COMPSCI 276: Causal and
Probabilistic Reasoning

Rina Dechter, UCI
Lecture 1: Introduction

Darwiche chapters 1,3

Dechter-Morgan&claypool book: Chapters 1-2

Causal Inference in Statistics, A primer, J. Pearl, M Glymur and N. Jewell Ch1l,
8 Why, chl
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\ Class Information

| Textbooks

Course Topics
Probabilistic Graphical Models, Structural causal models,The
Causal Hierarchy.

1.Representing independencies by graphs. d-seperation. [P] Judea Pearl, Madelyn Glymour, Nicholas P.
2.Algorithms (Bucket-elimination, Join-trees, The induced-width.). Jewell,

3.Sampling schemes for graphical models (MCMC, 1S) Causal Inference in Statistics: A Primer,
4.Structural Causal Models; Identification of Causal Effect; Cambridge Press, 2016.

5.The Back-Door and Front-Door Criteria and the Do-Calculus. [C] Judea Pearl,

Causality: Models, Reasoning, and Inference
Cambridge Press, 2009.
[W] Judea Pearl, Dana Mackenzie,
The Book of Why,
Basic books, 2018.

6.Linear Causal Models.

7.Counterfactuals.

8.Algorithms for identification. The ID algorithm.
9.Learning Bayesian networks and Causal graphs (causal
discovery).

Class page +[Darwiche] Adnan Darwiche, "Modeling and Reasonin
with Bayesian Networks*

*[Dechter] Rina Dechter, "Reasoning with Probabilistic
Grading and Deterministic Graphical Models: Exact Algorithms'
* Four or five homeworks
* Project: Class presentation and a report: Students will
present a paper and write a report
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https://ics.uci.edu/~dechter/courses/ics-276/2023-24_Q2-Winter/
http://bayes.cs.ucla.edu/PRIMER/
http://bayes.cs.ucla.edu/BOOK-2K/
http://bayes.cs.ucla.edu/WHY/
http://www.amazon.com/dp/0521884381/
http://www.amazon.com/dp/0521884381/
https://dl.acm.org/doi/10.5555/3348514
https://dl.acm.org/doi/10.5555/3348514
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layers/rungs of the causal hierarchy

This course
last part

This course
main part

This course,
first part

There are three distinct levels of cognitive ability:
seeing, doing and imagining



Ladder of Causation

3. COUNTERFACTUALS

ACTIVITY:  Imagining, Retrospection, Understanding A d A d A A=A
e seeing, doing, and imagining.

QUESTIONS:  What if 1 had done .7 Wiy?

(Was it X rhat caused Y? Whar if X had not

A occurred? What if T had acted differently?)

EXAMPLES:  Wasirt

spirin that stopped my headacher
be alive

Would F alive 1l not
Killed him? What if T had not smoked for the . . . .
s 2 yars? « Most animals, learning machines are on the first rung,

learning from association.

2. INTERVENTION
ACTIVITY:  Doing, Intervening

QUESTIONS: i 1. ow?  Tool users, such as early humans, are on the second rung, if

(What would Y be if Tdo X?

_\;‘ | h {v How can I make Y happen?) they aCt by planning and not merely by imitation' We Can
EXAMPLES:

I ke e, wil y beadach b cure? also use experiments to learn the effects of interventions,

and presumably this is how babies acquire much of their
causal knowledge.

1. ASSOCIATION

ACTIVITY:  Seeing, Observing

QUESTIONS:

Vhat if 1 see

« On the top rung, counterfactual learners can imagine worlds
that do not exist and infer reasons for observed phenomena.

J
0

EXAMPLES:

c symprom tell me about a disease?
oes a survey tell us about the

Winter 2024



The Primary Al Challenges

* Machine Learning focuses on
replicating humans learning

* Automated reasoning focuses on
replicating how people reason.

Winter 2024
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‘ Automated Reasoning

Medical Doctor

&

Lawyer

Policy Maker

Queries:

Prediction: what will happen?

Diagnosis: what had happened?

Situation assessment: What is going on?

Planning, decision making: what to do?

