Causal Effect Estimation from Observational and Interventional Data Through Matrix Weighted Linear Estimators

Klaus-Rudolf Kladny, Julius von Kügelgen, Bernhard Schölkopf, Michael Muehlebach 39th Conference on Uncertainty in Artificial Intelligence (UAI2023) Presented by Raj Mohanty CS276 Class Project

Setting & Motivation

• Objective: Estimate α and minimize mean squared error (MSE)

Structural Equation Model (SEM)

$$\mathbf{Z} \leftarrow \mathbf{N}_{\mathbf{Z}}, \qquad \qquad \mathbf{N}_{\mathbf{Z}} \sim \mathcal{N}(\boldsymbol{\mu}_{\mathbf{N}_{\mathbf{Z}}}, \boldsymbol{\Sigma}_{\mathbf{N}_{\mathbf{Z}}})$$
(1)

 $\label{eq:constraint} \mathbf{X} \ \leftarrow \ \mathbf{B}\mathbf{Z} + \mathbf{N}_{\mathbf{X}}, \qquad \qquad \mathbf{N}_{\mathbf{X}} \sim \mathcal{N}(\boldsymbol{\mu}_{\mathbf{N}_{\mathbf{X}}}, \boldsymbol{\Sigma}_{\mathbf{N}_{\mathbf{X}}}) \qquad \qquad \text{Observational}$

$$Y \leftarrow \mathbf{Z}^{\top} \boldsymbol{\gamma} + \mathbf{X}^{\top} \boldsymbol{\alpha} + N_Y, \quad N_Y \sim \mathcal{N}(\mu_{N_Y}, \sigma_{N_Y}^2)$$
 (3)

 $\mathbf{B} \in \mathbb{R}^{p \times d}, \gamma \in \mathbb{R}^{d}, \alpha \in \mathbb{R}^{p}, \text{ and } (\mathbf{N}_{\mathbf{Z}}, \mathbf{N}_{\mathbf{X}}, N_{Y})$ mutually independent exogenous noise variables.

