND/OR search graphs of R are

bounded exponentially by the treewidth of the primal graph. The unify, merge and context

minimal OR search graphs can be bounded exponentially by the pathwidth only.
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It is well known [30] that for any graph, w∗ ≤ pw∗ ≤ w∗ · log n. It is easy to place m∗

(the minimal depth over pseudo trees) in that relation yielding w∗ ≤ pw∗ ≤ m∗ ≤ w∗·log n.
It is also possible to show that there exist primal graphs for which the upper bound on

pathwidth is attained, that is pw∗ = O(w∗ · log n) (show it as an exercise). Therefore, for

graphical models having a bounded treewidth w, the minimal AND/OR graph is bounded

by O(nkw) while the minimal OR graph is bounded by O(nkw·logn).

So, we have seen that AND/OR trees are characterized by the depth of the pseudo

trees while minimal AND/OR graphs are characterized by their induced width. It turns

out however that sometimes a pseudo tree that is optimal relative to w is far from optimal

for m and vice versa. For example, a primal graph model that is a chain has a pseudo

tree having m1 = n and w1 = 1 on one hand, and another pseudo tree that is balanced

having m2 = log n and w2 = log n. There is no single pseudo tree having both w = 1 and

m = log n for a chain. Thus, if we plan to have linear space search we should pick one

kind of a pseudo tree, while if we plan to search a graph, and therefore cache some nodes,

another pseudo tree should be used.

7.2.3 Using Dynamic Variable Ordering

It is known that exploring the search space in a dynamic variable ordering is highly

beneficial. AND/OR search trees for graphical models can also be modified to allow

dynamic variable ordering. We will touch very briefly on this issue here even though the

ramification of dynamic variable ordering can be substantial (see for example [?, ?]. A

dynamic AND/OR tree that allows varied variable ordering has to satisfy that for every

subtree rooted by the current path π, any arc of the primal graph that appears as a

cross-arc (not a back-arc) in the subtree must be “inactive” conditioned on π.
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Example 7.2.15 Consider the propositional formula X → A ∨ C and X → B ∨ C.
The constraint graph is given in Figure 7.13(a) and a DFS tree in 7.13(b). However, the

constraint subproblem conditioned on ⟨X, 0⟩, has no real constraint between A,B,C, so

the effective spanning tree below ⟨X, 0⟩ is {⟨X, 0⟩ → A, ⟨X, 0⟩ → B, ⟨X, 0⟩ → C}, yielding
the AND/OR search tree in Figure 7.13(c). Note that while there is an arc between A

and C in the constraint graph, the arc is not active when X is assigned the value 0.

Clearly, the primal graph conditioned on any partial assignment can only be sparser

than the original graph and therefore may yield a smaller AND/OR search tree than with

fixed ordering. In practice, after each new value assignment, the conditional constraint

graph can be assessed as follows. For any constraint over the current variable X, if the

current assignment ⟨X, x⟩ does not make the constraint active then the corresponding arcs

can be removed from the graph. Then, a pseudo tree of the resulting graph is generated,

its first variable is selected, and search continues. A full investigation of dynamic orderings

is outside the scope of the current chapter.

7.3 Solving Reasoning Problems by AND/OR Search

7.3.1 Value Functions of Reasoning Problems

As we described earlier, there are a variety of reasoning problems over weighted graphical

models. For constraint networks, the most popular tasks are to decide if the problem is

consistent, to find a single solution or to count solutions. If there is a cost function defined

we may also seek an optimal solution. The primary tasks over probabilistic networks are

computing beliefs, finding the probability of the evidence and finding the most likely

tuple given the evidence. Each of these reasoning problems can be expressed as finding

the value of some nodes in the weighted AND/OR search space where different tasks call

for different value definitions.

For example, for the task of finding a solution to a constraint network, the value of

every node is either “1” or “0”. The value “1” means that the subtree rooted at the

node is consistent and “0” otherwise. Therefore, the value of the root node answers the

consistency query. For solutions-counting the value function of each node is the number of

solutions rooted at that node. It is easy to see that the value of nodes in the search graph
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can then be computed recursively from leaves to root, to decide the relevant constraint

query.

