Causal and Probabilistic Reasoning

Rina Dechter

The Identification Problem
The Front-Door Criterion, The Do-calculus

Outline

The backdoor criterion and the adjustment formula Computing bd: Inverse probability weighting Conditional intervention
Front door condition
The do calculus

Outline

The backdoor criterion and the adjustment formula Computing bd: Inverse probability weighting
Conditional intervention
Front door condition
The do calculus

How could adjustment help in real data analysis?

(The Problem of Confounding)

slides9 2762024

How could adjustment help in real data analysis?

(The Problem of Confounding)

slides9 2762024

Confounding Bias

Confounding Bias

What's the causal effect of Exercise on Cholesterol?
What about P (cholesterol | exercise) ?

exercise \longrightarrow cholesterol

Adjustment by Direct Parents

Thm. Given a causal diagram G of any Markovian system, thennund nunntitu $n-D(6+1 o(x))$ is identifia whenev

What if the parents are not visible? hat is, are mea obtained

$$
P(\mathbf{y} \mid d o(\mathbf{x}))=\sum_{p a_{\mathbf{x}}} P\left(\mathbf{y} \mid \mathbf{x}, p a_{\mathbf{x}}\right) P\left(p a_{\mathbf{x}}\right)
$$

Quiz: 1) derive from previous slide
2) derive for non-Markovian models

If Season is latent, is the effect still computable?

Queries:

$$
Q_{2}=P(\text { wet } \mid \text { do }(\text { Sprinkler }=\text { on }))
$$

$$
=\frac{\sum_{s e, r a} P(w e \mid S p=o n, r a) P(S p=o n) P(r a \mid s e) P(s e)}{P(S p=o n)}
$$

$$
=\sum_{s e r a} P(w e \mid S p=o n, r a) P(r a \mid s e) P(s e)
$$

$$
=\sum_{s e r a} P(w e \mid S p=o n, r a) P(r a, s e)
$$

slides9 2762024
$=\sum P($ we $\mid S p=o n, r a) \sum P(r a, s e) \quad$ summing over se
$=\sum P(w e \mid S p=o n, r a) P(r a)$

If Season is latent, is the effect still computable?

Queries:
$Q_{2}=P($ wet $\mid d o($ Sprinkler $=$ on $))$

$$
=\sum P(w e \mid S p=o n, r a) P(r a)
$$

By conditioning on rain,

- p_{2} (the non-causal path) is blocked, and
- p_{1} (the causal path) remains unaffected!

slippery

Is Confounding Bias removable?

Goal: Find the effect of \boldsymbol{X} on $\boldsymbol{Y}, Q=P(\boldsymbol{y} \mid d o(\boldsymbol{x}))$, given measurements on variables Z_{l}, \ldots, Z_{k},

where some of X parents are unobserved. How can the target quantity Q be identified if only a subset of the parents is measured?

3.3 The Backdoor Criterion

Definition 3.3.1 (The Backdoor Criterion) Given an ordered pair of variables (X, Y) in a directed acyclic graph G, a set of variables Z satisfies the backdoor criterion relative to (X, Y) if no node in Z is a descendant of X, and Z blocks every path between X and Y that contains an arrow into X.

If a set of variables Z satisfies the backdoor criterion for X and Y, then the causal effect of X on Y is given by the formula

$$
P(Y=y \mid d o(X=x))=\sum_{z} P(Y=y \mid X=x, Z=z) P(Z=z)
$$

Rationale:

1. We block all spurious paths between X and Y.
2. We leave all directed paths from X to Y unperturbed.
3. We create no new spurious paths.

The Back-door Adjustment

Theorem 3.3.2 (Back-door Adjustment)

If a set Z satisfies the bdc w.r.t the pair $\boldsymbol{X}, \boldsymbol{Y}$, the effect of \boldsymbol{X} on \boldsymbol{Y} is identifiable and given by:

$$
P(\mathbf{y} \mid d o(\mathbf{x}))=\sum_{\mathbf{z}} P(\mathbf{y} \mid \mathbf{x}, \mathbf{z}) P(\mathbf{z})
$$

Back-Door Sets as Substitutes of the Direct Parents of \boldsymbol{X}

Rain satisfies the back-door criterion relative to Sprinkler and Wet:
(i) Rain is not a descendant of Sprinkler, and
(ii)Rain blocks the only back-door path from Sprinkler to Wet.

Adjusting for the direct parents of Sprinkler, we have:

Direct derivation, showing it works

$$
\begin{aligned}
P(w e \mid d o(s p)) & =\sum_{s e} P(w e \mid s p, s e) P(s e) \\
& =\sum_{s e r a} P(w e \mid s p, s e, r a) P(r a \mid s p, s e) P(s e) \quad \begin{array}{c}
\downarrow \\
\text { slippery }
\end{array} \\
& \left.=\sum_{s e, r a} P(w e \mid s p, r a) P(r a \mid s e) P(s e) \longleftrightarrow R a \mid S e\right) \\
& =\sum_{r a} P(w e \mid s p, r a) \sum_{s e} P(r a, s e)=\sum_{r a} P(w e \mid s p, r a) P(r a) \quad \text { Adjustment by Rain }
\end{aligned}
$$

Adjustment by Direct Parents \rightarrow Back-door Adjustment

More Generally:
(i) no node in Z is a descendent of X; and
(ii) \boldsymbol{Z} blocks every path between \boldsymbol{X} and \boldsymbol{Y} that contains an arrow into \boldsymbol{X}.

