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Goal

Causal Inference in Relational Databases



Why is Regular Causal Models not sufficient?
Data is mostly not homogenous

Qualification 
[Author]

Quality 
[Paper]

Pearl’s Causal Model

Qualification 
[Eva]

Quality 
[S1]

Qualification 
[Eva] Quality 

[S2]

Qualification 
[Bob]

But papers may have different number of authors who impact the quality differently



Driving Use Case
Running Example

• A relational database of conference paper submissions


• Ask “Does single blind conferences favour authors from prestigious 
institutes?”


• SQL can show correlation, but not causation —need Causal Learning 



Introducing CaRL
Main Contributions

• A declarative language CaRL (Causal Relational Language) 

• representing causal background knowledge and assumptions in relational 
domains 


• Define semantics for complex causal relational-queries 


• treatment units and outcome units might be heterogeneous 


• An algorithm for answering causal queries from the given relational data 


• Performing a static analysis of the causal query



Components of CaRL
Overview

Prestige 
[Author]

Score 
[Paper]

Relational DB
Causal Graph


(From Intuition)
Causal Query

Causal Effect Estimates

Flat Table Structure



Relational Model
Extending the Entity-Relation Model

• Schema  


• P = Entities(E)  Relationships(R) 


•  is the set of Attribute Functions (or Attributes)


• Examples of Entities 


•  Author (Bob), Author (Eva), Submission (P1), Submission(P2)


• Examples of Relationships 


• Authorship(Bob, P1) , Authorship(Eva, P1), Authorship (Eva,P2)

S = (P, A)

∪

A

Author Prestige Qualification
Bob 1 25
Eva 0 2

PaperId Score Quality
P1 0.75 1
P2 0.25 0

PaperID AuthoredBy
P1 Bob
P2 Eva
P1 Eva

Author Submission

Authorship



Attribute Functions

•  where  is an observable attribute


• Examples of Attribute Functions:-


• Qualification[Bob], Prestige[Bob]


• Some attributes are observable while others aren’t. ( )


• Attributes can be mutable but Entities and Relationships are not!

A[X] A

Aobs ⊂ A

Person Prestige Qualification
Bob 1 25
Eva 0 2

Author



Relational Causal Rules
Normal Form

A[X] ⇐ A1[X1], A2[X2] . . . Ak[Xk] WHERE Q[Y]

• Background Knowledge can be modeled using relational causal rules.

Attribute Functions

Variables

Conjunctive Query



Examples of Causal Rules

• 


• Qualification of a person causally affects his or her institutions’ prestige


• 


•  Quality of a submission is affected by its authors’ qualifications and 
prestige 

PRESTIGE[A] ⇐ Qualification[A] WHERE Person[A]

Quality[S] ⇐ Prestige[A], Qualification[A] WHERE Author[A, S]



Instantiated Rules

• Causal Rules which have been instantiated with database constants


•  


•

PRESTIGE[A] ⇐ Qualification[A] WHERE Person[A]

PRESTIGE[Bob] ⇐ Qualification[Bob] Person Prestige Qualification
Bob 1 50
Eva 0 75

• A causal graph  can be constructed from the set of Instantiated Rules


• For every instantiated rule, we have an edge

G

Qualification 
[Bob]

Prestige 
[Bob]



Relational Causal Graph
Extension of Pearl’s Causal Graph

• Multiple nodes for every “type” of unit


•  Score:  ,  - one for each submission 


• Relation Causal graph defines a joint probability 


•  


• with one conditional probability on each ground rule

Score[s1] Score[s2]

Pr([Ax] |Pa[Ax])



Aggregated Rules

• Extend set of attribute functions A with new aggregated functions using 
aggregated rules


•  


• The new aggregated attribute functions  are included in the extended 
attribute functions A 


• Similar to relational causal rules, aggregated rules define a set of grounded rules 
with corresponding vertices and edges in the relational causal graph 


• However, instead of a conditional probability distribution, a deterministic function 
 will be associated with each 

AGG_A[W] ⇐ A[X] WHERE Q[Z]

AGG_A

AGG(Pa(AGG_Y[w])) AGG_Y[w]



Example of Aggregated Rules

• 


• We can construct an Extended 
relational causal graph with 
aggregated attribute AVG_Score[A] 


• The directed path from relational 
peer Eva’s prestige to average 
score of Bob is highlighted

AVG_SCORE[A] ⇐ SCORE[S] WHERE AUTHOR[A, S]



Causal Query Language in CaRL 
Supported Queries

• Compare papers’ scores in two hypothetical worlds in which all authors are and are not 
affiliated with prestigious institutions 


•  

• Compute the treatment effect of the prestige of authors on the average score received 
by author


• 


• Computes values for (i) isolated (an author’s prestige), (ii) relational (his/her coauthor’s 
prestige), and (iii) overall (all authors’ prestige) effect of prestige on a submission’s score. 


