COMPSCI 276: Causal and Probabilistic Reasoning

Rina Dechter, UCI

Lecture 1: Introduction

Darwiche chapters 1,3
Dechter-Morgan\&claypool book: Chapters 1-2
Causal Inference in Statistics, A primer, J. Pearl, M Glymur and N. Jewell Ch1, Why, ch1

Class Information

Textbooks

Course Topics

Probabilistic Graphical Models, Structural causal models, The Causal Hierarchy.
1.Representing independencies by graphs. d-seperation.
2.Algorithms (Bucket-elimination, Join-trees, The induced-width.).
3.Sampling schemes for graphical models (MCMC, IS)
4.Structural Causal Models; Identification of Causal Effect;
5.The Back-Door and Front-Door Criteria and the Do-Calculus.
6.Linear Causal Models.
7.Counterfactuals.
8.Algorithms for identification. The ID algorithm.
9.Learning Bayesian networks and Causal graphs (causal discovery).

Class page

Grading

- Four or five homeworks
- Project: Class presentation and a report: Students will present a paper and write a report
[P] Judea Pearl, Madelyn Glymour, Nicholas P. Jewell,

Causal Inference in Statistics: A Primer, Cambridge Press, 2016.
[C] Judea Pearl,
Causality: Models, Reasoning, and Inference Cambridge Press, 2009.
[W] Judea Pearl, Dana Mackenzie,
The Book of Why,
Basic books, 2018.
-[Darwiche] Adnan Darwiche, "Modeling and Reasonin with Bayesian Networks"
-[Dechter] Rina Dechter, "Reasoning with Probabilistic and Deterministic Graphical Models: Exact Algorithms'

Why Causality?

This course last part

This course main part

Ladder of Causation`

seeing, doing, and imagining.

- Most animals, learning machines are on the first rung, learning from association.
- Tool users, such as early humans, are on the second rung, if they act by planning and not merely by imitation. We can also use experiments to learn the effects of interventions, and presumably this is how babies acquire much of their causal knowledge.
- On the top rung, counterfactual learners can imagine worlds that do not exist and infer reasons for observed phenomena.

The Primary AI Challenges

- Machine Learning focuses on replicating humans learning
- Automated reasoning focuses on replicating how people reason.

Automated Reasoning

Medical Doctor

Lawyer

Policy Maker

Queries:

- Prediction: what will happen?
- Diagnosis: what had happened?
- Situation assessment: What is going on?
- Planning, decision making: what to do?
- Explanation: need causal models
- Counterfactuals: What if? need Structural causal models

Automated Reasoning

Queries:

- Prediction
- Diagnosis
- Situation assessment
- Planning, decision making
- Explanation, causal effect
- Counterfactuals

Knowledge is huge, so How to identify what's relevant? \square Causal Graphical Models
**The field of Automated Reasoning developing general purpose formalisms (languages, models) that enable us to represent knowledge in such a way that we can exploit the relevance and causal relationship quickly.
Answer query in the 3 levels of the causal heirarchy

Graphical Models

Example • diagnosing liver disease (Onisko et al., 1999)

Automated Reasoning:

- Develop methods to answer these questions.
- Learning the models: from experts and data.

Complexity of Automated Reasoning

- Prediction
- Diagnosis
- Planning and scheduling
- Probabilistic Inference
- Explanation
- Decision-making
- Causal reasoning

Reasoning is computationally hard
Complexity is exponential

Al Renaissance

- Deep learning
- Fast predictions
- "Instinctive"

Tools:
Tensorflow, PyTorch, ...

D A N I EL

- Probabilistic models
- Slow reasoning
- "Logical / deliberative"

Tools:
Graphical Models,
Probabilistic programming, Markov Logic, ...