Explanation: need causal models

Counterfactuals: What if? need Structural causal models

Winter 2024



| Automated Reasoning
|

Causal Models Data

Queries:

e Prediction

* Diagnosis

* Situation assessment

* Planning, decision making
e Explanation, causal effect
* Counterfactuals

y

Knowledge is huge, so How to identify what’s relevant? > Causal Graphical Models

**The field of Automated Reasoning developing general purpose
formalisms (languages, models) that enable us to represent knowledge in such a way
that we can exploit the relevance and causal relationship quickly.

Answer query in the 3 levels of the causal heirarchy
Winter 2024 7



| Graphical Models
|

Example: diagnosing liver disease (Onisko et al., 1999)

Gallstones

(o
Queries:
_ G * Prediction
o « Diagnosis, explanation
G G  Situation assessment

Abnomal
carbohydrate

‘ * Planning, decision making
—' Counterfactual reasoning

History of
Blood hospitalzation
ransfusion
Prasence of
antibodies to Fistary of viral
HBsdq in blood hepstitis

Presencs of
hepatits B

» antibodies ta
tesence of HDY in blood
artibodies

suface anligen )~ Fiesence to HBodg in
Enlzrged
in blood of hepatits blood s Hepatalgia
8 antigen
e Total biltubin Body har
loss Hey
patic:
.l‘é!'ﬁ'?n'ﬂy / ' encephalopath @
; Alpha Tmpaited
) fetopratein CONSTIOUSNess,
Trtermations|
normalzed rafio
T gt pohonbin oy
pregrary Antinitachendiial
anlibades sculo-skeletal e fireular
Taundice pain liver edge

symptoms
antibodies
Al amma globuin @ Iiegular i .
il D™ GG @ - C= (%)  Automated Reasoning:
o * Develop methods to answer these questions.
globuiin @ » ascular Hinite i
e * Learning the models: from experts and data.

spot
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Complexity of Automated Reasoning

U
Prediction t  Approximation, anytime
Diagnosis

Planning and scheduling
Probabilistic Inference
Explanation
Decision-making

Causal reasoning

f(n) Linear / Polynomial / Exponential
1200 +
Reasoning is computationally . /
hard 600 / —e&—Line
Complexity is exponential —_— 400 /
200 /
o Leeameettr Tt
1 2 3 456 7 8 910




TI;/I/NKING,

FAST . SLOW

| Al Renaissance
|

* Deep learning

— Fast predictions
— “Instinctive”

Tools:

o

Tensorflow, PyTorch,

/

e
DANIEL
KAHNEMAN

* Probabilistic models

— Slow reasoning

— “Logical / deliberative”

Tools:
Graphical Models,
Probabilistic programming,
Markov Logic, ...

Winter 2024 10



| Text Books
|

Adnan Darwiche

MODELING AND REASONING
with
BAYESIAN NETWORKS

Class page

PROBABILISTIC REASONING
IN INTELLIGENT SYSTEMS:

Networks of Plausible Inference

Ny ?
"y

2009

CAUSALITY

* SECONDEDITION

MODELS, REASONING,
AND INFERENCE

Winter 2024
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2018
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JUDEA PEARL /

AND DANA MACKENZIE

THE ¢ o®

CAUSAL INFERENCE

WHY L“LEZATISTICS

BOOK OF

« g -

THE NEW SCIENCE
OF CAUSE AND EFFECT

®

Judea Pearl
Madelyn Glymour
Nicholas P. Jewell

WILEY
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https://www.ics.uci.edu/~dechter/courses/ics-276/fall-2021/

| Probabilistic Graphical models
|

* Describe structure in large problems
— Large complex system F'(X)
— Made of “smaller”, “local” interactions fuo ()
— Complexity emerges through interdependence



| Probabilistic Graphical models

I , :
* Describe structure in large problems

— Large complex system F(X)

V) Va AN

4 * Protein Structure prediction: predicting the 3d structure from given N
sequences

o e CPD: Computational Protein design (backbone) algorithms

enumerate a combinatorial number of candidate structures to

compute the Global Minimum Energy Conformation (GMEC).

