Causal Relation Learning

Babak Salimi, Harsh Parish, Moe Kayali, Sudeepa Roy, Lise Getoor, and Dn Suciu

Presented by: Vishal C. \& Pratyoy D.

Goal

Causal Inference in Relational Databases

Why is Regular Causal Models not sufficient?

Data is mostly not homogenous

Pearl's Causal Model

But papers may have different number of authors who impact the quality differently

Driving Use Case

Running Example

- A relational database of conference paper submissions
- Ask "Does single blind conferences favour authors from prestigious institutes?"
- SQL can show correlation, but not causation - need Causal Learning

Authors		
person	prestige	qualification (h-index)
Bob	1	50
Carlos	0	20
Eva	1	2

Submissions	
sub	score
s1	0.75
s2	0.4
s3	0.1

Authorship	
person	sub
Bob	s1
Eva	s1
Eva	s2
Eva	s3
Carlos	s3

Submitted	
sub	conf
s1	ConfDB
s2	ConfAI
s3	ConfAI

Conferences	
conf	blind
ConfDB	Single
ConfAI	Double

Introducing CaRL

Main Contributions

- A declarative language CaRL (Causal Relational Language)
- representing causal background knowledge and assumptions in relational domains
- Define semantics for complex causal relational-queries
- treatment units and outcome units might be heterogeneous
- An algorithm for answering causal queries from the given relational data
- Performing a static analysis of the causal query

Components of CaRL

Overview

Relational Model

Extending the Entity-Relation Model

- Schema $S=(P, A)$

Author	Prestige	Qualification
Bob	1	25
Eva	0	2

Submission

Paperld	Score	Quality
P1	0.75	1
P2	0.25	0

- $P=$ Entities(E) \cup Relationships(R)
- \boldsymbol{A} is the set of Attribute Functions (or Attributes)
- Examples of Entities
- Author (Bob), Author (Eva), Submission (P1), Submission(P2)
- Examples of Relationships

Authorship

PaperID	AuthoredBy
P1	Bob
P2	Eva
P1	Eva

- Authorship(Bob, P1) , Authorship(Eva, P1), Authorship (Eva,P2)

Attribute Functions

- $A[X]$ where A is an observable attribute
- Examples of Attribute Functions:-
- Qualification[Bob], Prestige[Bob]
- Some attributes are observable while others aren't. $\left(\boldsymbol{A}_{\text {obs }} \subset \boldsymbol{A}\right)$
- Attributes can be mutable but Entities and Relationships are not!

Author

Person	Prestige	Qualification
Bob	1	25
Eva	0	2

Relational Causal Rules

Normal Form

- Background Knowledge can be modeled using relational causal rules.

Examples of Causal Rules

- PRESTIGE $[A] \Leftarrow$ Qualification $[A]$ WHERE Person $[A]$
- Qualification of a person causally affects his or her institutions' prestige
- Quality $[S] \Leftarrow$ Prestige[A], Qualification[A] WHERE Author $[A, S]$
- Quality of a submission is affected by its authors' qualifications and prestige

Instantiated Rules

- Causal Rules which have been instantiated with database constants
- PRESTIGE $[A] \Leftarrow$ Qualification $[A]$ WHERE Person $[A]$
- PRESTIGE $[B o b] \Leftarrow$ Qualification[Bob]

Person	Prestige	Qualification
Bob	1	50
Eva	0	75

- A causal graph G can be constructed from the set of Instantiated Rules
- For every instantiated rule, we have an edge

Relational Causal Graph

Extension of Pearl's Causal Graph

- Multiple nodes for every "type" of unit

Submitted	
sub	conf
s1	ConfDB
s2	ConfAI
s3	ConfAI

Conferences	
conf	blind
ConfDB	Single
ConfAI	Double

- Score: Score[s1], Score[s2] - one for each submission
- Relation Causal graph defines a joint probability
- $\operatorname{Pr}\left(\left[A_{x}\right] \mid \operatorname{Pa}\left[A_{x}\right]\right)$
- with one conditional probability on each ground rule

Aggregated Rules

- Extend set of attribute functions A with new aggregated functions using aggregated rules
- $A G G_{-} A[W] \Leftarrow A[X]$ WHERE $Q[Z]$
- The new aggregated attribute functions $A G G _A$ are included in the extended attribute functions A
- Similar to relational causal rules, aggregated rules define a set of grounded rules with corresponding vertices and edges in the relational causal graph
- However, instead of a conditional probability distribution, a deterministic function $A G G\left(P a\left(A G G_{-} Y[w]\right)\right)$ will be associated with each $A G G_{-} Y[w]$

Example of Aggregated Rules

- $A V G _S C O R E[A] \Leftarrow S C O R E[S]$ WHERE $A U T H O R[A, S]$
- We can construct an Extended relational causal graph with aggregated attribute AVG_Score[A]
- The directed path from relational peer Eva's prestige to average score of Bob is highlighted