•

Score[S] ⇐ Prestige[A]?

AGG_Y[X′ ] ⇐ T[X]?

Y[X′ ] ⇐ T[X]? WHEN ⟨cnd⟩ PEERS TREATED



Semantics For Relational Causal Analysis
Complexities in a Relational Causal Graph

• Probability distribution given by 


• Standard Causal Graphs


• Unknown but can be estimated from available data


• Fixed number of nodes and edges


• Relational Causal Graph 


• Unknown but can be estimated from available data


• Number of nodes depends on instantiations

Pr(X ∣ Pa(X))



Structural Homogeneity Assumption
Example: Number of nodes depend on instantiations

Author Prestige Qualification
Bob 1 50
Eva 0 75

PaperId Score Quality
P1 0.75 1
P2 0.25 0

PaperID AuthoredBy
P1 Bob
P2 Eva
P1 Eva

Score[P1]

Quality[P1]

Qualification[Bob] Qualification[Eva]

Quality[P2]

Score[P2]Score

Quality

Qualification



Embedding Functions
Structural Homogeneity Assumptions

Score[P1]

Quality[P1]

Qualification[Bob] Qualification[Eva]

Quality[P2]

Score[P2]

ψQ ψQ
Low dimensional Vector 

Mean


Median


Padding




Redefining Probability Distributions

Pr(A[x] ∣ ΨA(Pa(A[x])))

ΨA Collection of mappings that projects parents of  into a  
low-dimension vector with fixed dimensionality for all 

A[x]
A[x]

Structural Homogeneity Assumption



Redefining Probability Distributions

Pr(A) = ΠA[x]∈APr(A[x] ∣ ΨA(Pa(A[x])))

Structural Homogeneity Assumption

Score[P1]

Quality[P1]

Qualification[Bob] Qualification[Eva]

Quality[P2]

Score[P2]

ΨQ ΨQ



Example
Embeddings



Treated And Response Units
Covariate Detection

• Treatment Attribute Function  


• Response Attribute Function 

T[X]

Y[X′ ]

Example: Want to find effects of author’s Prestige on submission scores 

Prestige[A]

Score[P]

Real Binary Values



• Set of treated units: 


• Binary vector:  


• Intervention  on all related units 

𝕌T = {x1, x2, . . . . }

⃗t = (t1, t2, …)

do(T(xi) = ti) xi

Treated And Response Units
Covariate Detection

Example: Set all author’s prestige to 1 (they are form prestigious schools)

Prestige[A] Score[P]1⃗ = (1,1,…)



• Given treated attribute function  and response attribute function 


• Relational Peers  of   as a set of units  


• s.t. for each  there is a path from  to  in 

T[X] Y[X]

x ∈ 𝕌(T,Y) ℙ(x) = 𝕌(T,Y) − {x}

p ∈ ℙ(x) T[p] Y[x] G

Relational Peers
Treatment and Response



Expected Response Unit On Being Treated
Covariate Detection

Score[P1]Qualification[Bob]

Qualification[Eva] Score[P2]

Prestige[Bob]

Prestige[Eva] AVG_Score[Eva]

AVG_Score[Bob]

Treatment: Prestige[X]
Response: AVG_Score[X]

ℙ(Bob) = {Eva}

ℙ(Eva) = {Bob, Sam}

Qualification[Sam] Prestige[Sam]

Prestige[Eva] path to AVG_Score[Bob]

Prestige[Bob] path to AVG_Score[Eva]
Prestige[Sam] path to AVG_Score[Eva]



Expected Response Unit On Being Treated
Covariate Detection

Yx(t, ⃗t ) = 𝔼[Y[x] ∣ do(T(x) = t), do(T[ℙ(x)] = ⃗t )]

T[x] recieves treatment t

ℙ(x) recieves treatment  ⃗t

t⃗t = (t1, t2, t3)



Q1: Average Treatment Effect
Semantics

ATE(T, Y) = ∑
x′ ∈𝕌Y

1
m

𝔼[Y[x′ ] ∣ do(T[𝕌T]) = 1⃗)−𝔼[Y[x′ ] ∣ do(T[𝕌T]) = 0⃗)

Y[X′ ] ⇐ T[X]?

Score[P1]⇐Prestige[Bob]?

Compare under two scenarios: with intervention and without



Q2: Aggregated Responses Queries
Semantics

ATE(T, AGG_Y) = ∑
x′ ∈𝕌Y

1
m

𝔼[AGG_Y[x′ ] ∣ do(T[𝕌T]) = 1⃗)

−𝔼[AGG_Y[x′ ] ∣ do(T[𝕌T]) = 0⃗)

AGG_Y[X′ ] ⇐ T[X]?