$$
\begin{aligned}
& \Rightarrow \\
& \Rightarrow \quad \begin{array}{l}
\left.\boldsymbol{X} \Perp \boldsymbol{Z} \mid P a_{x}\right) \\
\left(\boldsymbol{Y} \Perp P a_{\boldsymbol{x}} \mid \boldsymbol{Z}, \boldsymbol{X}\right)
\end{array}
\end{aligned}
$$

Then:

$$
\begin{aligned}
P(\mathbf{y} \mid d o(\mathbf{x})) & =\sum_{p a_{\mathbf{x}}} P\left(\mathbf{y} \mid \mathbf{x}, p a_{\mathbf{x}}\right) P\left(p a_{\mathbf{x}}\right) \\
& =\sum_{\mathbf{z}, p a_{\mathbf{x}}} P\left(\mathbf{y} \mid \mathbf{x}, p a_{\mathbf{x}}, \mathbf{z}\right) P\left(\mathbf{z} \mid \mathbf{x}, p a_{\mathbf{x}}\right) P\left(p a_{\mathbf{x}}\right) \\
& =\sum_{\mathbf{z}, p a_{\mathbf{x}}} P(\mathbf{y} \mid \mathbf{x}, \mathbf{z}) P\left(\mathbf{z} \mid p a_{\mathbf{x}}\right) P\left(p a_{\mathbf{x}}\right)
\end{aligned}
$$

$$
=\sum_{\mathbf{z}}^{\mathbf{z}, p a_{\mathbf{x}}} P(\mathbf{y} \mid \mathbf{x}, \mathbf{z}) \sum_{p a_{\mathbf{x}}} P\left(\mathbf{z}, p a_{\mathbf{x}}\right)=\sum_{\mathbf{z}} P(\mathbf{y} \mid \mathbf{x}, \mathbf{z}) P(\mathbf{z}) \quad \begin{aligned}
& \text { Adjustment by } \boldsymbol{Z} \text { is equivalent to } \\
& \text { adjustment by direct parents } \\
& \text { whenever } \boldsymbol{Z} \text { is bd-admissible! }
\end{aligned}
$$

How do we find these bd-sets? Graphical Condition

$P(y \mid d o(x))$ is identifiable if there is a set \boldsymbol{Z} that d-separates \boldsymbol{X} from \boldsymbol{Y} in $G_{\underline{x}} \quad$ (the graph G where all arrows emanating from X are removed.)

G

$$
P(y \mid d o(x))=\sum_{z_{1}, z_{4}} P\left(y \mid x, z_{1}, z_{4}\right) P\left(z_{1}, z_{4}\right)
$$

Back-door Examples

Are there admissible back-door sets (relative to $\boldsymbol{X}, \boldsymbol{Y}$) for the following graphs?

slides10 2762024

Back-door Examples

Are there admissible back-door sets (relative to $\boldsymbol{X}, \boldsymbol{Y}$) for the following graphs?

$$
\begin{aligned}
\boldsymbol{Z}= & \left\{Z_{4}, Z_{2}\right\},\left\{Z_{4}, Z_{5}\right\} \\
& \left\{Z_{4}, Z_{2}, Z_{5}\right\}
\end{aligned}
$$

Examples

$$
\mathrm{P}(\mathrm{Y} \mid \mathrm{do}(\mathrm{X})) \text { ? }
$$

No backdoors between X and Y and therefore: $P(Y \mid d o(X))=P(Y \mid X)$

What if we adjust for W? ... wrong!!!

But what if we want to determine $\mathrm{P}(\mathrm{Y} \mid \mathrm{do}(\mathrm{X}), \mathrm{w})$? What do we do with the spurious path $X \rightarrow W \leftarrow Z<-T \rightarrow Y$?
if we condition on T, we would block the spurious path $X \rightarrow W \leftarrow Z<-T \rightarrow Y$. We can compute:

$$
P(Y=y \mid d o(X=x), W=w)=\sum_{t} P(Y=y \mid X=x, W=w, T=t) P(T=t \mid W=w)
$$

Example: W can be post-treatment pain

Adjusting for Colliders?

Figure 3.7: A graphical model in which the backdoor criterion requires that we condition on a collider (Z) in order to ascertain the effect of X on Y

There are 4 backdoor paths. We must adjust for Z, and one of E or A or both

Example: Backdoor

Backdoor for the effect of X on Y

backdoor 1: A, Z
backdoor 2: E, Z
backdoor 3: A, E, Z
enumerating backdoor paths

Outline

Computing bd: Inverse probability weighting
Conditional intervention
Front door condition
The do calculus

Outline

Computing bd: Inverse probability weighting

 Conditional interventionFront door condition
The do calculus

Outline

The backdoor criterion and the adjustment formula
Computing bd: Inverse probability weighting
Conditional intervention
Front door condition
The do calculus

Evaluating BD Adjustment

- The backdoor provides a criterion for deciding when a set of covariates Z is admissible for adjustment, i.e.,

$$
P(\mathbf{y} \mid d o(\mathbf{x}))=\sum_{\mathbf{z}} P(\mathbf{y} \mid \mathbf{x}, \mathbf{z}) P(\mathbf{z})
$$

- In practice, how should backdoor expressions be evaluated?
- There are sample \& computational challenges entailed by the eval. of such expressions since one needs to
- estimate the different distributions, and
- evaluate them, summing over a possibly highdimensional $\boldsymbol{Z}($ i.e., time $O(\exp (\boldsymbol{Z} \mid))$).

