Causal Information Splitting: Engineering Proxy Features for Robustness to Distribution Shifts

Bijan Mazaheri, Atalanti Mastakouri, Dominik Janzing, Michaela Hardt

Background

- Key assumption for building predictive models is relevant training data pulled from a distribution identical to its use case
- Real-world data contains biases that shift training data distribution shifts

Transportability

- To handle dissociation between training and target distributions:
 - Covariate shift in distribution of X
 - Label shift of Pr(Y)
 - Stationary label function Pr(Y|X)
- Label function is stationary for a subset of X (invariant set)
- Transportability problem: find invariant set X

Setting/Assumptions

- Further challenges to identifying distribution shift when lacking direct measurements of causes and effects of *Y*
- Proxy-Based Transportability (PBT) setting:
 - All causes and effects (U) of Y are unobserved
 - Visible proxy variables (V) are descendants of at least one $u \in U$
- Systemic Sparsity: no edges directly within U or V
 - $dsep(V_i \ U, V_j)$ and $dsep(U_i, Y, U_j)$
- Distribution Shift Diagram $G^+ = (U \cup V \cup M, E \cup E_M)$
 - One $M_i \in M$ connected to corresponding $U_i \in U$, where each M_i corresponds to shifting mechanism for unobserved cause and effect of Y

G⁺Examples

Transportability Approaches in PBT Setting

- Edges between vertices A and B given by: $B^{A}(A) \begin{cases} T_{A,B} & \text{with probability } \alpha_{A,B} \\ \phi & \text{with probability } 1 - \alpha \end{cases}$
- Structural equation for vertex *B*: $B = T_B(\{B^A(A) \text{ for } A \in Parents(B)\})$
- Given multiple parents, *B* can be split into separate, disconnected vertices

Context Sensitivity

- Find set of features X that minimizes conditional mutual information between label and biases
- Minimize Context Sensitivity: I(Y: M|X)
- Find X subset that d-separates M from Y

Redundancy, Context Sensitivity, and Colliders

- Redundancy: I(U: X) = H(U) H(U|X)
 - Using dropout function setting: $I(U: \mathbf{X}) = \alpha_{U,Children_X(U_i)} H(U)$
- Non-collider vertex context sensitivity: $I(M_i: Y|X) = \alpha_{M_i,U_i} (1 \alpha_{U_i,Children_x(U_i)}) \alpha_{U_i,Y} H(M_i)$
- Collider vertex context sensitivity: $I(M_i: Y|X) = \alpha_{U_i,Children_x(U_i)}I(M_i: Y|U_i)$

"Good" vs. "Bad" Unobserved Factors

- $U_i \in U^{GOOD}$ when $dsep(M_i, U_i, Y)$
- $U_i \in U^{BAD}$ when path $M_i \to U_i \leftarrow Y$ exists

U^{GOOD}, U^{BAD}, and Resulting Proxies

- Proxies contain combinations of universally-relevant and domain-relevant features, resulting in multiple classes of proxy variables:
 - $V^{GOOD} \coloneqq CHILDREN(U^{GOOD}) \setminus CHILDREN(U^{BAD})$
 - $V^{BAD} \coloneqq CHILDREN(U^{BAD}) \setminus CHILDREN(U^{GOOD})$
 - $V^{AMBIGUOUS} \coloneqq CHILDREN(U^{BAD}) \cap CHILDREN(U^{GOOD})$

Proxy Bootstrapping

- Harness partial information to classify proxies as *V^{GOOD}*, *V^{BAD}*, *V^{AMBIG}*
- Given DSD $G^+ = (U \cup V \cup M, E \cup E_M)$, create graph $G_Y(V, E_Y)$ s.t. $(V_i, V_j) \in E_Y$ iff not $dsep(V_i, Y, V_j)$
- For vertices with known assignments $V^* \in V$:
 - $V^* \in V^{GOOD} \rightarrow$ "good" label to all neighbors of V^*
 - $V^* \in V^{BAD} \rightarrow$ "bad" label to all neighbors of V^*
- All $V \in \mathbf{V} \setminus V^*$ with both labels receive "ambiguous" label

Feature Engineering

- Build model where output of functions is related to U^{GOOD} , not related to U^{BAD}
- Building models with more redundancy to U^{GOOD} improves context sensitivity:

 $I(M_i:Y|X) = \alpha_{M_i,U_i}\alpha_{U_i,Y}H(U_i|Children_X(U_i))$

- If redundancy with U^{BAD} is avoided, avoid picking up sensitivity from associated shifting mechanisms
 - For $U_i \in U^{BAD}$, if it is maintained that $I(U_i: X|Y) = 0$, then $I(M_i: Y|X) = 0$