AGG_Score[S]⇐Prestige[A]?



Q3: Average Isolated Effect (AIE)
Semantics

x recieves treatment t
ℙ(x) recieves treatment  ⃗t

x recieves treatment t′ 

ℙ(x) recieves treatment  ⃗t

ATE(t; t′ | ⃗t ) =
1
n ∑

x′ ∈𝕌(T,Y)

−YX(t′ , ⃗t )YX(t, ⃗t )



Q4: Average Relational Effect (ARE)
Semantics

x recieves treatment t
ℙ(x) recieves treatment  ⃗t

x recieves treatment t
ℙ(x) recieves treatment  ⃗t′ 

ARE( ⃗t , ⃗t′ | t) =
1
n ∑

x′ ∈𝕌(T,Y)

−YX(t, ⃗t′ )YX(t, ⃗t )



Q5: Average Overall Effect (ARE)
Semantics

x recieves treatment t
ℙ(x) recieves treatment  ⃗t

x recieves treatment t′ 

ℙ(x) recieves treatment  ⃗t′ 

ATE(t, ⃗t ; t′ , ⃗t′ ) =
1
n ∑

x′ ∈𝕌(T,Y)

−YX(t′ , ⃗t′ )YX(t, ⃗t )



Relationships between Average Effects
Semantics

x recieves treatment t
ℙ(x) recieves treatment  ⃗t

x recieves treatment t′ 

ℙ(x) recieves treatment  ⃗t′ 

ATE(t, ⃗t ; t′ , ⃗t′ ) = AIE(t, t′ | ⃗t ) + ARE( ⃗t , ⃗t′ | t′ )

= AIE(t, t′ | ⃗t′ ) + ARE( ⃗t , ⃗t′ | t)



Answering Causal Queries
CaRL

• Covariate detection


• identify a sufficient set of covariates that should be adjusted for to remove 
confounding effects


• Covariate adjustment


• the data is transformed into a flat, single table format so that causal inference 
can be performed using standard methods.



Covariate Detection
CaRL

• Recall  


• Estimate quantities of the form 


• Graphical criterion to select a sufficient set of covariates from a G

Yx(t, ⃗t ) = 𝔼[Y[x] ∣ do(T(x) = t), do(T[ℙ(x)] = ⃗t )]

𝔼[Y[x] ∣ do(T(x) = t)



Relational Adjustment Formula
Intuition

𝔼[Y[x] ∣ do(T(𝕊) = ⃗t𝕊)] = ∑
z∈Dom(Z)

𝔼[Y[x′ ] ∣ Z = z, T([𝕊′ ] = ⃗t𝕊′ 
]Pr(Z = z)

[Y[x′ ] ⊥⊥ ( ⋃
x∈𝕊

Pa(T[x]) |G (⋃
x∈𝕊

T[x], Z)

always sufficient to condition for the ‘parents’ of treated units as they separate 
effects from the rest of the graph ensuring independence.



Relational Adjustment Formula
Theorem

𝔼[Y[x] ∣ do(T(𝕊) = ⃗t𝕊)] = ∑z∈Dom(Z)

𝔼[Y[x′ ] ∣ Z = z, T([𝕊′ ] = ⃗t𝕊′ 
]Pr(Z = z)

[Y[x′ ] ⊥⊥ ( ⋃
x∈𝕊

Pa(T[x]) |G (⋃
x∈𝕊

T[x], Z)

Given: relational graph , treatment , response , set  of treatment units with 
the treatment assignment 

G T Y 𝕊⃗t𝕊

where  is such that, for each unit , there exists a directed path 
from  to the node  in , and  is set of nodes in  corresponding to 
the groundings of observed attribute functions  such that

𝕊′ ⊆ 𝕊 x ∈ 𝕊′ 

T[x] Y[x′ ] G Z G
AObs



Covariate Adjustment
Overview

• When the set of confounding covariates  has high dimensionality 


• Estimating the conditional expectation is hard. One for each peer!


• The causal queries need to compute averages across all response units

Z

∑z∈Dom(Z)

𝔼[Y[x′ ] ∣ Z = z, T([𝕊′ ] = ⃗t𝕊′ 
]Pr(Z = z)



Evaluation
What to evaluate?

1. End to end performance


2. Correctness


3. How does embedding affect results?



Datasets
Evaluate on what?

• MIMIC-III


• Real world ICU parameters of 59K patients


• Nationwide Inpatient Sample (NIS)


• Real world hospital dataset


• Review Data (ReviewData)


• Conference Submissions


• Synthetic Review Data


• For accuracy testing



1. End to End Performance



2. Correctness
Measurables



3. How does Embedding affect results?
Tested On Synthetic Data