<

X" :argm}?xllfoz(xoz) J(x7) :m}?xllfoz(xoz)

J

[Bruce R. Donald et. Al. 2016] /\’

Phenylalanine

We can model the compatibility of two parts of the protein with a reward
for positions that are compatible, and penalty for incompatible ones. 13



| Probabilistic Graphical models

I , :
* Describe structure in large problems

— Large complex system F(X)
— Made of “smaller”, “local” interactions f,(Zq)
— Complexity emerges through interdependence

* Examples & Tasks

— Summation & marginalization “partition function”
1
plai) = — 2\: 1a1fa<xa) and 7 = E}(jl;[mxa)

Image segmentation and classification:

Observation y Marginals p(x; | y) Observation y Marginals p(x; | y)

cow

e.g., [Plath et al. 2009]

Winter 2024 14



‘ Probabilistic (Causal) Graphical models
I

* Describe structure in large problems
— Large complex system F(X)
— Made of “smaller”, “local” interactions fa(iva)
— Complexity emerges through interdependence

* Examples & Tasks
— Mixed inference (marginal MAP, MEU, ...)

f(xn) = IE?JXZHfa(Xa)

Xs o
<
Influence diagrams & / \/ T
optimal decision-making ——> R

(the “oil wildcatter” problem) \ /
Oil Market

e.g., [Raiffa 1968; Shachter 1986]

Winter 2024
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| Example domains for graphical models

* Natural Language processing

— Information extraction, semantic parsing, translation, topic models, ...
* Computer vision

— Object recognition, scene analysis, segmentation, tracking, ...
* Computational biology

— Pedigree analysis, protein folding and binding, sequence matching, ...
* Networks

— Webpage link analysis, social networks, communications, citations, ....
* Robotics

— Planning & decision making

* Social sciences, man-machine interaction requires causality



In more details...



Bayesian Networks (Pearl 1988)

An early example
From medical diagnosis

BN = (G, 0)
P(C|S) P(BIS)

CPD:

C B |p(D]C,B)
00 |0.1 09
01 |0.7 0.3

\ 10 |0.80.2
1110901

P(s, C, B, X, D) = P(S) P(C|S) P(B|S) P(X|C,S) P(D|C,B) Combination: Product

Marginalization: sum/max

P(X]C,S) P(D|C,B)

e Posterior marginals, probability of evidence, MPE
Is this a causal model?

* P(D=0)=s; g xP(S) P(C|S)- P(BIS) PX|C,S) P(D]C,B
MAP(P)= maxs g x P(S)- P(C|S)- P(B|S)- P(X]|C,S): P(D|C,B)

Winter 2024 18



‘ AI a rm n etWOrk [Beinlich et al., 1989]
I

* Bayes nets: compact representation of large joint distributions

The “alarm” network: 37 variables, 509 parameters (rather than 23/ = 1011 I)

Winter 2024 20
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Constraint Networks

Example: map coloring
Variables - countries (A,B,C,etc.)
Values - colors (red,

Constraints:

A B

red green
red yellow
green red
green yellow
yellow  green
yellow red

Winter 2024

green, blue)

A # D,

Constraint graph

22



Propositional Reasoning

Example: party problem

//V“ //<b
* |f Alex goes, then lﬁecky goes: A-B
* |f Chris goes, then Alex goes: CoA
A\ A\
¢ <
* Question:
Is it possible that Chris goes to
the party but Becky does not? Q (B>
[s the propositional theory C

¢ ={A-B,C - A4, —-B, C} satisfiable?

Winter 2024
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| Probabilistic reasoning (directed)
I

Party example: the weather effect

* Alex is-likely-to-go in bad weather @—@ r(A|w=bad)=.9
* Chris rarely-goes in bad weather @ —@ r(ciw=bad)=.1
. B . . : |
ecky is indifferent but unpredictable @—@ re wba)-s
Questions: wo| A P(A|W)
* Given bad weather, which group of individuals is most good | 0 01
likely to show up at the party? good | 1 99
What is the probability that Chris goes to the party ~ PW) bad | O 1
but Becky does not? bad | 1 9

P(W,AC,B) =P(B|W) * P(C|W) - P(A|W) * P(W)
P(A,C,B|W=bad) =0.9-0.1"-0.5 P(BI|W) P(C|W)

P(A|W) J

Winter 2024 24



Mixed Probabilistic and Deterministic networks

Alex is-likely-to-go in bad weather
Chris rarely-goes in bad weather
Becky is indifferent but unpredictable

PN

P(W)

CN

P(B]|W) P(CIW)

®—0 @
A

->B C->A

Query:

Is it likely that Chris goes to the
party if Becky does not but the
weather is bad?

