Causal and Probabilistic Graphical Models
 ICS 276 (Winter 2024)
 Homework 3
 Due: Monday, February 26, 2024

Problem 1. Query Estimation [10 points]

Consider the following graphical model:

The target query is $Q=\sum_{Z_{1}} P\left(y \mid x, z_{1}\right) P\left(z_{1}\right)$.
(a) [5 points] Is $Q=P(y \mid x)$? Justify your answer.
(b) [5 points] Suppose that only $P\left(X, Y, Z_{2}\right)$ is given as input. Is Q estimable? If so, show how to do it. Otherwise, explain why is that the case.

Problem 2. d-Separation [16 points]

(a) Consider the following causal diagram:

For each case find a set that, when conditioned, on d-separates the given pair of (sets) variables
(i) $[4$ points $] A$ and F
(ii) [4 points] A and C
(iii) [4 points] D and $\{F, H\}$
(iv) [4 points] I and H

Notice that Problems 4 has a $\left(^{*}\right)$. This means that you are encouraged to do this question, but I will not grade this closely.

Problem 3. Modeling [5 points]

Consider the recent study of the connection between sleep quality and dementia presented here and discussed in class. https://www.nytimes.com/2021/04/20/health/sleep-dementia-risk.html?referringSource=articleShare.
(a) [2 points] Provide a structural causal diagram based on your understanding of the study and assumptions made.
(b) [1 point] Discuss the suitability of the different conclusions proposed by the study. You can focus on one or two statements.
(c) [2 points] The article talks about associations rather than causation. In your opinion, can they claim causation and under what assumptions.

Problem 4. Understanding the Model's Granularity [10 points]

Consider the causal diagram G below.

(a) [1 point] Determine whether the causal effect $P(y \mid d o(x))$ is identifiable from G and $P(\mathbf{V})$, where \mathbf{V} is the set of endogenous variables. If so, show how; otherwise, provide a counter-example.
(b) [2 points] Write an SCM that induces G and a probability distribution $P(\mathbf{V})$, with $P(\mathbf{v})>0$ for every \mathbf{v}. You don't need to show $P(\mathbf{V})$ in your answer.

Suppose that the same system (represented by the SCM) is investigated in another study. However, in this case, only the variables $\mathbf{V}^{\prime}=\{X, Y, B, C\}$ are measured.
(c) [3 points] Write a new SCM $M^{\prime}=\left\langle\mathbf{V}^{\prime}, \mathbf{U}^{\prime}, \mathcal{F}^{\prime}, P\left(\mathbf{u}^{\prime}\right)\right\rangle$ corresponding to this different cut of reality, consistent with your answer to the previous question (i.e., departing from SCM written in (b)).
(d) [1 point] Draw the causal diagram G^{\prime} induced by the SCM M^{\prime}.
(e) [3 points] Is the effect $P(y \mid d o(x))$ identifiable from $P\left(\mathbf{V}^{\prime}\right)$ and G^{\prime} ? Is there a back-door or front-door adjustment? Can it be solved with do-calculus?

Problem 5. Optimal Experiment Design [10 points]

An advertisement company is trying to identify the effect of a new campaign X on the click through rate Y. They have two hypotheses about how the strategy relates to a possibly measured set of covariates \mathbf{Z}. The hypotheses are represented in the causal diagrams (a) and (b) shown below:

(a)

(b)

Variable	Cost
X	2
Y	1
Z_{1}	4
Z_{2}	2
Z_{3}	4
Z_{4}	5
Z_{5}	5
Z_{6}	2
Z_{7}	1

(c)
(a) [4 points] If it exists, find a minimal admissible backdoor set for adjustment in each of the graphs.
(b) [6 points] The company wants to minimize the measurement cost for identifying $P(y \mid d o(x))$. Find the
minimum cost ID expression based on the table (c) and justify your answer.

Problem 6. Back-door Adjustment as a Substitute for the Direct Parents [1 point]

The causal effect of the intervention $d o(X=x)$ on a variable Y can be identified if all parents of X are observed and is given by

$$
\begin{equation*}
P(y \mid d o(x))=\sum_{p a_{X}} P\left(y \mid x, p a_{X}\right) P\left(p a_{X}\right) \tag{1}
\end{equation*}
$$

Based on this result, prove that if a set \mathbf{Z} satisfies the back-door criterion relative to X and Y in the graph, it follows that

$$
\begin{equation*}
P(y \mid d o(x))=\sum_{\mathbf{z}} P(y \mid x, \mathbf{z}) P(\mathbf{z}) \tag{2}
\end{equation*}
$$

This question is asking you to leverage eq3.1 to prove the backdoor identification formula in eq3.2.

Problem 7. Many Paths Lead to ID [10 points]

Consider the following causal diagram.

Give three different functions of the observational distribution $P(\mathbf{V})$ that are equal to the effect $P(y \mid d o(x))$. At least one answer should correspond to a front-door case and one to a back-door case. Justify each one of the expression showing its do-calculus derivation.