Data

X20 $\stackrel{\diamond}{}$	X21 \diamond	X22 \diamond	X23 ÷	X24 ÷	X25 ÷	X26 $^{\circ}$	X27 $\stackrel{\circ}{}$	X28 $\stackrel{\circ}{=}$	X29 ÷	X30 $\stackrel{\circ}{=}$	Y $\hat{}$
1.00592726	1.2787921151	0.443962735	0.1705931897	-2.850389408	0.397202040	-0.514577067	-0.636647485	-4.00066820	-0.248848560	1.54932463	10.91980856
0.96963508	0.4436062900	-0.459429788	-0.6621852569	2.423316022	0.588088002	1.896189713	-0.261339119	-1.78389097	0.365062204	0.73290129	4.42119563
-0.14952796	1.1733352771	1.039452590	-2.3642812727	1.436724641	0.730779426	1.958336295	-1.118176230	0.82301035	-0.650660724	1.16844667	5.25947781
0.21977736	-1.3452224632	0.869056491	0.2600761076	0.365042388	0.308059736	-0.522131348	0.995933149	-0.46432349	-0.801367789	-1.14322925	-21.68270604
-0.50224671	0.0467913623	-0.158891164	-2.9652332227	-1.608405006	0.793533504	0.615774537	0.035995469	-1.27869539	0.044263137	1.20834069	6.02485721
0.30308422	2.5350282384	-0.527153628	-0.9131070537	0.902630897	1.177967785	-0.360796617	-2.561334260	0.12519685	-1.196351774	1.45872136	-2.78384788
1.07912025	1.9917275122	1.550950839	-1.9569204047	-0.721567113	-0.213309007	0.853201534	-0.730229571	-0.22903474	0.513373030	2.13800972	11.53902907
-0.31549905	-0.2645641463	-0.011056906	0.1802381813	2.909312401	-1.112350186	-0.652627569	-1.491590484	3.46765643	1.751346929	-0.38104736	-20.18052366
-0.65163493	-0.2771581482	-2.296690986	-0.6407696892	3.275055390	0.297086096	0.779710503	0.458982041	1.79215183	-0.815272106	0.30920951	-10.68456287
-2.23253046	0.1381552972	-1.595194322	-0.2564935303	2.753748584	-2.625471748	-1.325933352	-1.120547488	1.44109907	1.344225793	1.35401086	-33.19822244
-2.30956190	-3.5209891006	-2.500704021	0 0617500101	4 007772610	1 007404246	0 000410122	0 156120620	2 5 7 2 0 4 4 0 4	1 677527297	-0.45217767	-16.45860815
-0.45658241	-0.8807510710	^{-1.} (v .	1.1.	a. D.		_ 1	20		648277	-1.37908516	-20.49765524
-0.52577459	0.0517549048	$_{0.}(\mathbf{x}_{i},$	$(y_i) \cap$	J I ob	s, ι	- <u> </u> ,.	, n,		971033	-1.09667948	10.34897959
0.17462354	-0.4619581733	1.							876228	0.21095895	23.37870508
2.08736974	0.7531031829	-0.	1.1.	d. m			1		072393	0.45436902	7.84018789
-0.79102995	-0.5407004093	-0. $(\mathbf{x}_i,$	$(y_i) \sim$	J ∎ [™] int	ι, ι	= n +	· 1,,	n + i	m, 946212	-0.16310612	-5.14623216
1.14869965	1.4572758654	1.406627814	2.3126291504	-1.772125091	-0.289090777	0.382485063	-0.534258785	-1.22987057	-1.643358103	-0.47422267	-2.06790774
-0.59152628	0.0691140206	-2.884587773	0.1279244626	2.844617234	-0.882101667	0.798246392	-1.275567804	2.42137505	1.419113751	0.64100688	-13.18999913
-0.52235156	1.5061235489	0.414092310	-0.5951153613	-0.183686340	0.683922832	0.682663960	-0.470038139	-0.65327780	-0.679488653	-0.71007030	16.44762653
1.91304206	-0.8208789049	1.404268775	2.4792551695	-3.647763884	0.326659726	0.574262351	-1.064505467	-2.74732140	-0.924587781	2.03721127	38.54644230
-0.24714332	0.9357142699	0.958405730	-0.8382359468	-2.298081199	-0.405131217	-0.368413596	-0.506248213	-1.06148982	-0.176993628	0.76188419	4.48102995
0.42234120	0.5088636509	-1.147625195	-1.0827433786	2.467230433	0.323783241	-0.748094768	0.656103195	0.50010538	0.046236318	0.55767528	-5.53494571
0.38788706	-0.7086168759	0.351481035	-0.3316012742	1.692319139	-0.428779489	-1.237217142	0.376001650	2.02562916	0.922832707	-0.86168892	-21.27305522
1.25632051	0.9674743341	1.445208872	1.0964117245	-2.583249847	1.465278855	1.450211037	-2.125630474	-2.79203232	0.548682034	1.78185893	22.45360422
0.93722798	-0.0398427533	0.476051913	2.2002390803	-0.982557314	-1.912159638	-0.616822332	0.001688483	-0.67823759	0.314983569	1.09388915	0.24653020

Proposed Methods

 $\boldsymbol{\alpha} = \nabla_{\mathbf{x}} \mathbb{E}[Y | \operatorname{do}(\mathbf{X} \leftarrow \mathbf{x})]$ True value $\mathbb{P}_{obs}(Y|\mathbf{X} = \mathbf{x}) \neq \mathbb{P}(Y|do(\mathbf{X} \leftarrow \mathbf{x})) = \mathbb{P}_{int}(Y|\mathbf{X} = \mathbf{x})$ $\mathbb{E}_{obs}[Y|\mathbf{X} = \mathbf{x}] = (\alpha + \boldsymbol{\Delta})^{\top}\mathbf{x}$ $\boldsymbol{\Delta} = (\boldsymbol{\Sigma}_{\mathbf{N}_{\mathbf{X}}} + \mathbf{B}\boldsymbol{\Sigma}_{\mathbf{N}_{\mathbf{Z}}}\mathbf{B}^{\mathsf{T}})^{-1}\mathbf{B}\boldsymbol{\Sigma}_{\mathbf{N}_{\mathbf{Z}}}\boldsymbol{\gamma}$ $\widehat{\alpha}_{0}^{n} \coloneqq (\mathbf{X}_{0}^{\top} \mathbf{X}_{0})^{-1} \mathbf{X}_{0}^{\top} \mathbf{y}_{0},$ $\widehat{\alpha}_{\mathrm{I}}^{m} \coloneqq (\mathbf{X}_{\mathrm{I}}^{\top} \mathbf{X}_{\mathrm{I}})^{-1} \mathbf{X}_{\mathrm{I}}^{\top} \mathbf{y}_{\mathrm{I}}.$ $\operatorname{Cov}(\widehat{\alpha}_{0}^{n}) = (\mathbf{X}_{0}^{\top}\mathbf{X}_{0})^{-1}\sigma_{Y|\mathbf{X}}^{2},$