Causal Information Splitting

 Separable Ambiguous Proxies: components of V^{AMBIG}, isolating "good" information from "bad"

Isolation Functions

- Isolation Functions:
 - $F_{ISO(V_i)}(V_A|y) \coloneqq argmin_F H(F(V_A|y))$ such that $I(F(V_A): V_i|y) = I(V_A: V_i|y)$
- To achieve $I(F(V_A): U^{BAD}|Y) = 0$, while preserving information about U^{GOOD} , ideally isolate U^{GOOD}
- In given setting, isolate V^{GOOD} using $F_{ISO(V^{GOOD})}(V_A|Y)$
- $I(U_{BAD}: F_{ISO(V_{GOOD})}(V_A|Y)|Y) = 0$
- Isolation functions at worst avoid worsening context sensitivity
- Auxiliary training functions/tasks: get approximate isolation function by training model to predict V_i using V_A

Procedure for Robust Model Building

- **1**. Partition data into constant Y = y
- 2. Identify seeds in V^{GOOD} , V^{BAD} for proxy bootstrapping
- 3. Perform Causal Information Splitting on V^{AMBIG}
- 4. Build prediction model for Y using V^{GOOD} and CIS-engineered V^{AMBIG}

Experiments (Synthetic Data)

 M_G

MB

- Generate data based for DAG:
- \hat{Y}^1 trained on $V^{GOOD} \cup V^{AMBIG}$
- \widehat{Y}^2 trained on V^{GOOD}
- \hat{Y}^3 (Feature engineering based on CIS) trained on $V^{GOOD} \cup F_{ISO(V_G)}(V_A)$
- \hat{Y}^4 trained on $V^{GOOD} \cup V^{GOOD}_A$

Experiments (Census Data)

- Predict if income of a person exceeds 50k
- Models built on pre-pandemic data, evaluated on 2021 data during pandemic
- Model Inputs:
 - Commute time
 - Received government assistance
 - Education level

Experiments (Census Data)

- Engineered features: does not use *Commute* or *Medicaid Status* directly
 - Trains models to use features to predict education-level
- Compared to all features and just education (limited features)

	State	All Features	Engineered Features	Limited Features
	CA	$\textbf{0.712} \pm 0.0011$	$\textbf{0.711} \pm 0.0014$	0.692 ± 0.0014
·	FL	$\textbf{0.683} \pm 0.0012$	0.678 ± 0.0018	0.68 ± 0.0013
	GA	0.689 ± 0.0025	$\textbf{0.707} \pm 0.0055$	$\textbf{0.709} \pm 0.0029$
	IL	0.662 ± 0.0026	$\textbf{0.689} \pm 0.0033$	0.684 ± 0.0019
	NY	$\textbf{0.707} \pm 0.0022$	$\textbf{0.702} \pm 0.0025$	0.687 ± 0.008
	NC	$\textbf{0.691} \pm 0.0031$	$\textbf{0.684} \pm 0.0034$	$\textbf{0.683} \pm 0.003$
	OH	0.689 ± 0.0022	$\textbf{0.703} \pm 0.004$	$\textbf{0.696} \pm 0.0029$
	PA	0.672 ± 0.0017	$\textbf{0.695} \pm 0.0023$	0.688 ± 0.0022
	TX	0.69 ± 0.0029	$\textbf{0.712} \pm 0.0028$	$\textbf{0.712} \pm 0.0027$
	avg	0.688	0.698	0.692

State	All Features	Engineered Features	Limited Features
CA	$\textbf{0.713} \pm 0.0010$	$\textbf{0.710} \pm 0.0012$	0.691 ± 0.0011
FL	0.700 ± 0.0014	0.693 ± 0.0020	0.694 ± 0.0017
GA	0.708 ± 0.0025	$\textbf{0.708} \pm 0.0036$	$\textbf{0.707} \pm 0.0036$
IL	0.689 ± 0.0023	$\textbf{0.690} \pm 0.0039$	$\textbf{0.685} \pm 0.0021$
NY	0.705 ± 0.0024	0.698 ± 0.0022	0.687 ± 0.0076
NC	$\textbf{0.713} \pm 0.0020$	0.703 ± 0.0049	0.700 ± 0.0028
OH	0.717 ± 0.0029	$\textbf{0.716} \pm 0.0042$	$\textbf{0.712} \pm 0.0033$
PA	0.702 ± 0.0028	$\textbf{0.701} \pm 0.0027$	0.695 ± 0.0026
TX	$\textbf{0.708} \pm 0.0019$	$\textbf{0.705} \pm 0.0025$	$\textbf{0.706} \pm 0.0022$
avg	0.706	0.703	0.697

Results

- Feature selection based on conditional independence tests
- Causal Information Splitting allows isolation of robust predictive power
- Engineered features increase robustness and can improve accuracy