Causal Relation Learning Babak Salimi, Harsh Parish, Moe Kayali, Sudeepa Roy, Lise Getoor, and Dn Suciu

Presented by: Vishal C. & Pratyoy D.

CS 276, W'24

13 March, 2024

Why is Regular Causal Models not sufficient? **Data is mostly not homogenous**

Qualification [Author]

Pearl's Causal Model

But papers may have different number of authors who impact the quality differently

Driving Use Case Running Example

- A relational database of conference paper submissions
- Ask "Does single blind conferences favour authors from prestigious institutes?"
 - SQL can show correlation, but not causation need Causal Learning

Authors			
person prestige qualification			
(h-index)			
Bob 1 50			
Carlos	0	20	
Eva	1	2	

Submissions	
sub score	
s1	0.75
s2	0.4
s3	0.1

	Authorship	
	person sub	
	Bob	s1
	Eva	s1
	Eva	s2
_	Eva	s3
	Carlos	s3

Submitted	
sub conf	
s1	ConfDB
s2	ConfAI
s3	ConfAI

Conferences		
conf blind		
ConfDB Single		
ConfAI	Double	

Introducing CaRL **Main Contributions**

- A declarative language CaRL (Causal Relational Language)
 - representing causal background knowledge and assumptions in relational domains
- Define semantics for complex causal relational-queries
 - treatment units and outcome units might be heterogeneous
- An algorithm for answering causal queries from the given relational data
 - Performing a static analysis of the causal query

Components of CaRL Overview

Relational DB

Flat Table Structure

Relational Model Extending the Entity-Relation Model

• Schema S = (P, A)

- P = Entities(E) U Relationships(R)
- A is the set of Attribute Functions (or Attributes)
- Examples of **Entities**
 - Author (Bob), Author (Eva), Submission (P1), Submission(P2)
- Examples of **Relationships** •
 - Authorship(Bob, P1), Authorship(Eva, P1), Authorship (Eva, P2)

Author			
nor Prestige Qualification			
b	1	25	
a	0	2	

Submission

PaperId	Score	Qu
P1	0.75	
P2	0.25	

Authorship

PaperID	Autho
P1	В
P2	E
P1	E

Attribute Functions

- A[X] where A is an observable attribute
- Examples of Attribute Functions:-
 - Qualification[Bob], Prestige[Bob]
- Some attributes are observable while others aren't. ($A_{obs} \subset A$)
- Attributes can be mutable but Entities and Relationships are not!

Author

Person	Prestige	Qualification
Bob	1	25
Eva	0	2

Relational Causal Rules Normal Form

Background Knowledge can be modeled using relational causal rules. \bullet

Examples of Causal Rules

- $PRESTIGE[A] \leftarrow Qualification[A]$ WHERE Person[A]
 - Qualification of a person causally affects his or her institutions' prestige
- $Quality[S] \leftarrow Prestige[A], Qualification[A] WHERE Author[A, S]$
 - Quality of a submission is affected by its authors' qualifications and prestige

Instantiated Rules

- Causal Rules which have been instantiated with database constants
 - $PRESTIGE[A] \Leftarrow Qualification[A]$ WHERE Person[A]
 - $PRESTIGE[Bob] \Leftarrow Qualification[Bob]$

- A causal graph G can be constructed from the set of Instantiated Rules
- For every instantiated rule, we have an edge

Person	Prestige	Qualificat
Bob	1	50
Eva	0	75

Relational Causal Graph Extension of Pearl's Causal Graph

Authors		
person	prestige qualification	
		(h-index)
Bob	1	50
Carlos	0	20
Eva	1	2

- Multiple nodes for every "type" of unit
 - Score: *Score*[*s*1], *Score*[*s*2] one for each submission
- Relation Causal graph defines a joint probability
 - $Pr([A_x] | Pa[A_x])$
 - with one conditional probability on each ground rule

Submissions		
sub score		
s1	0.75	
s2	0.4	
s3	0.1	

Author	Authorship		
person	sub		
Bob	s1		
Eva	s1		
Eva	s2		
Eva	s3		
Carlos	s3		

Su	Submitted				
sub	sub conf				
s1	ConfDB				
s2	ConfAI				
s3	ConfAI				

Confer	er
conf	
ConfDB	
ConfAI	I

Aggregated Rules

- Extend set of attribute functions A with new aggregated functions using aggregated rules
- $AGG_A[W] \Leftarrow A[X]$ WHERE Q[Z]
- attribute functions A
- with corresponding vertices and edges in the relational causal graph
 - $AGG(Pa(AGG_Y[w]))$ will be associated with each $AGG_Y[w]$

• The new aggregated attribute functions AGG_A are included in the extended

• Similar to relational causal rules, aggregated rules define a set of grounded rules

However, instead of a conditional probability distribution, a deterministic function

Example of Aggregated Rules

- $AVG_SCORE[A] \Leftarrow SCORE[S]$ WHERE AUTHOR[A, S]
- We can construct an Extended relational causal graph with aggregated attribute AVG_Score[A]
 - The directed path from relational peer Eva's prestige to average score of Bob is highlighted

Causal Query Language in CaRL Supported Queries

- affiliated with prestigious institutions
 - $Score[S] \leftarrow Prestige[A]?$
- by author
 - $AGG_Y[X'] \leftarrow T[X]?$
- - $Y[X'] \leftarrow T[X]$? WHEN $\langle cnd \rangle$ PEERS TREATED

• Compare papers' scores in two hypothetical worlds in which all authors are and are not

Compute the treatment effect of the prestige of authors on the average score received

• Computes values for (i) isolated (an author's prestige), (ii) relational (his/her coauthor's prestige), and (iii) overall (all authors' prestige) effect of prestige on a submission's score.