Proposition 7.3.1 (Recursive value computation for constraint queries) 1. For

the consistency task the value of AND leaves is their labels and the value of OR leaves

is “0” (they are inconsistent). An internal OR node is labeled “1” if one of its suc-

cessor nodes is “1” and an internal AND node has value “1” iff all its successor OR

nodes have value “1”.

2. The counting values of leaf AND nodes are “1” and of leaf OR nodes are “0”. The

counting value of an internal OR node is the sum of the counting-values of all its

child nodes. The counting-value of an internal AND node is the product of the

counting-values of all its child nodes.

We now move to probabilistic queries. Remember that the label of an arc (Xi, ⟨Xi, xi⟩)
along path π(xi), denoted as l((Xi, ⟨Xi, xi⟩)) =

∏
f∈B(Xi)

f(π(xi)scop(f)). Given a labeled

AND/OR tree ST (R) of a belief network, For the probability of evidence query, the value

of a node (AND or OR) is the probability of evidence restricted to its subtree and to the

assigned variables along the path to the node. For the MPE task, the value of each node

is the probability of the most likely extension of its path given the evidence variables.

Proposition 7.3.2 (Recursive value computation for probabilistic queries) 1.

For the probability of the evidence, the value of AND leaf nodes are ”1” and the value

of leaf OR nodes are ”0”. The value of an internal OR node is the weighted sum

values of its child AND-nodes, each multiplied by the arc-label. The value of an

internal AND node is the product of child nodes’ values.

2. For the mpe, the value of an internal OR node is the maximum among the values

of its child nodes’s each multiplied by the label of its OR-AND arc. The value of an

AND node is the product of child values. G

Proof: Prove as an exercise

We can now generalize to any graphical model and queries.

Definition 7.3.3 (Recursive value computation for general reasoning problems)

The value function of a reasoning problem P = ⟨R,⇓Y , Z⟩, where R = ⟨X,D, F,
⊗
⟩ and
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Z = ∅, is defined as follows: the value of leaf AND nodes is “1” and of leaf OR nodes is

“0”. The value of an internal OR node is obtained by combining the value of each AND

child node with the weight (see Definition 7.1.8) on its incoming arc and then marginaliz-

ing over all AND children. The value of an AND node is the combination of the values of

its OR children. Formally, if children(n) denotes the children of node n in the AND/OR

search graph, then:

v(n) =
⊗

n′∈children(n) v(n
′), if n = ⟨X, x⟩ is an AND node,

v(n) =⇓n′∈children(n) (w(n,n′)

⊗
v(n′)), if n = X is an OR node.

Given a reasoning task, computing the value of the root node solves the given reason-

ing problem ( we omit the formal proof which can be found in [25]). Search algorithms

that traverse the AND/OR search space can compute the value of the root node yielding

the answer to the problem. Algorithms that traverse the weighted AND/OR search tree in

a depth-first manner or a breadth-first manner are guaranteed to have time bound expo-

nential in the depth of the pseudo tree of the graphical model. Depth-first searches can be

accomplished using either linear space only, or context based caching, bounded exponen-

tially by the treewidth of the pseudo tree. Depth-first search is an anytime schemes and

can, if terminated, provide an approximate solution for some tasks such as optimization.

The next subsection presents typical depth-first algorithms that search AND/OR trees

and graphs. We use solution counting as an example for a constraint query and the

probability of evidence as an example for a probabilistic reasoning query. For application

of these ideas for combinatorial optimization tasks, such as MPE see [39].

7.3.2 Algorithm AND/OR Tree Search and Graph Search

Algorithm 1 presents the basic depth-first traversal of the AND/OR search tree (or graph,

if caching is used) for counting the number of solutions of a constraint network, AO-

counting (or for probability of evidence for belief networks, AO-belief-updating).

The context based caching is done based on tables. For each variable Xi, a table is

reserved in memory for each possible assignment to its parent set pai which is its context.