Causal Query Language in CaRL

Supported Queries

- Compare papers' scores in two hypothetical worlds in which all authors are and are not affiliated with prestigious institutions
- Score $[S] \Leftarrow$ Prestige $[A]$?
- Compute the treatment effect of the prestige of authors on the average score received by author
- $A G G_{-} Y\left[X^{\prime}\right] \Leftarrow T[X]$?
- Computes values for (i) isolated (an author's prestige), (ii) relational (his/her coauthor's prestige), and (iii) overall (all authors' prestige) effect of prestige on a submission's score.
- $Y\left[X^{\prime}\right] \Leftarrow T[X]$? WHEN $\langle c n d\rangle$ PEERS TREATED

Semantics For Relational Causal Analysis

Complexities in a Relational Causal Graph

- Probability distribution given by $\operatorname{Pr}(X \mid \boldsymbol{P a}(X))$
- Standard Causal Graphs
- Unknown but can be estimated from available data
- Fixed number of nodes and edges
- Relational Causal Graph
- Unknown but can be estimated from available data
- Number of nodes depends on instantiations

Structural Homogeneity Assumption

Example: Number of nodes depend on instantiations

Author	Prestige	Qualification
Bob	1	50
Eva	0	75

Paperld	Score	Quality
P1	0.75	1
P2	0.25	0

PaperID	AuthoredBy
P1	Bob
P2	Eva
P1	Eva

Qualification

Qualification[Bob]

Quality[P1]

Score[P1]

Qualification[Eva]

Quality[P2]

Score[P2]

Embedding Functions

Structural Homogeneity Assumptions

Low dimensional Vector
Mean
Median

Structural Homogeneity Assumption

Redefining Probability Distributions

$$
\operatorname{Pr}\left(A[\boldsymbol{x}] \mid \Psi^{A}(\boldsymbol{P a}(A[\boldsymbol{x}]))\right)
$$

Collection of mappings that projects parents of $A[x]$ into a low-dimension vector with fixed dimensionality for all $A[x]$

Structural Homogeneity Assumption

Redefining Probability Distributions

Embeddings

Example

Treated And Response Units

Covariate Detection

- Treatment Attribute Function $T[\boldsymbol{X}]$
- Response Attribute Function $Y\left[X^{\prime}\right]$

Example: Want to find effects of author's Prestige on submission scores

$$
\begin{gathered}
\text { Prestige }[A] \\
\text { Score }[P]
\end{gathered}
$$

Treated And Response Units

Covariate Detection

- Set of treated units: $\mathbb{U}_{T}=\left\{x_{1}, x_{2}, \ldots.\right\}$
- Binary vector: $\vec{t}=\left(t_{1}, t_{2}, \ldots\right)$
- Intervention $\operatorname{do}\left(T\left(x_{i}\right)=t_{i}\right)$ on all related units x_{i}

Example: Set all author's prestige to 1 (they are form prestigious schools)

$$
\overrightarrow{1}=(1,1, \ldots) \longrightarrow \text { Prestige }[A] \longrightarrow \text { Score }[P]
$$

Relational Peers

Treatment and Response

- Given treated attribute function $T[X]$ and response attribute function $Y[X]$
- Relational Peers of $x \in \mathbb{U}_{(T, Y)}$ as a set of units $\mathbb{P}(x)=\mathbb{U}_{(T, Y)}-\{x\}$
- s.t. for each $p \in \mathbb{P}(x)$ there is a path from $T[\boldsymbol{p}]$ to $Y[x]$ in G

Expected Response Unit On Being Treated

Covariate Detection

Treatment: Prestige $[X]$ Response: AVG_Score[X]

$$
\begin{gathered}
\mathbb{P}(\text { Bob })=\{E v a\} \quad \begin{array}{c}
\text { Prestige }[\text { Eva }] \text { path to } A V G_{-} \text {Score }[\text { Bob }] \\
\mathbb{P}(E v a)=\{\text { Bob,Sam }\}
\end{array} \begin{array}{l}
\text { Prestige }[\text { Bob }] \text { path to } A V G_{-S} \text { Score }[\text { Eva }] \\
\text { Prestige }[\text { Sam }] \text { path to } A V G_{-} \text {Score }[\text { Eva }]
\end{array}
\end{gathered}
$$

Expected Response Unit On Being Treated

Covariate Detection

$\vec{t}=\left(t_{1}, t_{2}, t_{3}\right)$

$T[x]$ recieves treatment t
$\mathbb{P}(\boldsymbol{x})$ recieves treatment \vec{t}

$$
Y_{\boldsymbol{x}}(t, \vec{t})=\mathbb{E}[Y[x] \mid \operatorname{do}(T(x)=t), \operatorname{do}(T[\mathbb{P}(x)]=\vec{t})]
$$