 $\mathbf{Cov}(\widehat{\boldsymbol{\alpha}}_{\mathrm{I}}^{m}) = (\mathbf{X}_{\mathrm{I}}^{\top}\mathbf{X}_{\mathrm{I}})^{-1}\sigma_{Y|\mathrm{do}(\mathbf{X})}^{2}$

Matrix Weighted Linear Estimator

 $\widehat{\alpha}_{\mathbf{W}}^m \coloneqq \mathbf{W} \widehat{\alpha}_{\mathbf{I}}^m + (\mathbf{I}_p - \mathbf{W}) \widehat{\alpha}_{\mathbf{O}}^n.$ W is a weight matrix

 $\mathbf{W} = \mathbf{I}_{p}$ Purely interventional

$$\begin{split} \mathbf{W}^{m}_{*} = & \left(\mathbf{Cov}(\widehat{\alpha}^{n}_{0}) + \boldsymbol{\Delta}\boldsymbol{\Delta}^{\top} \right) \\ & \left(\mathbf{Cov}(\widehat{\alpha}^{m}_{1}) + \mathbf{Cov}(\widehat{\alpha}^{n}_{0}) + \boldsymbol{\Delta}\boldsymbol{\Delta}^{\top} \right)^{-1} \end{split}$$

Theoretically Optimal

 $\widehat{\mathbf{Cov}}(\widehat{\alpha}_{\mathrm{I}}^{m}) = (\mathbf{X}_{\mathrm{I}}^{\top}\mathbf{X}_{\mathrm{I}})^{-1}\widehat{\sigma}_{Y|\mathrm{do}(\mathbf{X})}^{2}, \\ \widehat{\mathbf{Cov}}(\widehat{\alpha}_{0}^{n}) = (\mathbf{X}_{0}^{\top}\mathbf{X}_{0})^{-1}\widehat{\sigma}_{Y|\mathbf{X}}^{2},$

$$\widehat{\sigma}_{Y|\text{do}(\mathbf{X})}^{2} = \frac{1}{m-1} \|\mathbf{y}_{\text{I}} - \mathbf{X}_{\text{I}}\widehat{\alpha}_{\text{I}}^{m}\|_{2}^{2}$$
$$\widehat{\sigma}_{Y|\mathbf{X}}^{2} = \frac{1}{n-1} \|\mathbf{y}_{\text{O}} - \mathbf{X}_{\text{O}}\widehat{\alpha}_{\text{O}}^{n}\|_{2}^{2}$$