Text Books

Class page

Probabilistic Graphical models

- Describe structure in large problems
- Large complex system $F(X)$
- Made of "smaller", "local" interactions $f_{\alpha}\left(x_{\alpha}\right)$
- Complexity emerges through interdependence

Probabilistic Graphical models

- Describe structure in large problems
- Large complex system $F(X)$
- Protein Structure prediction: predicting the 3d structure from given sequences
- CPD: Computational Protein design (backbone) algorithms enumerate a combinatorial number of candidate structures to compute the Global Minimum Energy Conformation (GMEC).

$$
\mathbf{x}^{*}=\arg \max _{\mathbf{x}} \prod_{\alpha} f_{\alpha}\left(\mathbf{x}_{\alpha}\right) \quad f\left(\mathbf{x}^{*}\right)=\max _{\mathbf{x}} \prod_{\alpha} f_{\alpha}\left(\mathbf{x}_{\alpha}\right)
$$

[Yanover \& Weiss 2002] [Bruce R. Donald et. Al. 2016]

Phenylalanine

We can model the compatibility of two parts of the protein with a reward for positions that are compatible, and penalty for incompatible ones.

Probabilistic Graphical models

- Describe structure in large problems
- Large complex system $F(X)$
- Made of "smaller", "local" interactions $f_{\alpha}\left(x_{\alpha}\right)$
- Complexity emerges through interdependence
- Examples \& Tasks
- Summation \& marginalization
"partition function"
$p\left(x_{i}\right)=\frac{1}{Z} \sum_{\mathbf{x} \backslash x_{i}} \prod_{\alpha} f_{\alpha}\left(\mathbf{x}_{\alpha}\right) \quad$ and $\quad Z=\sum_{\mathbf{x}} \prod_{\alpha} f_{\alpha}\left(\mathbf{x}_{\alpha}\right)$
Image segmentation and classification:

e.g., [Plath et al. 2009]

Probabilistic (Causal) Graphical models

- Describe structure in large problems
- Large complex system $F(X)$
- Made of "smaller", "local" interactions $f_{\alpha}\left(x_{\alpha}\right)$
- Complexity emerges through interdependence
- Examples \& Tasks
- Mixed inference (marginal MAP, MEU, ...)

$$
f\left(\mathbf{x}_{M}^{*}\right)=\max _{\mathbf{x}_{M}} \sum_{\mathbf{x}_{S}} \prod_{\alpha} f_{\alpha}\left(\mathbf{x}_{\alpha}\right)
$$

Influence diagrams \& optimal decision-making
(the "oil wildcatter" problem)

Example domains for graphical models

- Natural Language processing
- Information extraction, semantic parsing, translation, topic models, ...
- Computer vision
- Object recognition, scene analysis, segmentation, tracking, ...
- Computational biology
- Pedigree analysis, protein folding and binding, sequence matching, ...
- Networks
- Webpage link analysis, social networks, communications, citations,
- Robotics
- Planning \& decision making
- Social sciences, man-machine interaction requires causality

In more details...

Bayesian Networks (Pearl 1988)

An early example From medical diagnosis

$$
P(S, C, B, X, D)=P(S) P(C \mid S) P(B \mid S) P(X \mid C, S) P(D \mid C, B)
$$

Combination: Product
Marginalization: sum/max

- Posterior marginals, probability of evidence, MPE

Is this a causal model?

- $P(D=0)=\sum_{S, L, B, X} P(S) \cdot P(C \mid S) \cdot P(B \mid S) \cdot P(X \mid C, S) \cdot P(D \mid C, B$
$\operatorname{MAP}(P)=\max _{S, L, B, X} P(S) \cdot P(C \mid S) \cdot P(B \mid S) \cdot P(X \mid C, S) \cdot P(D \mid C, B)$

Alarm network

- Bayes nets: compact representation of large joint distributions

The "alarm" network: 37 variables, 509 parameters (rather than $2^{37}=10^{11}$!)

Chief Complaint: Sore Throat

KI

Constraint Networks

Example: map coloring

Variables - countries (A,B,C,etc.)
Values - colors (red, green, blue)
Constraints: $\quad A \neq B, \quad A \neq D, \quad D \neq E, \quad$ etc.
Constraint graph

A	B
red	green
red	yellow
green	red
green	yellow
yellow	green
yellow	red

Propositional Reasoning

Example: party problem

- If Alex goes, then Becky goes:
$A \rightarrow B$
- If Chris goes, then Alex goes:

- Question: Is it possible that Chris goes to the party but Becky does not?

Is the propositional theory

$\phi=\{A \rightarrow B, C \rightarrow A$,
$\neg \mathrm{B}$,
C\} satisfiable?