P(C,-B|w =bad,A - B,C - A)

Winter 2024
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Causal Probabilistic and Deterministic networks

P(C,-B|w =bad,A - B,C - A)

Alex is-likely-to-go in bad weather
Chris rarely-goes in bad weather
Becky is indifferent but unpredictable

oN @ @ @

A->B C->A

P(W)

P(B]|W) P(CIW)

Causal effect query vs obs query:

* Isitlikely that Chris goes to the
party if Becky does not?

* Isitlikely that Chris goes to the
party if we force Becky to not

go.

P(W)

P(C |do(B = notgo) ,w = bad)

B&A A&C P(C |B = notgo. w = bad)

Winter 2024



Complexity of Reasoning Tasks

- Constraint satisfaction Given a full model
*  Counting solutions

* Combinatorial optimization
* Belief updating

* Most probable explanation
* Decision-theoretic planning

Linear / Polynomial / Exponential

1200

1000 /
800

= ] -
Rea So n I n g I S f(n) 600 / —a— l:s;::)mim
ia

computationally hard / S
Complexity is = e

1 2 3 4 5 6 7 8 9 10

Time and space(memory) :

Winter 2024 30



Complexity of Causal Tasks

*  Constraint satisfaction Given a partial model
*  Counting solutions And data...
* Combinatorial optimization
* Belief updating

* Most probable explanation

* Decision-theoretic planning

Linear / Polynomial / Exponential

1200

1000 /
800

= ] -
Rea So n I n g I S f(n) 600 / —a— l:s;::)mim
ia

computationally hard / S
Complexity is = e

1 2 3 4 5 6 7 8 9 10

Time and space(memory) :

Winter 2024 31



| Tree-solving is easy
|

CSP - consistency

Belief updating (projection-join)

(sum-prod)

myr(Y)

myr(Y) my(Z) mzy(Z)

mry(Y) mgy(Y) myz(Z) myz(Z)

MPE (max-prod) #CSP (sum-prod)

Trees are processed in linear time and memory

Winter 2024
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| Transforming into a Tree
|
* By Inference (thinking)

— Transform into a single, equivalent tree of sub-
problems

* By Conditioning (guessing)

— Transform into many tree-like sub-problems.

Winter 2024
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[ Inference and Treewidth
|

; BDEF ;

FHK

Inference algorithm:
Time: exp(tree-width)

Space: exp(tree-width) foopigth=4-1=3
treewidth = (maximum cluster size) - 1

Winter 2024 34



| Conditioning and Cycle cutset
|

o QAP a @@ a @9L  G©
o PO o O ©
Gi'@:'c —> P

)
Cycle cutset = {A,B,C} ‘B
& ™ O & W ()
@Q_® O QR @
o OB IR CY <
O O



|Search over the Cutset
|

Graph » Inference may require too much memory

Coloring

problem e Condition on some of the variables

Winter 2024 37



‘Bird's-eye View of Exact Algorithms
| Inference

exp(w*) time/space

Search
Exp(w*) time
O(w™) space

1]
o] 9]
?ﬂ o] o] [a]
1] [of [1 Etﬂ t Et Et Etﬂ
.A 'A | .A 'A 'A 'A f .A 'A

1]
[
Etﬂﬂtﬂ
AWAWAWAWA
0/1/0{1/0{1|0{2{0{ 1|0 1|0 1/0f1|0{ 1|01 1{0{ 1|0 2011/ 0] 1|0 2| O[ 1| Of 1 011/0/1)/0{1{01/0(1
™
Search+inference:

-y EEL =

Time: exp(g+c(q)) controlled
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‘Bird's-eye View of Exact Algorithms
I

Inference

exp(w*) time/space

Context minimal AND/OR search graph

18 AND nodes

/

Winter 2024

Search+inference:
Space: exp(q)
Time: exp(g+c(q))

Search
Exp(w*) time
O(w™) space

g: user
controlled

39



‘ Bird's-eye View of Approximate Algorithms

Inference

1

Bounded Inference

And what about causal-effect?
Counterfactuals? Confounding?

Search
" Sampling
G Q Context minimal AND/OR search graph

18 AND nodes /
5:’% e

o = @ﬁﬁi E Sampling + bounded inference

Winter 2024




| Why/What/How Uncertainty?

R Why Uncertainty?
— Answer: It is abundant

* What formalism to use?
— Answer: Probability theory

* How to overcome exponential representation?