Initially each entry has a predefined value, in our case “-1”. The fringe of the search is

maintained on a stack called OPEN. The current node is denoted by n, its parent by p, and

the current path by πn. The children of the current node are denoted by successors(n).
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The algorithm is based on two mutually recursive steps: EXPAND and PROPAGATE,

which call each other (or themselves) until the search terminates. Before expanding an

OR node, its cache table is checked (line 5). If the same context was encountered before,

it is retrieved from cache, and successors(n) is set to the empty set, which will trigger

the PROPAGATE step. If a node is not found in cache, it is expanded in the usual way,

depending on whether it is an AND or OR node (lines 9-16). The only difference between

counting and belief updating is line 11 vs. line 12. For counting, the value of a consistent

AND node is initialized to 1 (line 11), while for belief updating, it is initialized to the

bucket value for the current assignment (line 12). As long as the current node is not a

dead-end and still has unevaluated successors, one of its successors is chosen (which is

also the top node on OPEN), and the expansion step is repeated.

The bottom up propagation of values is triggered when a node has an empty set of

successors (note that as each successor is evaluated, it is removed from the set of successors

in line 30). This means that all its children have been evaluated, and its final value can

now be computed. If the current node is the root, then the search terminates with its

value (line 19). If it is an OR node, its value is saved in cache before propagating it up

(line 21). If n is OR, then its parent p is AND and p updates its value by multiplication

with the value of n (line 23). If the newly updated value of p is 0 (line 24), then p is

a dead-end, and none of its other successors needs to be evaluated. An AND node n

propagates its value to its parent p in a similar way, only by summation (line 29). Finally,

the current node n is set to its parent p (line 31), because n was completely evaluated.

The search continues either with a propagation step (if conditions are met) or with an

expansion step.

We can easily modify the algorithm to find a single solution. The main difference

is that the 0/1 v values of internal nodes are propagated using Boolean summation and

product instead of regular operators, yielding the 0/1 labeling. If there is a solution, the

algorithm terminates as soon as the value of the root node is updated to 1. The solution

subtree can be generated by following the pointers of the latest solution subtree. To find

posterior beliefs of the root variable, we only need to keep the computation at the root of

the search graph and normalize the results. If we want to find the belief for all variables

we would need to make a more significant adaptation of the search scheme.
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General AND/OR algorithms for evaluating the value of a root node for any reason-

ing problem using tree or graph AND/OR search are identical to the above algorithms

when product is replaced by the combination operator and summation is replaced by the

marginalization operator.

From Theorems 7.1.15 and 7.1.18 we can conclude that:

Theorem 7.3.4 For any reasoning problem, AOT runs in linear space and time O(nkm),

when m is the depth of the pseudo tree of its graphical model and k is the maximum domain

size. If the primal graph has a tree decomposition with treewidth w∗, there exists a pseudo

tree T for which AOT is O(nkw
∗·logn).

Obviously, the algorithm for constraint satisfaction, that would terminate early with

first solution, would potentially be much faster than the rest of the AOT algorithms,

in practice. Based on Theorem 7.2.12 we get complexity bounds for graph searching

algorithms.

Theorem 7.3.5 For any reasoning problem, the complexity of algorithm AOG is time

and space O(nkw) where w is the induced width of the pseudo tree and k is the maximum

domain size.

Thus the complexity of AOG can be time and space exponential in the treewidth,

while the complexity of any algorithm searching the OR space can be time and space

exponential in its pathwidth.

Space complexity and AO(i)

The space complexity of AOG can often be less than exponential in the treewidth. This

is related to the space complexity of tree decomposition schemes which, as we know,

can operate in space exponential only in the size of the cluster separators, rather than

exponential in the cluster size.

We will use the term dead caches to address this issue presented in [12, 2]. Intuitively,

a node that has only one incoming arc in the search tree will be traversed only once

by search, and therefore its value does not need to be cached, because it will never be

used again. For context based caching, such nodes can be recognized based only on their

context.
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Definition 7.3.6 (dead cache) If X is the parent of Y in T , and context(X) ⊂ context(Y ),

then context(Y ) is a dead cache.

Given a pseudo tree T , the induced graph along T can generate a tree decomposition

based on the maximal cliques. The maximum separator size of the tree decomposition is

the separator size of T . We can conclude,

Proposition 7.3.7 The space complexity of graph-caching algorithms can be reduced to

being exponential in the separator’s size only, while still being time exponential in the

treewidth, if dead caches are not recorded.

Proof: A bucket tree can be built by having a cluster for each variable Xi and its parents

pai, and following the structure of the pseudo tree T . Some of the clusters may not be

maximal, and they have a one to one correspondence to the variables with dead caches.