Inverse Probability Weighting (IPW)

- Let's rewrite the bd-expression,

$$
\begin{aligned}
P(\mathbf{y} \mid d o(\mathbf{X}=\mathbf{x})) & =\sum_{\mathbf{z}} P(\mathbf{y} \mid \mathbf{x}, \mathbf{z}) P(\mathbf{z}) \\
& =\sum_{\mathbf{z}} \frac{P(\mathbf{y}, \mathbf{x}, \mathbf{z})}{P(\mathbf{x}, \mathbf{z})} P(\mathbf{z}) \\
& =\sum_{\mathbf{z}} \frac{P(\mathbf{y}, \mathbf{x}, \mathbf{z})}{P(\mathbf{x} \mid \mathbf{z}) P(\mathbf{z})} P(\mathbf{z}) \\
& =\sum_{\mathbf{z}} \frac{P(\mathbf{y}, \mathbf{x}, \mathbf{z})}{P(\mathbf{x} \mid \mathbf{z})} \longrightarrow
\end{aligned} \begin{aligned}
& \text { Entries of the joint distribution } \\
& \begin{array}{l}
\text { Fit a function } g(z) \text { that } \\
\text { approximates this probability } \\
\text { Inverse Propensity score }
\end{array}
\end{aligned}
$$

Inverse Probability Weighting (IPW)

- In practice, evaluating the expr. $\frac{1}{N} \sum_{i=1}^{N} \frac{1_{\mathbf{Y}_{i}=y, X_{i}=\mathrm{x}, \mathrm{Z}_{i}=\mathrm{z}}}{g(\mathbf{z})}$
can be seen as:

Inverse Probability Weighting (IPW)

- In practice, evaluating the expr. $\frac{1}{N} \sum_{i=1}^{N} \frac{1_{\mathbf{Y}_{i}=\mathbf{y}, \mathbf{X}_{\mathbf{i}}=\mathbf{x}, \mathbf{Z}_{i}=\mathbf{z}}}{g(\mathbf{z})}$
can be seen as:

Inverse Probability Weighting (IPW)

This provides us with a simple procedure of estimating $P(Y=y \mid d o(X=x))$ when we have finite samples. If we weigh each available sample by a factor $=1 / P(X=x \mid Z=z)$, we can then treat the reweighted samples as if they were generated from P_{m}, not P, and proceed to estimate $P(Y=y \mid d o(x))$ accordingly.

Table 3.3 Joint probability distribution $P(X, Y, Z)$ for the drug-gender-recovery story of Chapter 1 (Table 1.1)

X	Y	Z	\% of population
Yes	Yes	Male	0.116
Yes	Yes	Female	0.274
Yes	No	Male	0.01
Yes	No	Female	0.101
No	Yes	Male	0.334
No	Yes	Female	0.079
No	No	Male	0.051
No	No	Female	0.036

$X=y e s$, and normalizing (dividing by 0.49)

Table 3.4 Conditional probability distribution $P(Y, Z \mid X)$ for drug users $(X=$ $y e s)$ in the population of Table 3.3

X	Y	Z	\% of population
Yes	Yes	Male	0.232
Yes	Yes	Female	0.547
Yes	No	Male	0.02
Yes	No	Female	0.202

Rewighting by $1 / P(x=y e s \mid Z=$ male $)=0.233$
Or $P(X=$ yes $\mid Z=$ female $)=0.765$

Table 3.5 Probability distribution for the population of Table 3.3 under the intervention $d o(X=Y e s)$, determined via the inverse probability method

X	Y	Z	\% of population
Yes	Yes	Male	0.476
Yes	Yes	Female	0.357
Yes	No	Male	0.041
Yes	No	Female	0.132

This will provide saving if the number of samples is far smaller than domain of \mathbf{Z}

Outline

Computing bd: Inverse probability weighting
Conditional interventionFront door condition
The do calculus

Conditional Intervention

Suppose a policy maker contemplates an age-dependent policy whereby an amount x of drug is to be administered to patients, depending on their age Z. We write it as $d o(X=g(Z))$.
To find out the distribution of outcome Y that results from this policy, we seek to estimate $P(Y=y \mid d o(X=g(Z)))$.

We can often get it through z-specific effect of $P(Y \mid d o(X=x), Z=z)$

Rule 2 The z-specific effect $P(Y=y \mid d o(X=x), Z=z)$ is identified whenever we can measure a set S of variables such that $S \cup Z$ satisfies the backdoor criterion. Moreover, the z-specific effect is given by the following adjustment formula

$$
\begin{aligned}
& P(Y=y \mid d o(X=x), Z=z) \\
& =\sum_{s} P(Y=y \mid X=x, S=s, Z=z) P(S=s)
\end{aligned}
$$

Conditional Intervention

We now show that identifying the effect of such policies is equivalent to identifying the expression for the z-specific effect $P(Y=y \mid d o(X=x), Z=z)$.