Probabilistic reasoning (directed)

Party example: the weather effect

- Alex is-likely-to-go in bad weather

Questions:

- Given bad weather, which group of individuals is most likely to show up at the party?
- What is the probability that Chris goes to the party but Becky does not?

$$
\begin{aligned}
& P(W, A, C, B)=P(B \mid W) \cdot P(C \mid W) \cdot P(A \mid W) \cdot P(W) \\
& P(A, C, B \mid W=\text { bad })=0.9 \cdot 0.1 \cdot 0.5
\end{aligned}
$$

W	A	$P(A \mid W)$
good	0	.01
good	1	.99
bad	0	.1
bad	1	.9

Mixed Probabilistic and Deterministic networks

Query:

Is it likely that Chris goes to the party if Becky does not but the weather is bad?

$$
P(C, \neg B \mid w=\text { bad }, A \rightarrow B, C \rightarrow A)
$$

Causal Probabilistic and Deterministic networks

$$
P(C, \neg B \mid w=\text { bad }, A \rightarrow B, C \rightarrow A)
$$

Alex is-likely-to-go in bad weather Chris rarely-goes in bad weather Becky is indifferent but unpredictable

Causal effect query vs obs query:

- Is it likely that Chris goes to the party if Becky does not?
- Is it likely that Chris goes to the party if we force Becky to not go.

$$
\begin{aligned}
& P(C \mid \operatorname{do}(B=\text { notgo }), w=b a d) \\
& P(C \mid B=\text { notgo } . w=b a d)
\end{aligned}
$$

Complexity of Reasoning Tasks

- Constraint satisfaction
- Counting solutions
- Combinatorial optimization
- Belief updating
- Most probable explanation
- Decision-theoretic planning

Reasoning is computationally hard

Complexity is Time and space(memory)

Complexity of Causal Tasks

- Constraint satisfaction
- Counting solutions
- Combinatorial optimization
- Belief updating
- Most probable explanation
- Decision-theoretic planning

Reasoning is computationally hard

Complexity is Time and space(memory)

Tree-solving is easy

Belief updating (sum-prod)

CSP - consistency (projection-join)

MPE (max-prod)
\#CSP (sum-prod)
Trees are processed in linear time and memory

Transforming into a Tree

- By Inference (thinking)
- Transform into a single, equivalent tree of subproblems
- By Conditioning (guessing)
- Transform into many tree-like sub-problems.

Inference and Treewidth

Inference algorithm: Time: exp(tree-width) Space: $\exp ($ tree-width) treewidth $=4-1=3$ treewidth $=$ (maximum cluster size) -1

Conditioning and Cycle cutset

Cycle cutset $=\{A, B, C\}$

Search over the Cutset

Bird's-eye View of Exact Algorithms

 Inference
$\exp \left(w^{*}\right)$ time/space

Search
Exp(w^{*}) time $\mathrm{O}\left(\mathrm{w}^{*}\right)$ space

Search+inference:
Space: $\exp (q) \quad q$: user
Time: $\exp (q+c(q)) \quad$ controlled

Bird's-eye View of Exact Algorithms

Inference
$\exp \left(w^{*}\right)$ time/space

Search+inference:
Space: $\exp (q) \quad q$: user
Time: $\exp (q+c(q))$ controlled

Bird's-eye View of Approximate Algorithms

Search + inference:

Sampling + bounded inference

Why/What/How Uncertainty?

Why Uncertainty?

- Answer: It is abundant
- What formalism to use?
- Answer: Probability theory
- How to overcome exponential representation?
- Answer: Graphs, graphs, graphs... to capture irrelevance, independence, causality
- Why Causality?
- Because it is everywhere (what would have happened in January $6^{\text {th }}$ had the Capitol been better protected?)
- If we seek strong AI, AGI (Artificial General Intelligence) we must have causal models.