The parents pai that are not dead caches correspond to separators between maximal

clusters in the bucket tree.

We can view the AND/OR tree algorithm (which we will denote AOT) and the

AND/OR graph algorithm (denoted AOG) as two extreme cases in a parameterized col-

lection of algorithms that trade space for time via a controlling parameter i. We denote

this class of algorithms as AO(i) where i determines the size of contexts that the algo-

rithm caches. Algorithm AO(i) records nodes whose context size is i or smaller (the test

in line 21 needs to be a bit more elaborate and check if the context size is smaller than

i). Thus AO(0) is identical to AOT, while AO(w) is identical to AOG, where w is the

induced width of the used backbone tree. For any intermediate i we get an intermediate

level of caching, which is space exponential in i and whose execution time will increase as i

decreases. The more precise evaluation of the time and space complexity of the algorithm

can be derived. For more details see [24].

7.4 AND/OR Search Algorithms For Mixed Networks

All the advanced constraint processing algorithms, either incorporating no-good learning,

and constraint propagation during search, or use variable elimination algorithms such as
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Figure 7.14: AND/OR search tree and backtrack-free tree

adaptive-consistency and directional resolution generating all relevant no-goods prior to

search can be incorporated over the AND/OR search space as well. We will address these

issues in the rest of this section. We next define formally the backtrack-free AND/OR

search tree.

Definition 7.4.1 (backtrack-free AND/OR search tree) Given graphical model R
and given an AND/OR search tree ST (R), the backtrack-free AND/OR search tree of R
based on T , denoted BFT (R), is obtained by pruning from ST (R) all inconsistent subtrees,
namely all nodes that root no consistent partial solution.

Example 7.4.2 Consider 5 variables X, Y, Z, T,R over domains {2, 3, 5}, where the con-
straints are: X divides Y and Z, and Y divides T and R. The constraint graph and the

AND/OR search tree relative to the DFS tree rooted at X, are given in Figure 7.14(a).

In 7.14(b) we present the ST (R) search space whose nodes’ consistency status (which will

latter will be referred to as values ) are already evaluated having value “1” is consistent

and “0” otherwise. We also highlight two solutions subtrees; one depicted by solid lines

and one by dotted lines. Part (c) presents BFT (R), where all nodes that do not root a

consistent solution are pruned.

If we traverse the backtrack-free AND/OR search tree we can find a solution sub-

tree without encountering any dead-ends. Some constraint networks specifications yield
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a backtrack-free search space. Others can be made backtrack-free by massaging their

representation using constraint propagation algorithms before or during search. In par-

ticular, variable-elimination algorithms described earlier in Chapter 3, such as adaptive-

consistency and directional resolution, applied in a reversed order of d (where d is the

DFS order of the pseudo tree), compile a constraint specification (resp., a Boolean CNF

formula) that has a backtrack-free search space. We define now the directional extension

formally (see also chapter 3).

Definition 7.4.3 (directional extension [20, 53]) Let R be a constraint problem and

let d be a DFS traversal ordering of a backbone pseudo tree of its primal graph, then we

denote by Ed(R) the constraint network (resp., the CNF formula) compiled by Adaptive-

consistency (resp., directional resolution) in reversed order of d.

We can summarize the above discussion by the following proposition.

Proposition 7.4.4 Given a Constraint network R, the AND/OR search tree of the di-

rectional extension Ed(R) when d is a DFS ordering of T , is identical to the backtrack-free

AND/OR search tree of R based on T . Namely ST (Ed(R)) = BFT (R).

Proof: Note that if T is a pseudo tree of R and if d is a DFS ordering of T , then
T is also a pseudo tree of Ed(R) and therefore ST (Ed(R)) is a faithful representation

of Ed(R). Ed(R) is equivalent to R, therefore ST (Ed(R)) is a supergraph of BFT (R).
We only need to show that ST (Ed(R)) does not contain any dead-ends, in other words

any consistent partial assignment must be extendable to a solution of R, however this is
obvious, because Adaptive consistency makes Ed(R) strongly directional w∗(d) consistent,

where w∗(d) is the induced width of R along ordering d [20], a notion that is synonym

with backtrack-freeness.