— Answer: Graphs, graphs, graphs... to capture
irrelevance, independence, causality
* Why Causality?
— Because it is everywhere (what would have happened in
January 6™ had the Capitol been better protected?)

— If we seek strong Al, AGI (Artificial General Intelligence)
we must have causal models.

Winter 2024 43



Basics of Probabilistic Calculus (Chapter 3)



'The Burglary Example
|

Earthquake Burglary

SN

Alarm

Radio /

Call

Winter 2024
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Degrees of Belief

@ Assign a degree of belief or probability in [0, 1] to each world
w and denote it by Pr(w).
@ [he belief in, or probability of, a sentence a:

Pr(a) « ZPl(w)

wEa
world | Earthquake Burglary Alarm  Pr(.)
W1 true true true  .0190
Wo true true false  .0010
W3 true false true  .0560
W4 true false false  .0240
Wws false true true  .1620
We false true false .0180
Wy false false true  .0072
ws false false false  .7128

Winter 2024 46



Properties of Beliefs

@ A bound on the belief in any sentence:

0 < Pr(a) <1 forany sentence «.
@ A baseline for inconsistent sentences:

Pr(a) =0 when « is inconsistent.
@ A baseline for valid sentences:

Pr(a) =1  when « is valid.

Winter 2024 47



Properties of Beliefs
o
X

@ [he belief in a sentence given the belief in its negation:

Pr(a) 4+ Pr(—a) = 1.

Example

Pr(Burglary) = Pr(wi)+ Pr(wz) + Pr(ws) + Pr(ws)
Pr(—=Burglary) = Pr(ws)+ Pr(ws) + Pr(wz) + Pr(ws)

2
.8

Winter 2024 48



Properties of Beliefs

a R
4 X AN

|'I I'|
\ e /

@ The belief in a disjunction:
Pr(a Vv 3) = Pr(a) + Pr(3) — Pr(a A 3).

o Example:

Pr(Earthquake) = Pr(wi)+ Pr(w2) + Pr(wsz) + Pr(ws) = .1
Pr(Burglary) = Pr(wi)+ Pr(w2) + Pr(ws) + Pr(ws) = .2
Pr(Earthquake A Burglary) = Pr(wi) + Pr(wz) = .02
Pr(Earthquake vV Burglary) = .1+ .2 - .02 = .28
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Properties of Beliefs

@« B
/ X AN

- |
N 4

@ [he belief in a disjunction:

Pr(av3) = Pr(a)+Pr(3) when « and 3 are mutually exclusive.

Winter 2024 50



Quantify uncertainty about a variable X using the notion of
entropy:

ENT(X) % —ZPr x) log, Pr(x),

where 0log0 = 0 by convention.

Earthquake Burglary Alarm
true 1 2 2442
false 9 8 7558

ENT(.) 469 722 802

Winter 2024 51



@ The entropy for a binary variable X and varying p = Pr(X).
@ Entropy is non-negative.

@ When p=0or p =1, the entropy of X is zero and at a
minimum, indicating no uncertainty about the value of X.

@ When p = % we have Pr(X) = Pr(—X) and the entropy is at

a maximum (indicating complete uncertainty).
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Bayes Conditioning

Alpha and beta are events

Closed form for Bayes conditioning:

Pr(a A 3)

Pr(«|3) =

Pr(/3)

Defined only when Pr(/3) # 0.
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Degrees of Belief

world | Earthquake Burglary Alarm  Pr(.)

W1 true true true .0190
Wo true true false  .0010
W3 true false true  .0560
Wy true false false .0240
W false true true  .1620
We false true false  .0180
Wy false false true  .0072
wg false false false .7128

Pr(Earthquake) = Pr(wi)+ Pr(w2) + Pr(ws) + Pr(ws) = .1

Pr(Burglary) = .2

Pr(—Burglary) = .8

Pr(Alarm) = .2442
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Belief Change

Burglary is independent of Earthquake

Conditioning on evidence Earthquake:

Pr(Burglary) = .2
Pr(Burglary|Earthquake) 2

Pr(Alarm) = .2442
Pr(Alarm|Earthquake) ~ 751

The belief in Burglary is not changed, but the belief in Alarm
Increases.
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Belief Change

Earthguake is independent of burglary

Conditioning on evidence Burglary:

Pr(Alarm) = .2442
Pr(Alarm|Burglary) ~ .9051
Pr(Earthquake) = .1
Pr(Earthquake|Burglary) = .1

The belief in Alarm increases in this case, but the belief in
Earthquake stays the same.
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Belief Change

The belief in Burglary increases when accepting the evidence
Alarm. How would such a belief change further upon obtaining
more evidence?