Basics of Probabilistic Calculus (Chapter 3)

The Burglary Example

Degrees of Belief

- Assign a degree of belief or probability in $[0,1]$ to each world ω and denote it by $\operatorname{Pr}(\omega)$.
- The belief in, or probability of, a sentence α :

$$
\operatorname{Pr}(\alpha) \stackrel{\text { def }}{=} \sum_{\omega \mid=\alpha} \operatorname{Pr}(\omega)
$$

world	Earthquake	Burglary	Alarm	$\operatorname{Pr}()$.
ω_{1}	true	true	true	.0190
ω_{2}	true	true	false	.0010
ω_{3}	true	false	true	.0560
ω_{4}	true	false	false	.0240
ω_{5}	false	true	true	.1620
ω_{6}	false	true	false	.0180
ω_{7}	false	false	true	.0072
ω_{8}	false	false	false	.7128

Properties of Beliefs

- A bound on the belief in any sentence:

$$
0 \leq \operatorname{Pr}(\alpha) \leq 1 \quad \text { for any sentence } \alpha \text {. }
$$

- A baseline for inconsistent sentences:

$$
\operatorname{Pr}(\alpha)=0 \quad \text { when } \alpha \text { is inconsistent. }
$$

- A baseline for valid sentences:

$$
\operatorname{Pr}(\alpha)=1 \quad \text { when } \alpha \text { is valid. }
$$

Properties of Beliefs

- The belief in a sentence given the belief in its negation:

$$
\operatorname{Pr}(\alpha)+\operatorname{Pr}(\neg \alpha)=1
$$

Example

$$
\begin{aligned}
\operatorname{Pr}(\text { Burglary }) & =\operatorname{Pr}\left(\omega_{1}\right)+\operatorname{Pr}\left(\omega_{2}\right)+\operatorname{Pr}\left(\omega_{5}\right)+\operatorname{Pr}\left(\omega_{6}\right)=.2 \\
\operatorname{Pr}(\neg \text { Burglary }) & =\operatorname{Pr}\left(\omega_{3}\right)+\operatorname{Pr}\left(\omega_{4}\right)+\operatorname{Pr}\left(\omega_{7}\right)+\operatorname{Pr}\left(\omega_{8}\right)=.8
\end{aligned}
$$

Properties of Beliefs

- The belief in a disjunction:

$$
\operatorname{Pr}(\alpha \vee \beta)=\operatorname{Pr}(\alpha)+\operatorname{Pr}(\beta)-\operatorname{Pr}(\alpha \wedge \beta) .
$$

- Example:

$$
\begin{aligned}
\operatorname{Pr}(\text { Earthquake }) & =\operatorname{Pr}\left(\omega_{1}\right)+\operatorname{Pr}\left(\omega_{2}\right)+\operatorname{Pr}\left(\omega_{3}\right)+\operatorname{Pr}\left(\omega_{4}\right)=.1 \\
\operatorname{Pr}(\text { Burglary }) & =\operatorname{Pr}\left(\omega_{1}\right)+\operatorname{Pr}\left(\omega_{2}\right)+\operatorname{Pr}\left(\omega_{5}\right)+\operatorname{Pr}\left(\omega_{6}\right)=.2 \\
\operatorname{Pr}(\text { Earthquake } \wedge \text { Burglary }) & =\operatorname{Pr}\left(\omega_{1}\right)+\operatorname{Pr}\left(\omega_{2}\right)=.02 \\
\operatorname{Pr}(\text { Earthquake } \vee \text { Burglary }) & =.1+.2-.02=.28
\end{aligned}
$$

Properties of Beliefs

- The belief in a disjunction:
$\operatorname{Pr}(\alpha \vee \beta)=\operatorname{Pr}(\alpha)+\operatorname{Pr}(\beta) \quad$ when α and β are mutually exclusive.

Entropy

Quantify uncertainty about a variable X using the notion of entropy:

$$
\operatorname{ENT}(X) \stackrel{\text { def }}{=}-\sum_{x} \operatorname{Pr}(x) \log _{2} \operatorname{Pr}(x)
$$

where $0 \log 0=0$ by convention.

	Earthquake	Burglary	Alarm
true	.1	.2	.2442
false	.9	.8	.7558
ENT(.)	.469	.722	.802

Entropy

- The entropy for a binary variable X and varying $p=\operatorname{Pr}(X)$.
- Entropy is non-negative.
- When $p=0$ or $p=1$, the entropy of X is zero and at a minimum, indicating no uncertainty about the value of X.
- When $p=\frac{1}{2}$, we have $\operatorname{Pr}(X)=\operatorname{Pr}(\neg X)$ and the entropy is at a maximum (indicating complete uncertainty).