Example 7.4.5 In Example 7.4.2, if we apply adaptive-consistency in reverse order of

X,Y, T,R, Z, the algorithm will remove the values 3, 5 from the domains of both X and

Z yielding a tighter constraint network R′. The AND/OR search tree in Figure 7.4.2(c)

is both ST (R′) and BFT (R).

Proposition 7.4.4 emphasizes the significance of no-good learning for deciding incon-

sistency or for finding a single solution. These techniques are known as clause learning in
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SAT solvers, [32] and are currently used in most advanced solvers [40]. Namely, when we

apply no-good learning we explore the search space whose many inconsistent subtrees are

pruned.

For more involved queries like weighted-counting or sum-product or for optimization

(e.g., max-product) , pruning inconsistent subtrees and searching the backtrack-free search

tree yields a partial help only, as we see in Section 7.4.

Since search algorithms accommodate a host of constraint processing techniques we

will now give more details on applying constraint techniques while searching and AND/OR

search for processing queries over mixed networks. Remember that mixed networks are de-

fined by a pair of a belief network and a constraint networks that together are equivalent to

a Bayesian network that is conditioned on consistent solutions defined by the constraint

network. The mixed network can be transformed into an equivalent representation by

tightening the constraint network only. Therefore we can process the deterministic infor-

mation separately (e.g., by enforcing some consistency level without losing any solution.

Conditioning algorithms (search) offer a natural approach for exploiting the determinism

through constraint propagation techniques. The intuitive idea is to search in the space

of partial variable assignments, and use the wide range of readily available constraint

processing techniques to limit the actual traversed space. We now describe these known

basic principles in the context of AND/OR search spaces [19].

We will focus on the constraint probabilistic evaluation quer (CPE) described in Chap-

ter ?? and describe the AND-OR-cpe Algorithm. Then, we will discuss how to incor-

porate in AND-OR-cpe the techniques that exploit the deterministic information: (1)

constraint propagation (look-ahead), (2) backjumping and (3) good and nogood learning.

7.4.1 AND-OR-cpe Algorithm

Algorithm 2, AND-OR-cpe, presents the basic depth-first traversal of the AND/OR

search tree (or graph, if caching is used) for solving the CPE task over a mixed network

and it is indeed quite similar to Algorithm xxx. The input is a mixed network, a pseudo

tree T of the moral mixed graph and the context of each variable. The output is the result

of the CPE task, namely the probability that a random tuple generated from the belief

network distribution satisfies the constraint query. As usual, AND-OR-cpe traverses
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Figure 7.15: Mixed network defined by the query φ = (A ∨ C) ∧ (B ∨ ¬E) ∧ (B ∨D)

the AND/OR search tree or graph corresponding to T in a DFS manner and each node

maintains a value v which accumulates the computation resulted from its subtree. OR

nodes accumulate the summation of the product between each child’s value and its OR-

to-AND weight, while AND nodes accumulate the product of their children’s values. The

context based caching is done using table data structures as described earlier.

Example 7.4.6 We refer back to the example in Figure 7.4. Consider a constraint net-

work that is defined by the CNF formula φ = (A ∨ C) ∧ (B ∨ ¬E) ∧ (B ∨D). The trace

of algorithm AND-OR-cpe without caching is given in Figure 7.15. Notice that the

clause (A ∨ C) is not satisfied if A = 0 and C = 0, therefore the paths that contain this

assignment cannot be part of a solution of the mixed network. The value of each node

is shown to its left (the leaf nodes assume a dummy value of 1, not shown in the figure).

The value of the root node is the probability of φ. Figure 7.15 is similar to Figure 7.4. In

Figure 7.4 the evidence can be modeled as the CNF formula with unit clauses D ∧¬E.

It is clear that the algorithm inherits all the mentioned properties of AND/OR search.

7.4.2 Constraint Propagation in AND-OR-cpe

The virtue on having the mixed network view is that the constraint portion can be pro-

cessed by a wide range of constraint processing techniques, both statically before search

or dynamically during search [17].

We next discuss here the use of constraint propagation during the look-ahead part of

the search. This methods are used in any constraint or SAT solver. In general, constraint
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propagation helps to discover (using limited computation) what variable and what value

to instantiate next aiming to avoid deadends. The incorporation of these methods on

top of AND/OR search for value computation is straightforward. For illustration, we will

only consider static variable ordering, based on a pseudo tree, and therefore we will focus

on the impact of constraint propagation on value selection.