To compute $P(Y=y \mid d o(X=g(Z)))$, we condition on $Z=z$ and write

$$
\begin{align*}
& P(Y=y \mid d o(X=g(Z))) \\
& =\sum_{z} P(Y=y \mid d o(X=g(Z)), Z=z) P(Z=z \mid d o(X=g(Z))) \\
& =\sum_{z} P(Y=y \mid d o(X=g(z)), Z=z) P(Z=z) \tag{3.17}
\end{align*}
$$

The equality

$$
P(Z=z \mid \operatorname{do}(X=g(Z)))=P(Z=z)
$$

stems, of course, from the fact that Z occurs before X; hence, any control exerted on X can have no effect on the distribution of Z. Equation (3.17) can also be written as

$$
\left.\sum_{z} P(Y=y \mid d o(X=x), z)\right|_{x=g(z)} P(Z=z)
$$

which tells us that the causal effect of a conditional policy $d o(X=g(Z))$ can be evaluated directly from the expression of $P(Y=y \mid d o(X=x), Z=z)$ simply by substituting $g(z)$ for x and taking the expectation over Z (using the observed distribution $P(Z=z)$).

Outline

Computing bd: Inverse probability weighting Conditional intervention

Front door condition

The do calculus

Incompleteness of Backdoor Criterion

$$
\text { causal effect of smoking on cancer } \operatorname{Pr}(c \mid d o(s))
$$

Front Door Criteria

$$
P\left(Y_{x}\right)=\mathrm{P}(\mathrm{Y} \mid \mathrm{do}(\mathrm{x}))
$$

Consider a causal graph G and causal effect $\operatorname{Pr}\left(y_{x}\right)$. A set of variables \mathbf{Z} satisfies the frontdoor criteria iff

If \mathbf{Z} is a frontdoor, then

$$
\operatorname{Pr}\left(y_{x}\right)=\sum_{\substack{\mathbf{z} \\ \text { interventional } \\ \text { assciational }}} \operatorname{Pr}(\mathbf{z} \mid x) \sum_{x^{\prime}} \operatorname{Pr}\left(y \mid x^{\prime}, \mathbf{z}\right) \operatorname{Pr}\left(x^{\prime}\right)
$$

Reminder: Truncated Product

 in Semi-Markovian ModelsThe distribution generated by an intervention $d o(X=x)$ in a Semi-Markovian model M is given by the (generalized) truncated factorization product, namely,

$$
P(\mathbf{v} \mid d o(\mathbf{x}))=\sum_{\mathbf{u}} \prod_{\left\{V_{i} \in \mathbf{V} \backslash \mathbf{x}\right\}} P\left(v_{i} \mid p a_{i}, u_{i}\right) P(\mathbf{u})
$$

And the effect of such intervention on a set \boldsymbol{Y} is

$$
P(\mathbf{y} \mid d o(\mathbf{x}))=\sum_{\mathbf{v} \backslash(\mathbf{y} \cup \mathbf{x})} \sum_{\mathbf{u}} \prod_{\left\{V_{i} \in \mathbf{V} \backslash \mathbf{x}\right\}} P\left(v_{i} \mid p a_{i}, u_{i}\right) P(\mathbf{u})
$$

Interventions - Another Example

Real world

Interventions - Another Example

Interventions - Another Example

$$
M=\left\{\begin{array}{l}
X \leftarrow f_{X}\left(u_{x y}, u_{x}\right) \\
Y \leftarrow f_{Y}\left(x, u_{x y}, u_{y}\right)
\end{array}\right.
$$

$$
M_{x}=\left\{\begin{array}{l}
\mathrm{V}-f_{X}\left(u_{x y}, u_{x}\right) X=x \\
Y \leftarrow f_{Y}\left(x, u_{x y}, u_{y}\right)
\end{array}\right.
$$

Interventions - Another Example

Re-writing the interventional distribution,

$$
\begin{aligned}
P(\mathbf{v} \mid d o(x)) & =\sum_{u_{x} u_{y} u_{x y}} \frac{P\left(x \mid u_{x y}\right.}{P}, u_{x} P\left(y \mid x, u_{x y}, u_{y}\right) P\left(u_{x}, u_{y}, u_{x y}\right) \\
& =\left(\sum_{u_{x y}}\left(\sum_{u_{y}} P\left(y \mid x, u_{x y}, u_{y}\right) P\left(u_{y}\right)\right) P\left(u_{x y}\right)\right)\left(\sum_{u_{x}} P\left(u_{x}\right)\right)
\end{aligned}
$$

Alternative world

$P(y \mid d o(x))=\sum_{u_{x y}} \frac{P\left(y \mid x, u_{x y}\right) P\left(u_{x y}\right)}{\text { }}$
We can get rid of U_y But not of U_xy

$$
M_{x}=\left\{\begin{array}{l}
V, \frac{f\left(u_{x}, u_{x}\right)}{J_{X}\left(u_{x y}\right.} X=x \\
Y \leftarrow f_{Y}\left(x, u_{x y}, u_{y}\right)
\end{array}\right.
$$

These distributions are not observed, and nothing more can be removed.

The Front-door Case

$$
M=\left\{\begin{array}{l}
X \leftarrow f_{X}\left(u_{x y}, u_{x}\right) \\
Z \leftarrow f_{Z}\left(x, u_{z}\right) \\
Y \leftarrow f_{Y}\left(z, u_{x y}, u_{y}\right)
\end{array}\right.
$$

$$
\begin{array}{r}
P(\mathbf{v})=\sum_{\mathbf{u}} P\left(x \mid u_{x y}, u_{x}\right) P\left(z \mid x, u_{z}\right) \\
P\left(y \mid z, u_{x y}, u_{y}\right) P(\mathbf{u})
\end{array}
$$