Bayes Conditioning

Alpha and beta are events

Closed form for Bayes conditioning:

$$
\operatorname{Pr}(\alpha \mid \beta)=\frac{\operatorname{Pr}(\alpha \wedge \beta)}{\operatorname{Pr}(\beta)}
$$

Defined only when $\operatorname{Pr}(\beta) \neq 0$.

Degrees of Belief

world	Earthquake	Burglary	Alarm	$\operatorname{Pr}()$.
ω_{1}	true	true	true	.0190
ω_{2}	true	true	false	.0010
ω_{3}	true	false	true	.0560
ω_{4}	true	false	false	.0240
ω_{5}	false	true	true	.1620
ω_{6}	false	true	false	.0180
ω_{7}	false	false	true	.0072
ω_{8}	false	false	false	.7128

```
\(\operatorname{Pr}(\) Earthquake \()=\operatorname{Pr}\left(\omega_{1}\right)+\operatorname{Pr}\left(\omega_{2}\right)+\operatorname{Pr}\left(\omega_{3}\right)+\operatorname{Pr}\left(\omega_{4}\right)=.1\)
\(\operatorname{Pr}\) (Burglary) \(=.2\)
\(\operatorname{Pr}(\neg\) Burglary \()=.8\)
\(\operatorname{Pr}(\) Alarm \()=.2442\)
```


Belief Change

Burglary is independent of Earthquake

Conditioning on evidence Earthquake:

$\operatorname{Pr}($ Burglary $)$	$=.2$
$\operatorname{Pr}($ Burglary \mid Earthquake $)$	$=.2$
$\operatorname{Pr}($ Alarm $)$	$=.2442$
$\operatorname{Pr}($ Alarm \mid Earthquake $)$	$\approx .75 \uparrow$

The belief in Burglary is not changed, but the belief in Alarm increases.

Belief Change

Earthquake is independent of burglary

Conditioning on evidence Burglary:

$\operatorname{Pr}($ Alarm $)$	$=.2442$
$\operatorname{Pr}($ Alarm \mid Burglary $)$	$\approx .905 \uparrow$
$\operatorname{Pr}($ Earthquake $)$	$=.1$
$\operatorname{Pr}($ Earthquake \mid Burglary $)$	$=.1$

The belief in Alarm increases in this case, but the belief in Earthquake stays the same.

Belief Change

The belief in Burglary increases when accepting the evidence Alarm. How would such a belief change further upon obtaining more evidence?

- Confirming that an Earthquake took place:

$$
\begin{array}{ll}
\operatorname{Pr}(\text { Burglary } \mid \text { Alarm }) & \approx .741 \\
\operatorname{Pr}(\text { Burglary } \mid \text { Alarm } \wedge \text { Earthquake }) & \approx .253 \downarrow
\end{array}
$$

We now have an explanation of Alarm.

- Confirming that there was no Earthquake:

$$
\begin{array}{ll}
\operatorname{Pr}(\text { Burglary } \mid \text { Alarm }) & \approx .741 \\
\operatorname{Pr}(\text { Burglary } \mid \text { Alarm } \wedge \neg \text { Earthquake }) & \approx .957 \uparrow
\end{array}
$$

New evidence will further establish burglary as an explanation.

Conditional Independence

Pr finds α conditionally independent of β given γ iff

$$
\operatorname{Pr}(\alpha \mid \beta \wedge \gamma)=\operatorname{Pr}(\alpha \mid \gamma) \quad \text { or } \operatorname{Pr}(\beta \wedge \gamma)=0
$$

Another definition

$$
\operatorname{Pr}(\alpha \wedge \beta \mid \gamma)=\operatorname{Pr}(\alpha \mid \gamma) \operatorname{Pr}(\beta \mid \gamma) \quad \text { or } \operatorname{Pr}(\gamma)=0
$$

Variable Independence

Pr finds \mathbf{X} independent of \mathbf{Y} given \mathbf{Z}, denoted $I_{\operatorname{Pr}}(\mathbf{X}, \mathbf{Z}, \mathbf{Y})$, means that Pr finds \mathbf{x} independent of \mathbf{y} given \mathbf{z} for all instantiations \mathbf{x}, \mathbf{y} and \mathbf{z}.