In AlgorithmAND-OR-cpe, line 10 contains a call to the generic ConstraintPropagation

procedure consulting only the constraint subnetwork R, conditioned on the current par-

tial assignment. The constraint propagation is relative to the current set of constraints,

the given path that defines the current partial assignment, and the newly inferred con-

straints, if any, that were learned during the search. Using a polynomial time algo-

rithm, ConstraintPropagation may discover some values that cannot be extended to

a full solution. These values are marked as dead-ends and removed from the current

domain of the variable. All the remaining values are returned by the procedure as

good candidates to extend the search frontier. Of course, not all the values returned

by ConstraintPropagation are guaranteed to lead to a solution.

We therefore have the freedom to employ any procedure for checking the consistency of

the constraints of the mixed network. The simplest case is when no constraint propagation

is used, and only the initial constraints of R are checked for consistency, and we denote

this algorithm by AO-C.

For illustration consider two forms of constraint propagation on top of AO-C. The first,

yielding algorithm AO-FC, is based on forward checking, which is one of the weakest forms

of propagation. It propagates the effect of a value selection to each future uninstantiated

variable separately, and checks consistency against the constraints whose scope would

become fully instantiated by just one such future variable.

The second algorithm referred to as AO-RFC, performs a variant of relational forward

checking. Rather than checking only constraints whose scope becomes fully assigned, AO-

RFC checks all the existing constraints by looking at their projection on the current path.

If the projection is empty an inconsistency is detected. AO-RFC is computationally more

expensive than AO-FC, but its search space is smaller.
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SAT solvers. One possibility that was explored with success (e.g., [2]) is to delegate

the constraint processing to a separate off-the-shelf SAT solver. In this case, for each

new variable assignment the constraint portion is packed and fed into the SAT solver.

If no solution is reported, then that value is a dead-end. If a solution is found by the

SAT solver, then the AND/OR search continues (remember that for some tasks we may

have to traverse all the solutions of the graphical model, so the one solution found by the

SAT solver does not finish the task). The worst-case complexity of this level of constraint

processing, at each node, is exponential. One very commonly used technique is unit

propagation, or unit resolution, as a form of bounded resolution [53].

Such hybrid use of search and a specialized efficient SAT (or constraint) solver can be

very useful, and it underlines further the power that the mixed network representation

has in delimiting the constraint portion from the belief network.

Example 7.4.7 Figure 7.16(a) shows the belief part of a mixed network, and Figure

7.16(b) the constraint part. All variables have the same domain, {1,2,3,4}, and the

constraints express “less than” relations. Figure 7.16(c) shows the search space of AO-

C. Figure 7.16(d) shows the space traversed by AO-FC. Figure 7.16(e) shows the space

when consistency is enforced with Maintaining Arc Consistency (which enforces full arc-

consistency after each new instantiation of a variable).

7.4.3 Backjumping

Backjumping algorithms [29, 48, 5, 17] are backtracking search algorithms applied to the

OR space, which uses the problem structure to jump back from a dead-end as far back as

possible. They have been known for a long time in the constraint processing community.

For probabilistic models, backjumping is very useful in the context of determinism.

In graph-based backjumping (GBJ) each variable maintains a graph-based induced

ancestor set which ensures that no solutions are missed by jumping back to its deepest

variable.

If the ordering of the OR space is a DFS ordering of the primal graph, it is known

[17] that all the backjumps are from a variable to its DFS parent. In [41] it was shown

that this means that a simple AND/OR search automatically incorporates graph-based

backjumping, when the pseudo tree is a DFS tree of the primal graph.
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Figure 7.16: Traces of AND-OR-cpe with various levels of constraint propagation

When the pseudo tree is not a DFS tree of the primal graph, it may happen that the

parent of a node in the pseudo tree is not the node where graph-based backjumping would

retreat in the case of OR search. An example is provided in Figure 7.17. Figure 7.17a

shows a graphical model, 7.17b a pseudo tree and 7.17c a chain driving the OR search (top

down). If a deadend is encountered at variable 3, graph-based backjumping retreats to 8