Alternative world

$$
\begin{array}{r}
\Rightarrow \quad M_{x}=\left\{\begin{array}{l}
X \leftarrow f_{X}\left(u_{x y}, u_{x}\right) X=x \\
Z \leftarrow f_{Z}\left(x, u_{z}\right) \\
Y \leftarrow f_{Y}\left(z, u_{x y}, u_{y}\right)
\end{array}\right. \\
P(\mathbf{v} \mid d o(x))=\sum_{\mathbf{u}} \begin{array}{r}
P\left(x \mid u_{x y}, u_{x}\right) P\left(z \mid x, u_{z}\right) \\
P\left(y \mid z, u_{x y}, u_{y}\right) P(\mathbf{u})
\end{array}
\end{array}
$$

The Front-door Case

Re-writing the interventional distribution...

$$
\begin{aligned}
& P(\mathbf{v} \mid d o(x))=\sum_{\mathbf{u}} P\left(x \mid u_{x y}, u_{u}\right) P\left(z \mid x, u_{z}\right) P\left(y \mid z, u_{x y}, u_{y}\right) P(\mathbf{u}) \\
& =\left(\sum_{u_{z}} P\left(z \mid x, u_{z}\right) P\left(u_{z}\right)\right)\left(\sum_{u_{x y}, u_{y}} P\left(y \mid z, u_{x y}, u_{y}\right) P\left(u_{x y}, u_{y}\right)\right)\left(\sum_{u_{x}} P\left(u_{x}\right)\right)
\end{aligned}
$$

$$
=P(z \mid x) \sum_{u_{x y}} P\left(y \mid z, u_{x y}\right) P\left(u_{x y}\right)
$$

$$
\text { Summing over } X
$$

$$
\begin{array}{r}
=P(z \mid x) \sum_{x^{\prime}, u_{x y}} P\left(y \mid z, u_{x y}\right) P\left(u_{x y} \mid x^{\prime}\right) P\left(x^{\prime}\right) \\
\left(Y \Perp X \mid Z, U_{x y}\right)
\end{array}
$$

$$
=P(z \mid x) \sum_{x^{\prime}, u_{x y}} P\left(y \mid z, x^{\prime}, u_{x y}\right) P\left(u_{x y} \mid x^{\prime}\right) P\left(x^{\prime}\right)
$$

$$
\left(U_{x y} \Perp Z \mid X\right)
$$

$$
=P(z \mid x) \sum_{x^{\prime}, u_{x y}} P\left(y \mid z, x^{\prime}, u_{x y}\right) P\left(u_{x y} \mid x^{\prime}, z\right) P\left(x^{\prime}\right)
$$

$$
\text { Chain rule and sum out } U_{x y}
$$

$$
=P(z \mid x) \sum_{x^{\prime}} \sum_{u_{x y}} P\left(y, u_{x y} \mid z, x^{\prime}\right) P\left(x^{\prime}\right)
$$

Alternative world

$$
P(\mathbf{v} \mid d o(x))=P(z \mid x) \sum_{x^{\prime}} P\left(y \mid z, x^{\prime}\right) P\left(x^{\prime}\right)
$$

$$
P(y \mid d o(x))=\sum_{z} \frac{P(z \mid x)}{} \sum_{x^{\prime}} \frac{P\left(y \mid z, x^{\prime}\right) P\left(x^{\prime}\right)}{}
$$

These factors can be computed from the observed distribution

Start class here

The Front Door Criterion

When we cannot block a backdoor path, we may still have a front door path
Consider the century-old debate on the relation between smoking and lung cancer. In the years preceding 1970, the tobacco industry has managed to prevent antismoking legislation by promoting the theory that the observed correlation between smoking and lung cancer could be explained by some sort of carcinogenic genotype that also induces an inborn craving for nicotine.

A graph depicting this example is shown in Figure 3.10(a) This graph does not satisfy

Figure 3.10: A graphical model representing the relationships between smoking (X) and lung cancer (Y), with unobserved confounder (U) and a mediating variable Z

Front Door Condition

We cannot satisfy the backdoor criterion since we cannot measure U. But consider the model in (b). It does not satisfy the backdoor criterion, but we can measure the tar level, Z, which will allow identifiability of P(Y|do(X)),

Figure 3.10: A graphical model representing the relationships between smoking (X) and lung cancer (Y), with unobserved confounder (U) and a mediating variable Z

Example (Front-door)

Table 3.1: A hypothetical dataset of randomly selected samples showing the percentage of cancer cases for smokers and nonsmokers in each tar category (numbers in thousands)

	Tar $\mathbf{4 0 0}$		No tar $\mathbf{4 0 0}$		All subjects	
$\mathbf{8 0 0}$						

Tobaco industry:
Only 15\% of smoker developed cancer while 90% from the nonsmoker

Antismoke lobbyist:
If you smoke you have 95% tar vs no smokers (380/400 vs 20/400)

Table 3.2 Reorganization of the dataset of Table 3.1 showing the percentage of cancer cases in each smoking-tar category (number in thousands)

	$\begin{gathered} \text { SMOKERS } \\ 400 \end{gathered}$		$\begin{gathered} \text { NON-SMOKERS } \\ 400 \end{gathered}$		$\begin{gathered} \text { ALL SUBJECTS } \\ 800 \end{gathered}$	
No cancer	Tar 380 323 (85\%)	$\begin{aligned} & \text { No tar } \\ & 20 \\ & 18 \\ & (90 \%) \end{aligned}$	Tar 20 1 (5\%)	$\begin{aligned} & \text { No tar } \\ & 380 \\ & 38 \\ & (10 \%) \end{aligned}$	Tar 400 324 (81\%)	$\begin{aligned} & \text { No tar } \\ & 400 \\ & 56 \\ & (19 \%) \end{aligned}$
Cancer		$\begin{aligned} & 2 \\ & (10 \%) \end{aligned}$	$\begin{aligned} & 19 \\ & (95 \%) \end{aligned}$	$\begin{aligned} & 342 \\ & (90 \%) \end{aligned}$	76 (9\%)	$\begin{aligned} & 344 \\ & (81 \%) \end{aligned}$

If you have more tar, you increase the chance of cancer in both smoker (from 10\% to 15\%) and non-smokers (from 90\% To 95\%).