Example

$\mathbf{X}=\{A, B\}, \mathbf{Y}=\{C\}$ and $\mathbf{Z}=\{D, E\}$, where A, B, C, D and E are all propositional variables. The statement $l_{\operatorname{Pr}}(\mathbf{X}, \mathbf{Z}, \mathbf{Y})$ is then a compact notation for a number of statements about independence:

```
\(A \wedge B\) is independent of \(C\) given \(D \wedge E\);
\(A \wedge \neg B\) is independent of \(C\) given \(D \wedge E ;\)
\(\neg A \wedge \neg B\) is independent of \(\neg C\) given \(\neg D \wedge \neg E\);
```

That is, $\boldsymbol{I}_{\operatorname{Pr}}(\mathbf{X}, \mathbf{Z}, \mathbf{Y})$ is a compact notation for $4 \times 2 \times 4=32$ independence statements of the above form.

Further Properties of Beliefs

Chain rule

$$
\begin{aligned}
& \operatorname{Pr}\left(\alpha_{1} \wedge \alpha_{2} \wedge \ldots \wedge \alpha_{n}\right) \\
& \quad=\operatorname{Pr}\left(\alpha_{1} \mid \alpha_{2} \wedge \ldots \wedge \alpha_{n}\right) \operatorname{Pr}\left(\alpha_{2} \mid \alpha_{3} \wedge \ldots \wedge \alpha_{n}\right) \ldots \operatorname{Pr}\left(\alpha_{n}\right) .
\end{aligned}
$$

Case analysis (law of total probability)

$$
\operatorname{Pr}(\alpha)=\sum_{i=1}^{n} \operatorname{Pr}\left(\alpha \wedge \beta_{i}\right),
$$

where the events $\beta_{1}, \ldots, \beta_{n}$ are mutually exclusive and exhaustive.

Further Properties of Beliefs

Another version of case analysis

$$
\operatorname{Pr}(\alpha)=\sum_{i=1}^{n} \operatorname{Pr}\left(\alpha \mid \beta_{i}\right) \operatorname{Pr}\left(\beta_{i}\right)
$$

where the events $\beta_{1}, \ldots, \beta_{n}$ are mutually exclusive and exhaustive.
Two simple and useful forms of case analysis are these:

$$
\begin{aligned}
& \operatorname{Pr}(\alpha)=\operatorname{Pr}(\alpha \wedge \beta)+\operatorname{Pr}(\alpha \wedge \neg \beta) \\
& \operatorname{Pr}(\alpha)=\operatorname{Pr}(\alpha \mid \beta) \operatorname{Pr}(\beta)+\operatorname{Pr}(\alpha \mid \neg \beta) \operatorname{Pr}(\neg \beta) .
\end{aligned}
$$

The main value of case analysis is that, in many situations, computing our beliefs in the cases is easier than computing our beliefs in α. We shall see many examples of this phenomena in later chapters.

Further Properties of Beliefs

Bayes rule

$$
\operatorname{Pr}(\alpha \mid \beta)=\frac{\operatorname{Pr}(\beta \mid \alpha) \operatorname{Pr}(\alpha)}{\operatorname{Pr}(\beta)} .
$$

- Classical usage: α is perceived to be a cause of β.
- Example: α is a disease and β is a symptom-
- Assess our belief in the cause given the effect.
- Belief in an effect given its cause, $\operatorname{Pr}(\beta \mid \alpha)$, is usually more readily available than the belief in a cause given one of its effects, $\operatorname{Pr}(\alpha \mid \beta)$.

Ladder of

 Causation (PCH)
seeing, doing, and imagining.

- Most animals, learning machines are on the first rung, learning from association.
- Tool users, such as early humans, are on the second rung, if they act by planning and not merely by imitation. We can also use experiments to learn the effects of interventions, and presumably this is how babies acquire much of their causal knowledge.
- On the top rung, counterfactual learners can imagine worlds that do not exist and infer reasons for observed phenomena.

Darwiche 2017: "Human-Level Intelligence or Animal-Like Abilities?"