Semantics For Relational Causal Analysis Complexities in a Relational Causal Graph

- Probability distribution given by $Pr(X \mid Pa(X))$
- Standard Causal Graphs
 - Unknown but can be estimated from available data
 - Fixed number of nodes and edges
- Relational Causal Graph
 - Unknown but can be estimated from available data
 - Number of nodes depends on instantiations

Structural Homogeneity Assumption Example: Number of nodes depend on instantiations

Author	Prestige	Qualification		
Bob	1	50		
Eva	0	75		

PaperId	Score	Quality		
P1	0.75	1		
P2	0.25	0		

PaperID	AuthoredE
P1	Bob
P2	Eva
P1	Eva

Embedding Functions Structural Homogeneity Assumptions

Qualification[Bob]

Low dimensional Vector Mean Median Padding

Structural Homogeneity Assumption Redefining Probability Distributions

Collection of mappings that projects parents of A[x] into a low-dimension vector with fixed dimensionality for all A[x]

$Pr(A[x] | \Psi^A(Pa(A[x])))$

Structural Homogeneity Assumption Redefining Probability Distributions

$\mathsf{Pr}(A) = \prod_{A[x] \in A} \mathsf{Pr}(A[x] \mid \Psi^A(\mathsf{Pa}(A[x])))$

Embeddings Example

Treated And Response Units Covariate Detection

- Treatment Attribute Function T[X]
- Response Attribute Function Y[X']

Example: Want to find effects of author's Prestige on submission scores Prestige[A] Score[P]

Treated And Response Units Covariate Detection

- Set of treated units: $\mathbb{U}_T = \{x_1, x_2, \dots\}$
- Binary vector: $\vec{t} = (t_1, t_2, ...)$
- Intervention do $(T(x_i) = t_i)$ on all related units x_i

 $\vec{1} = (1,1,...) \longrightarrow Prestige[A] \longrightarrow Score[P]$

- Example: Set all author's prestige to 1 (they are form prestigious schools)

Relational Peers Treatment and Response

- - s.t. for each $p \in \mathbb{P}(x)$ there is a path from T[p] to Y[x] in G

• Given treated attribute function T[X] and response attribute function Y[X]• Relational Peers of $x \in U_{(T,Y)}$ as a set of units $\mathbb{P}(x) = U_{(T,Y)} - \{x\}$

Expected Response Unit On Being Treated Covariate Detection

Treatment: *Prestige*[X] **Response:** *AVG_Score*[X]

 $\mathbb{P}(Bob) = \{Eva\}$ *Prestige*[*Eva*] path to *AVG_Score*[*Bob*]

 $\mathbb{P}(Eva) = \{Bob, Sam\}$

Prestige[*Bob*] path to *AVG_Score*[*Eva*] Prestige[Sam] path to AVG_Score[Eva]

Expected Response Unit On Being Treated Covariate Detection

T[x] recieves treatment t

 $\mathbb{P}(x)$ recieves treatment \vec{t}

$\vec{Y}_{\mathbf{x}}(t, \vec{t}) = \mathbb{E}[Y[\mathbf{x}] \mid \mathsf{do}(T(x) = t), \mathsf{do}(T[\mathbb{P}(x)] = \vec{t})]$

Q1: Average Treatment Effect **Semantics**

$ATE(T,Y) = \sum_{x' \in \mathbb{U}_Y} \frac{1}{m} \mathbb{E}[Y[x'] \mid \mathsf{do}(T[\mathbb{U}_T]) = \vec{0}) - \mathbb{E}[Y[x'] \mid \mathsf{do}(T[\mathbb{U}_T]) = \vec{1})$

- $Y[X'] \leftarrow T[X]?$
- Score[P1] ← Prestige[Bob]?

Compare under two scenarios: with intervention and without

Q2: Aggregated Responses Queries Semantics

AGG_Score[S] ← Prestige[A]?