Front-door Condition

The graph of Figure 3.10(b) enables us to decide between these two groups of statisticians.

- First, we note that the effect of X on Z is identifiable, since there is no backdoor path from X to Z. Thus, we can immediately write

$$
\begin{equation*}
P(Z=z \mid d o(X=x))=P(Z=z \mid X=x) \tag{3.12}
\end{equation*}
$$

Next we note that the effect of Z on Y is also identifiable, since the backdoor path from Z to Y, namely $Z \leftarrow X \leftarrow U \rightarrow Y$, can be blocked by conditioning on X. Thus we can write

$$
\begin{equation*}
P(Y=y \mid d o(Z=z))=\sum_{x} P(Y=y \mid Z=z, X=x) \mathrm{P}(\mathbf{x}) \tag{3.13}
\end{equation*}
$$

(b)

We are now going to chain together the two partial effects to obtain the overall effect of X on Y. The reasoning goes as follows: If nature chooses to assign Z the value z, then the probability of Y would be $P(Y=y \mid d o(Z=z))$. But the probability that nature would choose to do that, given that we choose to set X at x, is $P(Z=z \mid d o(X=x))$. Therefore, summing over all states z of Z we have

$$
\begin{equation*}
P(Y=y \mid d o(X=x))=\sum_{z} P(Y=y \mid d o(Z=z)) P(Z=z \mid d o(X=x)) \tag{3.14}
\end{equation*}
$$

The terms on the right hand side of (3.14) were evaluated in (3.12) and (3.13), and we can substitute them to obtain a $d o$-free expression for $P(Y=y \mid d o(X=x))$. We also distinguish between the x that appears in (3.12) and the one that appears in (3.13), the latter of which is merely an index of summation and might as well be denoted x^{\prime}. The final expression we have is

$$
\begin{align*}
& P(Y=y \mid d o(X=x))= \\
& \sum_{z} \sum_{x^{\prime}} P\left(Y=y \mid Z=z, X=x^{\prime}\right) P\left(X=x^{\prime}\right) P(Z=z \mid X=x) \tag{3.15}
\end{align*}
$$

Equation (3.15) is known as the front-door formula.

Front-door Condition

- Definition 3.4.1 (Front-Door)

A set of variables Z is said to satisfy the front-door criterion relative to an ordered pair of variables (X, Y) if

1. Z intercepts all directed paths from X to Y.
2. There is no unblocked backdoor path from X to Z.
3. All backdoor paths from Z to Y are blocked by X.

(b)

Theorem 3.4.1 (Front-Door Adjustment)

If Z satisfies the front-door criterion relative to (X, Y) and if $P(x, z)>0$, then the causal effect of X on Y is identifiable and is given by the formula

$$
\begin{equation*}
P(y \mid d o(x))=\sum_{z} P(z \mid x) \sum_{x^{\prime}} P\left(y \mid x^{\prime}, z\right) P\left(x^{\prime}\right) \tag{3.16}
\end{equation*}
$$

The Syntactical Goal on Identification of Causal Effects

- For both back- and front-door settings, the goal was to reduce the quantity $Q=P(\boldsymbol{y} \mid d o(x))$ into an expression with no do(.), i.e., estimable from the observational distribution $P(\boldsymbol{v})$.
- We are interested in rules or a set of axioms that allow the systematic transformation of a do(.) expression into a do-free expression while preserving the equivalence to the target effect.

Outline

Computing bd: Inverse probability weighting Conditional intervention
 Front door condition

The do calculus

Causal Calculus:

A systematic approach for identification

Insight 1: Adding/removing Observations

- Adding/removing observations

In the original model, Z and Y may be not separable, e.g.:

$$
(Z \nVdash Y),(Z \sharp Y \mid X)
$$

However, in the the do(X)-world (model M_{x}), Y and Z are d-separated, that is,

$$
(Z \Perp Y)_{G_{\bar{X}}} \quad \Longrightarrow \quad P(y \mid d o(x), z)=P(y \mid d o(x))
$$

Let's verify this equality!

Insight 1: Adding/removing Observations

- Adding/removing observations

$$
P(y \mid d o(x), z)=P(y \mid d o(x)) ?
$$

First, let's write the interventional distribution,

$$
\begin{aligned}
& P(\mathbf{v} \mid d o(x)) \\
& \quad=\sum_{\mathbf{u}} P\left(z \mid u_{z}\right) P\left(y \mid x, u_{y}, u_{x y}\right) P(\mathbf{u}) \\
& \quad=P(z)_{u_{x y}} P\left(y \mid x, u_{x y}\right) P\left(u_{x y}\right)
\end{aligned}
$$

From here we can already see that
$\mathrm{P}(\mathrm{Y} \mid \mathrm{do}(\mathrm{X})=$ to the sum expression since we can just Sum over Z to get it.

Let's keep the truncated in this form and ...