(see 7.17c), while simple AND/OR would retreat to 1, the pseudo tree parent. When the

deadend is encountered at 2, both algorithms backtrack to 3 and then to 1. Therefore,

in such cases, augmenting AND/OR with a graph-based backjumping mechanism can

provide some improvement.
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Figure 7.17: Graph-based backjumping and AND/OR search

We want to emphasize that the graph-based backjumping behavior is in most cases

intrinsic to AND/OR search. The more advanced and computationally intensive forms of

conflict directed backjumping [17] are not captured by the AND/OR graph, and can be

implemented on top of it as in the case of OR search by focusing on and analyzing the

constraint portion only.

7.4.4 Good and Nogood Learning

When a search algorithm encounters a dead-end, it can use different techniques to identify

the ancestor variable assignments that caused the dead-end, called a conflict-set. It is

conceivable that the same assignment of that set of ancestor variables may be encountered

in the future, and they would lead to the same dead-end. Rather than rediscovering it

again, if memory allows, it is useful to record the dead-end conflict-set as a new constraint

(or clause) over the ancestor set that is responsible for it. Recording dead-end conflict-sets

is sometimes called nogood learning.

One form of nogood learning is graph-based, and it uses the same technique as graph-

based backjumping to identify the ancestor variables that generate the nogood. The

information on conflicts is generated from the primal graph information alone. Similar

to the case of backjumping, it is easy to see that AND/OR search already provides this

information in the context of the nodes. Therefore, if caching is used, just saving the
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information about the nogoods encountered amounts to graph-based nogood learning in

the case of OR search.

If deeper types of nogood learning are desirable, they need to be implemented on

top of the AND/OR search. In such a case, a smaller set than the context of a node

may be identified as a culprit assignment, and may help discover future dead-ends much

earlier than when context-based caching alone is used. Needless to say, deep learning is

computationally more expensive and it can be facilitated via a focus on the constraint

portion of the mixed network.

In recent years [12, 63, 19], several schemes propose not only the learning of nogoods,

but also that of their logical counterparts, the goods. This is in fact the well known

technique of caching, or memoization, and in recent years it became appealing due to the

availability of computer memory and when the task to be solved requires the enumeration

of many solutions. The idea is to store the value of a solved conditioned subproblem,

associating it with a minimal set of ancestor assignments that are guaranteed to root the

same conditioned subproblem, and retrieve that value whenever the same set of ancestor

assignments is encountered again during search. This is exactly what AND/OR context-

based caching does.

Overall traversing the context minimal AND/OR graph provides both good and no-

good graph-based learning.

7.5 Chapter Notes

7.6 Conclusion to Chapter 7

The primary contribution of this chapter is in viewing search for graphical models in the

context of AND/OR search spaces rather than OR spaces. We introduced the AND/OR

search tree, and showed that its size can be bounded exponentially by the depth of its

pseudo tree over the graphical model. This implies exponential savings for any linear

space algorithms traversing the AND/OR search tree. Specifically, if the graphical model

has treewidth w∗, the depth of the pseudo tree is O(w∗ · log n).
The AND/OR search tree was extended into a graph by merging identical subtrees.
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We showed that the size of the minimal AND/OR search graph is exponential in the

treewidth while the size of the minimal OR search graph is exponential in the pathwidth.

Since for some graphs the difference between treewidth and pathwidth is substantial (e.g.,

balanced pseudo trees) the AND/OR representation implies substantial time and space

savings for memory intensive algorithms traversing the AND/OR graph. Searching the

AND/OR search graph can be implemented by goods caching during search, while no-

good recording is interpreted as pruning portions of the search space independent of it

being a tree or a graph, an OR or an AND/OR. For finding a single solution, pruning

the search space is the most significant action. For counting and probabilistic inference,

using AND/OR graphs can be of much help even on top of no-good recording.
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Algorithm 1: AO-counting / AO-belief-updating
A constraint network R = ⟨X,D,C⟩, or a belief network P = ⟨X,D,P ⟩; a pseudo tree T rooted

at X1; parents pai (OR-context) for every variable Xi; caching set to true or false. The number

of solutions, or the updated belief, v(X1).