@ Confirming that an Earthquake took place:

Pr(Burglary|Alarm) ~ .741
Pr(Burglary|Alarm A Earthquake) ~ .253 |
We now have an explanation of Alarm.
@ Confirming that there was no Earthquake:
Pr(Burglary|Alarm) 741

Pr(Burglary|Alarm A —=Earthquake) =~ .957

New evidence will further establish burglary as an explanation.
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Conditional Independence

Pr finds a conditionally independent of (3 given -y iff

Pr(a|3 A ~v) = Pr(aly) or Pr(BA~v)=0.

Another definition

Pr(a A Bly) = Pr(a|y)Pr(3|y) or Pr(vy) = 0.
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Variable Independence

Pr finds X independent of Y given Z, denoted /p.(X,Z.Y), means
that Pr finds x independent of y given z for all instantiations x, y
and z.

X={A,B},)Y={C}and Z={D.E}, where A,B,C,D and E
are all propositional variables. The statement /p,(X,Z.,Y) is then a
compact notation for a number of statements about independence:

A » B is independent of C given D / E;
A n =B is independent of C given D / E;

—A A =B is independent of = C given =D A —E;

That is, lpr(X,Z,Y) is a compact notation for 4 x 2 x 4 = 32
independence statements of the above form.
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Further Properties of Beliefs
Chanrgle . ... ...

Chain rule

Pr(ai Aas AL A ap)
= Pr(ai|ag A ... Aap)Pr(az|laz Ao A ap) ... Pr(ag).

Case analysis (law of total probability)

n
Pr(a) = Z Pr(a A 5;),
i=1

where the events /31, .... (3, are mutually exclusive and exhaustive.

>
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Further Properties of Beliefs
 Another version of case analysis |

Another version of case analysis

Pr(a) =) Pr(a|8;)Pr(3),

i=1

where the events 31, ..., 3, are mutually exclusive and exhaustive.

o

Two simple and useful forms of case analysis are these:

Pr(a) = Pr(aApB)+ Pr(aA—/3)
Pr(a) = Pr(a|8)Pr(3)+ Pr(a|-=38)Pr(—73).

The main value of case analysis is that, in many situations,
computing our beliefs in the cases is easier than computing our

beliefs in «v. We shall see many examples of this phenomena in
later chapters.
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Further Properties of Beliefs

Bayes rule

Pr(3|a)Pr(a)

Pr(a|3) = Pr(3)

@ Classical usage: «v is perceived to be a cause of /3.
@ Example: a is a disease and (3 is a symptom-—
@ Assess our belief in the cause given the effect.

@ Belief in an effect given its cause, Pr(/3|«), is usually more

readily available than the belief in a cause given one of its
effects, Pr(a|/3).
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Ladder of

seeing, doing, and imagining.

*

!Causaﬁon(PCH)

3. COUNTERFACTUALS
ACTIVITY:  Imagining, Retrospection, Understanding
QUESTIONS:  What if 1 had done .7 Wiy?

(Was it X rhat caused Y? Whar if X had not
A occurred? What if T had acted differently?)

EXAMPLES:  Was it the aspitin that stopped my headache?
Would F be alive 1d not
killed him? What if T had not smo fe

et « Most animals, learning machines are on the first rung,
learning from association.

2 INTERVENTION * Tool users, such as early humans, are on the second rung, if
! QUESTIONS: 17 10 1 they act by planning and not merely by imitation. We can
=1 (What would Y be if Tdo X? - - -
X Hor can | make Y bappert) also use experiments to learn the effects of interventions,
EXAMPLES: 1€ ke epin il my beadiche b curd? and presumably this is how babies acquire much of their
causal knowledge.

« On the top rung, counterfactual learners can imagine worlds
L ASSocATIoN that do not exist and infer reasons for observed phenomena.

QUESTIONS:

What if 1 see
I

EXAMPLES:

oes  sympiom el e bout di? Darwiche 2017: “Human-Level Intelligence or Animal-Like
i Abilities?”
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