Insight 1: Adding/removing Observations

- Adding/removing observations

$$
P(y \mid d o(x), z)=P(y \mid d o(x)) ?
$$

G

And, let's rewrite the conditional effects,

Insight 1: Adding/removing Observations

- Adding/removing observations

$$
P(y \mid d o(x), z)=P(y \mid d o(x)) ?
$$

Substituting the factors back...
$P(y \mid d o(x), z)=\frac{P(z) \sum_{u_{x y}} P\left(y \mid x, u_{x y}\right) P\left(u_{x y}\right)}{P(z)}$

$$
\begin{aligned}
& =\sum_{u_{x y}} P\left(y \mid x, u_{x y}\right) P\left(u_{x y}\right) \\
& =\sum_{z} P\left(z \sum_{u_{x y}} P\left(y \mid x, u_{x y}\right) P\left(u_{x y}\right)\right. \\
& =\sum_{z} P(\mathrm{v} \mid d o(x)=P(y \mid d o(x))
\end{aligned}
$$

$(Z \Perp Y)_{G_{\bar{x}}}$

Insight 2: Action/Observation Exchange

- Action/Observation Exchange

After observing Z, variable Y reacts to X in the same way, with and without intervention.

Note that given Z, Y is correlated with X only through causal paths, hence, $\operatorname{see}(X=x)$ will be equiv. to $d o(X=x)$. Idea. If Z blocks all bd-paths w.r.t (X, Y), then cond. on Z, all the remaining association is equal to the causation.

$$
(Y \Perp X \mid Z)_{G_{\underline{X}}} \quad \Longrightarrow \quad P(y \mid d o(x), z)=P(y \mid x, z)
$$

Insight 2: Action/Observation Exchange

- Action/Observation Exchange

$$
P(y \mid d o(x), z)=P(y \mid x, z) ?
$$

First, let's write the interventional distributions,
$G \xrightarrow[d o(X=x)]{ } G_{X}$

$$
\begin{aligned}
P(y, z \mid d o(x)) & =\sum_{\mathbf{u}} P\left(z \mid u_{z}\right) P\left(y \mid x, z, u_{y}\right) P(\mathbf{u}) & P(z \mid d o(x)) & =\sum_{y} P(z) P(y \mid x, z) \\
& =P(z) P(y \mid x, z) & & =P(z)
\end{aligned}
$$

$$
P(y \mid d o(x), z)=\frac{P(z, y \mid d o(x))}{P(z \mid d o(x))}=\frac{P(z) P(y \mid x, z)}{P(z)}=P(y \mid x, z)
$$

$$
(Y \Perp X \mid Z)_{G_{\underline{X}}}
$$

Insight 2: Action/Observation Exchange

- Action/Observation Exchange

$$
P(y \mid d o(x), z)=P(y \mid x, z) ?
$$

First, let's write the interventional distributions,
G G_{X}

$$
\begin{array}{rlrl}
P(y, z \mid d o(x)) & =\sum_{\mathbf{u}} P\left(z \mid u_{z}\right) P(y & \left.\begin{array}{l}
\text { Looks familiar? } z
\end{array} \quad l o(x)\right) & =\sum_{y} P(z) P(y \mid x, z) \\
& =P(z) P(y \mid x, z) & & \\
& =P(z)
\end{array}
$$

$$
P(y \mid d o(x), z)=\frac{P(z, y \mid d o(x))}{P(z \mid d o(x))}=\frac{P(z) P(y \mid x, z)}{P(z)}=P(y \mid x, z)
$$

$$
(Y \Perp X \mid Z)_{G_{\underline{X}}}
$$

Insight 2: Action/Observation Exchange

- Action/Observation Exchange

Great, but what about the equality

$$
\begin{aligned}
P(y \mid d o(x))= & P(y \mid x) ? \\
& (Y \nVdash X)_{G_{X}}
\end{aligned}
$$

Let's compare left and right-hand sides:

$$
\begin{aligned}
P(y \mid d o(x)) & =\sum_{z} \sum_{\mathbf{u}} P\left(y \mid x, z, u_{y}\right) P\left(z \mid u_{z}\right) P(\mathbf{u}) \quad P(y \mid x)=\sum_{z} P(y \mid x, z P(z \mid x) \\
& =\sum P(y \mid x, z(z)
\end{aligned}
$$

Almost any model compatible with this
causal graph, $P(y \mid x)$ and $P(y \mid d o(x))$ will not be equal since $P(z) \neq P(z \mid x)$ almost surely.

Insight 3: Adding/Removing Actions

- Adding/Removing Actions

If there is no causal path from X to Z, then an intervention on X will have no effect on Z.

$$
(Z \Perp X)_{G_{\bar{X}}} \quad \Rightarrow \quad P(z \mid d o(x))=P(z)
$$

Let's verify this equality!