if caching == true then // Initialize cache tables

Initialize cache tables with entries of “−1”1

v(X1)← 0; OPEN← {X1} // Initialize the stack OPEN2

while OPEN ̸= φ do3

n← top(OPEN); remove n from OPEN4

if caching == true and n is OR, labeled Xi and Cache(asgn(πn)[pai]) ̸= −1 then // In5

cache

v(n)← Cache(asgn(πn)[pai]) // Retrieve value6

successors(n)← φ // No need to expand below7

else // EXPAND8

if n is an OR node labeled Xi then // OR-expand9

successors(n)← {⟨Xi, xi⟩ | ⟨Xi, xi⟩ is consistent with πn }10

v(⟨Xi, xi⟩)← 1, for all ⟨Xi, xi⟩ ∈ successors(n)11

v(⟨Xi, xi⟩)←
∏

f∈BT (Xi)

f(asgn(πn)[pai]), for all ⟨Xi, xi⟩ ∈ successors(n) // AO-bu
12

if n is an AND node labeled ⟨Xi, xi⟩ then // AND-expand13

successors(n)← childrenT (Xi)14

v(Xi)← 0 for all Xi ∈ successors(n)15

Add successors(n) to top of OPEN16

while successors(n) == φ do // PROPAGATE17

if n is an OR node labeled Xi then18

if Xi == X1 then // Search is complete19

return v(n)20

if caching == true then21

Cache(asgn(πn)[pai])← v(n) // Save in cache22

v(p)← v(p) ∗ v(c)23

if v(p) == 0 then // Check if p is dead-end24

remove successors(p) from OPEN25

successors(p)← φ26

if n is an AND node labeled ⟨Xi, xi⟩ then27

let p be the parent of n28

v(p)← v(p) + v(n);29

remove n from successors(p)30

n← p31
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Algorithm 2: AND-OR-cpe
A mixed networkM = ⟨X,D,G,P,C⟩; a pseudo tree T of the moral mixed graph, rooted at X1;

parents pai (OR-context) for every variable Xi; caching set to true or false. The probability

P (x̄ ∈ ρ(R)) that a tuple satisfies the constraint query.

if caching == true then // Initialize cache tables

Initialize cache tables with entries of “−1”1

v(X1)← 0; OPEN← {X1} // Initialize the stack OPEN2

while OPEN ̸= φ do3

n← top(OPEN); remove n from OPEN4

if caching == true and n is OR, labeled Xi and Cache(asgn(πn)[pai]) ̸= −1 then // If5

in cache

v(n)← Cache(asgn(πn)[pai]) // Retrieve value6

successors(n)← φ // No need to expand below7

else // Expand search (forward)8

if n is an OR node labeled Xi then // OR-expand9

successors(n)← ConstraintPropagation(⟨X,D,C⟩, asgn(πn))10

// CONSTRAINT PROPAGATION

v(⟨Xi, xi⟩)←
∏

f∈BT (Xi)

f(asgn(πn)[pai]), for all ⟨Xi, xi⟩ ∈ successors(n)
11

if n is an AND node labeled ⟨Xi, xi⟩ then // AND-expand12

successors(n)← childrenT (Xi)13

v(Xi)← 0 for all Xi ∈ successors(n)14

Add successors(n) to top of OPEN15

while successors(n) == φ do // Update values (backtrack)16

if n is an OR node labeled Xi then17

if Xi == X1 then // Search is complete18

return v(n)19

if caching == true then20

Cache(asgn(πn)[pai])← v(n) // Save in cache21

let p be the parent of n22

v(p)← v(p) ∗ v(n)23

if v(p) == 0 then // Check if p is dead-end24

remove successors(p) from OPEN25

successors(p)← φ26

if n is an AND node labeled ⟨Xi, xi⟩ then27

let p be the parent of n28

v(p)← v(p) + v(n);29

remove n from successors(p)30

n← p31
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Procedure ConstraintPropagation(R, x̄i)
A constraint network R = ⟨X,D,C⟩; a partial assignment path x̄i to variable Xi. reduced

domain Di of Xi; reduced domains of future variables; newly inferred constraints.

This is a generic procedure that performs the desired level of constraint propagation, for example

forward checking, unit propagation, arc consistency over the the constraint network R and

conditioned on x̄i.

return reduced domain of Xi
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