Practical estimators

Practical estimators

 $\hat{}$

$$\begin{split} \widehat{\boldsymbol{\Delta}}_{m} &= \widehat{\boldsymbol{\alpha}}_{0}^{n} - \widehat{\boldsymbol{\alpha}}_{\mathrm{I}}^{m} \\ \widehat{\mathbf{W}}_{*}^{m} &= \left(\widehat{\mathbf{Cov}}(\widehat{\boldsymbol{\alpha}}_{0}^{n}) + \widehat{\boldsymbol{\Delta}}_{m}\widehat{\boldsymbol{\Delta}}_{m}^{\top} + \epsilon \mathbf{I}_{p}\right) \\ & \left(\widehat{\mathbf{Cov}}(\widehat{\boldsymbol{\alpha}}_{\mathrm{I}}^{m}) + \widehat{\mathbf{Cov}}(\widehat{\boldsymbol{\alpha}}_{0}^{n}) + \widehat{\boldsymbol{\Delta}}_{m}\widehat{\boldsymbol{\Delta}}_{m}^{\top} + \epsilon \mathbf{I}_{p}\right)^{-1} \\ & \lim_{m \to \infty} \mathrm{MSE}\left(\widehat{\boldsymbol{\alpha}}_{\widetilde{\mathbf{W}}^{m}}^{m}\right) = 0 \quad \text{Asymptotically unbiased (infinite sample limit)} \end{split}$$

 The bias and variance of this estimate has been shown to vanish as m->infinity even with large amount of biased observational data. Its still biased for finite sample.

Minimize estimator variance

$$\begin{split} \widehat{\boldsymbol{\Delta}}_{m} &= \widehat{\boldsymbol{\alpha}}_{0}^{n} - \widehat{\boldsymbol{\alpha}}_{I}^{m} \quad \begin{array}{c} \text{Has high variance} \\ & & \\ \mathbf{Tr}(\mathbf{Cov}(\widehat{\boldsymbol{\Delta}}_{m})) &= \mathbf{Tr}(\mathbf{Cov}(\widehat{\boldsymbol{\alpha}}_{I}^{m})) + \mathbf{Tr}(\mathbf{Cov}(\widehat{\boldsymbol{\alpha}}_{0}^{n})) \\ \widehat{\boldsymbol{\alpha}}_{0}^{n} & \leftarrow \arg \min_{\boldsymbol{\alpha} \in \mathbb{R}^{p}} \left\{ \| \mathbf{y}_{0} - \mathbf{X}_{0} \boldsymbol{\alpha} \|_{2}^{2} \right\} \\ \mathbf{r} & \leftarrow \mathbf{y}_{I} - \mathbf{X}_{I} \widehat{\boldsymbol{\alpha}}_{0}^{n} \\ \widehat{\boldsymbol{\Delta}}_{m} & \leftarrow \arg \min_{\boldsymbol{\Delta} \in \mathbb{R}^{p}} \left\{ \| \mathbf{r} + \mathbf{X}_{I} \boldsymbol{\Delta} \|_{2}^{2} \right\}. \end{split}$$

Lasso and Ridge estimates (minimizes variance)

$$\widehat{\mathbf{\Delta}}_{m}^{\ell^{2}} \leftarrow rg \min_{\mathbf{\Delta} \in \mathbb{R}^{p}} \left\{ \|\mathbf{r} + \mathbf{X}_{\mathrm{I}}\mathbf{\Delta}\|_{2}^{2} + \lambda_{\ell^{2}} \|\mathbf{\Delta}\|_{2}^{2}
ight\}$$

Ridge regression to reduce variance

 $\widehat{\boldsymbol{\Delta}}_{m}^{\ell^{1}} \leftarrow \arg \min_{\boldsymbol{\Delta} \in \mathbb{R}^{p}} \left\{ \|\mathbf{r} + \mathbf{X}_{\mathrm{I}} \boldsymbol{\Delta}\|_{2}^{2} + \lambda_{\ell^{1}} \|\boldsymbol{\Delta}\|_{1} \right\}$ $\lim_{m \to \infty} \mathrm{MSE} \left(\widehat{\boldsymbol{\alpha}}_{\widehat{\mathbf{W}}_{\ell^{2}}}^{m} \right) = 0$

Lasso regression to reduce variance

$$\widehat{w}_{\mathrm{rm}}^{m} := \max\left\{1 - \frac{\mathrm{Tr}\left(\widehat{\mathrm{Cov}}\left(\widehat{\alpha}_{\mathrm{I}}^{m}\right)\right)}{\left\|\widehat{\alpha}_{\mathrm{I}}^{m} - \widehat{\alpha}_{\mathrm{O}}^{n}\right\|_{2}^{2}}, 0\right\}$$