Q1: Average Treatment Effect

Semantics

$$
\begin{gathered}
Y\left[X^{\prime}\right] \Leftarrow T[\boldsymbol{X}] ? \\
\text { Score }[\mathrm{P} 1] \Leftarrow \text { Prestige }[\mathrm{Bob}] ? \\
\operatorname{ATE}(T, Y)=\sum_{x^{\prime} \in \mathbb{U}_{Y}} \frac{1}{m} \mathbb{E}\left[Y\left[x^{\prime}\right] \mid \operatorname{do}\left(T\left[\mathbb{U}_{T}\right]\right)=\overrightarrow{0}\right)-\mathbb{E}\left[Y\left[x^{\prime}\right] \mid \operatorname{do}\left(T\left[\mathbb{U}_{T}\right]\right)=\overrightarrow{1}\right)
\end{gathered}
$$

Compare under two scenarios: with intervention and without

Q2: Aggregated Responses Queries

Semantics

$$
\begin{gathered}
A G G_{-} Y\left[\boldsymbol{X}^{\prime}\right] \Leftarrow T[\mathrm{X}] ? \\
\text { AGG_Score[S]} \Leftarrow \text { Prestige }[\mathrm{A}] ?
\end{gathered}
$$

$$
\begin{aligned}
& A T E\left(T, A G G_{-} Y\right)=\sum_{x^{\prime} \in \cup_{Y}} \frac{1}{m} \mathbb{E}\left[A G G_{-} Y\left[x^{\prime}\right] \mid\right.\left.\mathrm{do}\left(T\left[\mathbb{U}_{T}\right]\right)=\overrightarrow{0}\right)- \\
& \mathbb{E}\left[A G G_{-} Y\left[x^{\prime}\right] \mid \operatorname{do}\left(T\left[\mathbb{U}_{T}\right]\right)=\overrightarrow{1}\right)
\end{aligned}
$$

Q3: Average Isolated Effect (AIE)

Semantics

\boldsymbol{x} recieves treatment t
$\mathbb{P}(\boldsymbol{x})$ recieves treatment \vec{t}

$$
A T E\left(t ; t^{\prime} \mid \vec{t}\right)=\frac{1}{n} \sum_{x^{\prime} \in \mathbb{U}_{(T, Y)}} Y_{X}(t, \vec{t})-Y_{X}\left(t^{\prime}, \vec{t}\right)
$$

Q4: Average Relational Effect (ARE)

Semantics

\boldsymbol{x} recieves treatment t
$\mathbb{P}(\boldsymbol{x})$ recieves treatment \vec{t}
\boldsymbol{x} recieves treatment t
$P(x)$ recieves treatment $\overrightarrow{t^{\prime}}$

$$
\operatorname{ARE}\left(\vec{t}, \overrightarrow{t^{\prime}} \mid t\right)=\frac{1}{n} \sum_{x^{\prime} \in \mathbb{U}_{(T, Y)}} Y_{X}(t, \vec{t})-Y_{X}\left(t, \overrightarrow{t^{\prime}}\right)
$$

Q5: Average Overall Effect (ARE)

Semantics

\boldsymbol{x} recieves treatment t
$\mathbb{P}(\boldsymbol{x})$ recieves treatment \vec{t}
\boldsymbol{x} recieves treatment t^{\prime}
$\mathbb{P}(\boldsymbol{x})$ recieves treatment $\overrightarrow{t^{\prime}}$

$$
\operatorname{ATE}\left(t, \vec{t} ; t^{\prime}, \overrightarrow{t^{\prime}}\right)=\frac{1}{n} \sum_{x^{\prime} \in \mathbb{U}_{(T, Y)}} Y_{X}(t, \vec{t})-Y_{X}\left(t^{\prime}, \overrightarrow{t^{\prime}}\right)
$$

Relationships between Average Effects

Semantics

\boldsymbol{x} recieves treatment t
$\mathbb{P}(\boldsymbol{x})$ recieves treatment \vec{t}
x recieves treatment t^{\prime}
$\mathbb{P}(\boldsymbol{x})$ recieves treatment $\overrightarrow{t^{\prime}}$

$$
\begin{aligned}
\operatorname{ATE}\left(t, \vec{t} ; t^{\prime}, \overrightarrow{t^{\prime}}\right)= & \operatorname{AIE}\left(t, t^{\prime} \mid \vec{t}\right)+\operatorname{ARE}\left(\vec{t}, \overrightarrow{t^{\prime}} \mid t^{\prime}\right) \\
& =\operatorname{AIE}\left(t, t^{\prime} \mid \overrightarrow{t^{\prime}}\right)+\operatorname{ARE}\left(\vec{t}, \overrightarrow{t^{\prime}} \mid t\right)
\end{aligned}
$$

Answering Causal Queries

CaRL

- Covariate detection
- identify a sufficient set of covariates that should be adjusted for to remove confounding effects
- Covariate adjustment
- the data is transformed into a flat, single table format so that causal inference can be performed using standard methods.