$AGG_Y[X'] \Leftarrow T[X]?$

 $ATE(T, AGG_Y) = \sum_{x' \in \mathbb{U}_Y} \frac{1}{m} \mathbb{E}[AGG_Y[x'] \mid \operatorname{do}(T[\mathbb{U}_T]) = \vec{0}) - \mathbb{E}[AGG_Y[x'] \mid \operatorname{do}(T[\mathbb{U}_T]) = \vec{1})$

Q3: Average Isolated Effect (AIE) **Semantics**

x recieves treatment t $\mathbb{P}(x)$ recieves treatment \vec{t}

x recieves treatment *t*' $\mathbb{P}(x)$ recieves treatment \vec{t}

 $ATE(t;t'|\vec{t}) = \frac{1}{n} \sum_{x' \in \mathbb{U}_{(T,Y)}} Y_X(t,\vec{t}) - Y_X(t',\vec{t})$

Q4: Average Relational Effect (ARE) Semantics

x recieves treatment t $\mathbb{P}(x)$ recieves treatment \vec{t}

x recieves treatment *t* $\mathbb{P}(x)$ recieves treatment $\vec{t'}$

Q5: Average Overall Effect (ARE) **Semantics**

x recieves treatment t $\mathbb{P}(x)$ recieves treatment \vec{t}

$$ATE(t, \vec{t}; t', \vec{t'}) =$$

x recieves treatment *t*' $\mathbb{P}(x)$ recieves treatment $\vec{t'}$

 $= \frac{1}{n} \sum_{\substack{X' \in \mathbb{U}_{(T,Y)}}} Y_X(t, \vec{t}) - Y_X(t', \vec{t'})$

Relationships between Average Effects Semantics

x recieves treatment t $\mathbb{P}(x)$ recieves treatment \vec{t}

> $ATE(t, \vec{t}; t', \vec{t'}) = AIE(t, t' | \vec{t}) + ARE(\vec{t}, \vec{t'} | t')$ $= AIE(t, t' | \vec{t'}) + ARE(\vec{t}, \vec{t'} | t)$

x recieves treatment *t*' $\mathbb{P}(x)$ recieves treatment $\vec{t'}$

Answering Causal Queries CaRL

- Covariate detection
 - confounding effects
- Covariate adjustment
 - can be performed using standard methods.

identify a sufficient set of covariates that should be adjusted for to remove

• the data is transformed into a flat, single table format so that causal inference

Covariate Detection CaRL

- Recall $Y_{\mathbf{x}}(t, \vec{t}) = \mathbb{E}[Y[\mathbf{x}] \mid do(T(x) = t), do(T[\mathbb{P}(x)] = \vec{t})]$
- Estimate quantities of the form $\mathbb{E}[Y[x] | do(T(x) = t)]$
 - Graphical criterion to select a sufficient set of covariates from a G

Relational Adjustment Formula Intuition

$\mathbb{E}[Y[x] \mid \mathsf{do}(T(\mathbb{S}) = \overrightarrow{t_{\mathbb{S}}})] = \sum_{z \in Dom(Z)} \mathbb{E}[Y[x'] \mid Z = z, T([\mathbb{S}'] = \overrightarrow{t_{\mathbb{S}'}}]\mathsf{Pr}(Z = z)$

always sufficient to condition for the 'parents' of treated units as they separate effects from the rest of the graph ensuring independence.

 $[Y[x'] \perp (\bigcup_{x \in S} Pa(T[x]))|_G(\bigcup_{x \in S} T[x], Z)$

Relational Adjustment Formula Theorem

Given: relational graph G, treatment T, response Y, set \mathbb{S} of treatment units with the treatment assignment \vec{t}_{S}

 $\mathbb{E}[Y[x] \mid \mathsf{do}(T(\mathbb{S}) = \overrightarrow{t_{\mathbb{S}}})] = \sum \mathbb{E}[Y[x'] \mid Z = z, T([\mathbb{S}'] = \overrightarrow{t_{\mathbb{S}'}}]\mathsf{Pr}(Z = z)$ $Z \in Dom(Z)$

the groundings of observed attribute functions A_{Obs} such that

 $[Y[x'] \perp (\bigcup Pa(T[x]))|_G(\bigcup T[x], Z)$ x∈S x∈S

where $S' \subseteq S$ is such that, for each unit $x \in S'$, there exists a directed path from T[x] to the node Y[x'] in G, and Z is set of nodes in G corresponding to

Covariate Adjustment Overview

- When the set of confounding covariates Z has high dimensionality
 - Estimating the conditional expectation is hard. One for each peer!

$$\sum_{Z \in Dom(Z)} \mathbb{E}[Y[x'] \mid Z =$$

The causal queries need to compute averages across all response units

 $z, T([S'] = \overrightarrow{t_{S'}}] \operatorname{Pr}(Z = z)$

Evaluation What to evaluate?

- 1. End to end performance
- 2. Correctness
- 3. How does embedding affect results?

Datasets **Evaluate on what?**

- MIMIC-III
 - Real world ICU parameters of 59K patients
- Nationwide Inpatient Sample (NIS)
 - Real world hospital dataset
- Review Data (ReviewData)
 - Conference Submissions
- Synthetic Review Data
 - For accuracy testing

1. End to End Performance

Dataset	Tables [#]	Att. [#]	Rows [#]	Unit Table Cons.	Query Ans.
MIMIC-III	26	324	400M	6h	4.5h
NIS	4	280	8M	4m	30s
REVIEWDATA	3	7	6K	10.6s	1.2s
SYNTHETIC REVIEWDATA	3	7	300K	17.2s	1.3s

2. Correctness

3. How does Embedding affect results? Tested On Synthetic Data