Rosenman et al (2020) for comparison

Cross validation

Data Pooling (special case)

$$\begin{split} \widehat{\boldsymbol{\alpha}}_{p}^{m} &:= (\mathbf{X}_{p}^{\top} \mathbf{X}_{p})^{-1} \mathbf{X}_{p}^{\top} \mathbf{y}_{p} \\ &= (\mathbf{X}_{0}^{\top} \mathbf{X}_{0} + \mathbf{X}_{I}^{\top} \mathbf{X}_{I})^{-1} (\mathbf{X}_{0}^{\top} \mathbf{y}_{0} + \mathbf{X}_{I}^{\top} \mathbf{y}_{I}) \\ &= \mathbf{W}_{p}^{m} \widehat{\boldsymbol{\alpha}}_{I}^{m} + (\mathbf{I} - \mathbf{W}_{p}^{m}) \widehat{\boldsymbol{\alpha}}_{0}^{n}, \end{split}$$

where

$$\mathbf{W}_{\mathbf{P}}^{m} \coloneqq (\mathbf{X}_{\mathbf{O}}^{\top} \mathbf{X}_{\mathbf{O}} + \mathbf{X}_{\mathbf{I}}^{\top} \mathbf{X}_{\mathbf{I}})^{-1} \mathbf{X}_{\mathbf{I}}^{\top} \mathbf{X}_{\mathbf{I}}.$$

 $\lim_{m \to \infty} \mathrm{MSE}\left(\widehat{\alpha}_{\mathtt{P}}^{m}\right) > 0. \qquad \qquad \mathsf{Undesirable} \ \mathsf{Asymptotically} \ \mathsf{biased}.$

Ridge Regression (Special case)

$$\begin{split} \widehat{\boldsymbol{\alpha}}_{\text{ridge}}^{m} &= (\mathbf{X}_{\text{I}}^{\top} \mathbf{X}_{\text{I}} + \lambda \mathbf{I}_{p})^{-1} \mathbf{X}_{\text{I}}^{\top} \mathbf{y}_{\text{I}} \\ &= \widehat{\mathbf{W}}_{\text{ridge}}^{m} \widehat{\boldsymbol{\alpha}}_{\text{I}}^{m} + (\mathbf{I}_{p} - \widehat{\mathbf{W}}_{\text{ridge}}^{m}) \mathbf{0}, \end{split}$$

where

$$\widehat{\mathbf{W}}_{\mathsf{ridge}}^m \coloneqq (\mathbf{X}_{\mathsf{I}}^\top \mathbf{X}_{\mathsf{I}} + \lambda \mathbf{I}_p)^{-1} \mathbf{X}_{\mathsf{I}}^\top \mathbf{X}_{\mathsf{I}}.$$

no observational data and $\widehat{\alpha}_{0}^{n} = 0$.

$$\lim_{m\to\infty} \mathrm{MSE}(\widehat{\alpha}^m_{\mathrm{ridge}}) = 0$$

Experiment setup

General Setup. In all experiments, we use p = 30 treatments, a one-dimensional (d = 1) confounder Z, and unit/isotropic (co)variances: $\sigma_{N_{Y}}^2 = \sigma_{N_{Z}}^2 = 1$, $\Sigma_{N_{X}} = \mathbf{I}_p$. We sample $\tilde{N}_{X} \sim \mathcal{N}(0, Cov(X_0)), \alpha \sim \mathcal{N}(0, 9I_p)$, and choose b and γ depending on the settings described below. Unless otherwise specified, we then draw m = 300 interventional and n = 600 observational examples from \mathbb{P}_{int} and \mathbb{P}_{obs} , respectively, and compute estimates of α using the different weighting approaches. We repeat this procedure 1000 times and report the resulting mean and standard deviation of the mean squared error.

Results

- Data pooling works well for gamma =1
- \mathbf{W}_{I}^{m} does not work well in small sample cases because of high variance

Conclusion

- A method to estimate treatment effects by utilizing both interventional and observational data.
- Minimize bias and variance
- Minimize MSE
- Future work
 - Beyond Linear Regression
 - Binary or categorical treatments
 - Binary or categorical outcome