Covariate Detection

CaRL

- Recall $Y_{x}(t, \vec{t})=\mathbb{E}[Y[x] \mid \operatorname{do}(T(x)=t), \operatorname{do}(T[\mathbb{P}(x)]=\vec{t})]$
- Estimate quantities of the form $\mathbb{E}[Y[x] \mid \mathrm{do}(T(x)=t)$
- Graphical criterion to select a sufficient set of covariates from a G

Relational Adjustment Formula

Intuition

$$
\mathbb{E}\left[Y[x] \mid \operatorname{do}\left(T(\mathbb{S})=\overrightarrow{t_{\mathbb{S}}}\right)\right]=\sum_{z \in \operatorname{Dom}(\mathbb{Z})} \mathbb{E}\left[Y\left[x^{\prime}\right] \mid \mathbb{Z}=z, T\left(\left[\mathbb{S}^{\prime}\right]=\overrightarrow{t_{\mathbb{S}}}\right] \operatorname{Pr}(\boldsymbol{Z}=z)\right.
$$

always sufficient to condition for the 'parents' of treated units as they separate effects from the rest of the graph ensuring independence.

$$
\left[Y [\boldsymbol { x } ^ { \prime }] \Perp \left(\left.\bigcup_{x \in \mathbb{S}} \boldsymbol{P a}(T[x])\right|_{G}\left(\bigcup_{x \in \mathbb{S}} T[x], Z\right)\right.\right.
$$

Relational Adjustment Formula

Theorem

Given: relational graph G, treatment T, response Y, set \mathbb{S} of treatment units with the treatment assignment $\overrightarrow{{t_{\mathbb{S}}}}$

$$
\mathbb{E}\left[Y[x] \mid \operatorname{do}\left(T(\mathbb{S})=\overrightarrow{t_{\mathbb{S}}}\right)\right]=\sum_{Z \in \operatorname{Dom}(\mathbf{Z})} \mathbb{E}\left[Y\left[x^{\prime}\right] \mid Z=z, T\left(\left[\mathbb{S}^{\prime}\right]=\overrightarrow{\left.t_{\mathbb{S}^{\prime}}\right]} \operatorname{Pr}(\mathbb{Z}=z)\right.\right.
$$

where $\mathbb{S}^{\prime} \subseteq \mathbb{S}$ is such that, for each unit $x \in \mathbb{S}^{\prime}$, there exists a directed path from $T[x]$ to the node $Y\left[x^{\prime}\right]$ in G, and \boldsymbol{Z} is set of nodes in G corresponding to the groundings of observed attribute functions $\mathrm{A}_{\text {Obs }}$ such that

$$
\left[Y [x ^ { \prime }] \Perp \left(\left.\bigcup_{x \in \mathbb{S}} \boldsymbol{P a}(T[x])\right|_{G}\left(\bigcup_{x \in \mathbb{S}} T[x], \boldsymbol{Z}\right)\right.\right.
$$

Covariate Adjustment

Overview

- When the set of confounding covariates \mathbb{Z} has high dimensionality
- Estimating the conditional expectation is hard. One for each peer!

$$
\sum_{\mathrm{Z} \in \operatorname{Dom}(\mathbf{Z})} \mathbb{E}\left[Y\left[x^{\prime}\right] \mid Z=z, T\left(\left[\mathbb{S}^{\prime}\right]=\overrightarrow{t_{\mathbb{S}^{\prime}}}\right] \operatorname{Pr}(\mathbb{Z}=z)\right.
$$

- The causal queries need to compute averages across all response units

Evaluation

What to evaluate?

1. End to end performance
2. Correctness
3. How does embedding affect results?

Datasets

Evaluate on what?

- MIMIC-III
- Real world ICU parameters of 59K patients
- Nationwide Inpatient Sample (NIS)
- Real world hospital dataset
- Review Data (ReviewData)
- Conference Submissions
- Synthetic Review Data
- For accuracy testing

1. End to End Performance

Dataset	Tables [\#]	Att. [\#]	Rows [\#]	Unit Table Cons.	Query Ans.
MIMIC-III	26	324	400 M	6 h	4.5 h
NIS	4	280	8 M	4 m	30 s
REVIEWDATA	3	7	6 K	10.6 s	1.2 s
SYNTHETIC REVIEWDATA	3	7	300 K	17.2 s	1.3 s

2. Correctness

3. How does Embedding affect results? Tested On Synthetic Data