Insight 3: Adding/Removing Actions

- Adding/Removing Actions

$$
P(z \mid d o(x))=P(z) ?
$$

$$
\begin{aligned}
P(z \mid d o(x)) & =\sum_{y} P(\mathbf{v} \mid d o(x)) \\
& =\sum_{y} \sum_{u_{z y} u_{z x}} P\left(z \mid u_{z y}, u_{z x}\right) P\left(y \mid x, u_{z y}\right) P\left(u_{z y} u_{z x}\right) \\
& =\sum_{u_{z y} u_{z x}} P\left(z \mid u_{z y}, u_{z x}\right) P\left(u_{z y}, u_{z x}\right) \\
& =P(z) \quad(Z \Perp X)_{G_{\bar{X}}}
\end{aligned}
$$

Rules of Do-Calculus

Theorem 3.4.1. The following transformations are valid for any do-distribution induced by a causal model M :

Rule 1: Adding/removing Observations

$$
P(y \mid d o(x), z, w)=P(y \mid d o(x), w) \quad \text { if } \quad(Z \Perp Y \mid W)_{G_{\bar{X}}}
$$

Rule 2: Action/observation exchange

$$
P(y \mid d o(x), d o(z), w)=P(y \mid d o(x), z, w) \text { if } \quad(Z \Perp Y \mid X, W)_{G_{\overline{X Z}}}
$$

Rule 3: Adding/removing Actions

$$
P(y \mid d o(x), d o(z), w)=P(y \mid d o(x), w) \quad \text { if } \quad(Z \Perp Y \mid X, W)_{G_{\overline{X Z(W)}}}
$$

Properties of Do-Calculus

Theorem (soundness and completeness of docalculus for causal identifiability from $P(v)$).

The causal quantity $Q=P(y \mid d o(x))$ is identifiable from $P(v)$ and G if and only if there exists a sequence of application of the rules of do-calculus and the probability axioms that reduces Q into a do-free expression.

Syntactic goal: Re-express original Q without do()!

Derivation in Do-Calculus

$P(c \mid d o(s))=\sum_{t} P(c \mid d o(s), t) P(t \mid d o(s))$
$=\sum_{t} P(c \mid d o(s), d o(t)) P(t \mid d o(s))$
$=\sum_{t} P(c \mid d o(t)) P(t \mid d o(s))$
$=\sum_{t} P(c \mid d o(t)) P(t \mid s)$
$=\sum_{t} \sum_{s^{\prime}} P\left(c \mid d o(t), s^{\prime}\right) P\left(s^{\prime} \mid d o(t)\right) P(t \mid s)$ Probability Axioms
$=\sum_{t} \sum_{s^{\prime}} P\left(c \mid t, s^{\prime}\right) P\left(s^{\prime} \mid d o(t)\right) P(t \mid s)$
$=\sum \sum P\left(c \mid t, s^{\prime}\right) P\left(s^{\prime}\right) P(t \mid s)$

Probability Axioms

Rule $2 \quad(T \Perp C \mid S)_{G_{T}}$
Rule $3(S \Perp C \mid T)_{G_{C, T}}$.

Rule $2(S \Perp T)_{G_{\underline{S}}}$

Rule $2(T \Perp C \mid S)_{G_{\underline{I}}}$

Rule $3(T \Perp S)_{G_{\bar{T}}}$

Example. Non-identifiable Effect

- Let M be a model compatible with G and inducing an observational distribution $P(\boldsymbol{v})$:
- Without intervention, U is always equal to X in both models, hence Y always outputs $f_{Y}(X, U)$ and $P^{(l)}(v)=P^{(2)}(v)=P(v)$.

$$
\begin{aligned}
& P^{(i)}(x, y) \quad \Rightarrow^{1[x=u]} \\
& =\sum_{u} P^{(i)(x \mid u)} P^{(i)}(y \mid x, u) P(u)
\end{aligned}
$$

$$
=P^{(i)}(y \mid x, U=x) P(U=x)
$$

$$
=P(y \mid x) P(x)
$$

$$
P^{(1)}(U)=P^{(2)}(U)=P(U)
$$

$$
=P(x, y)
$$

Both models induce the same graph G and have the same $P(v)$

Example. Non-identifiable Effect

- Let M be a model compatible with G and inducing an observational distribution $P(\boldsymbol{v})$:

$M_{x}^{(1)}= \begin{cases}X \leftarrow U_{y} x & \\ Y \leftarrow \begin{cases}f_{Y}(X, U) & \text { if } U=X \\ 0 & \text { otherwise }\end{cases} \end{cases}$
$M_{x}^{(2)}= \begin{cases}X \leftarrow U X & x \\ Y \leftarrow \begin{cases}f_{Y}(X, U) & \text { if } U=X \\ 1 & \text { otherwise }\end{cases} \end{cases}$
$P^{(1)}(U)=P^{(2)}(U)=P(U)$
- Under intervention $d o(X=x), U$ and X do not need to match, hence $M_{x^{(l)}}$ and $M_{x^{(2)}}$ will output $Y=l$ with different probability:

$$
\begin{aligned}
& P^{(i)}(y \mid d o(x)) \quad 0 \text { in } M_{x}^{(1)}, 1 \text { in } M_{x}^{(2)} \\
& =\sum_{u} P^{(i)}(y \mid x, u) P(u) \\
& =P^{(i)}(y \mid x, U /=x) P(U=x) \\
& \quad+P^{(i)}(y \mid x, U \neq x) P(U \neq x) \\
& =P(y \mid x) P(x)+1[i=1](1-P(x))
\end{aligned}
$$

Even though both models induce the same graph G and have the same $P(\boldsymbol{v})$, the causal effect $P^{(1)}(y \mid d o(x)) \neq P^{(2)}(y \mid d o(x))$!

Non-identifiability Machinery

Lemma (Graph-subgraph ID (Tian and Pearl, 2002))

- If $Q=P(y \mid d o(x))$ is not identifiable in G, then Q is not identifiable in the graph resulting from adding a directed or bidirected edge to G.
- Converse. If $Q=P(y \mid d o(x))$ is identifiable in G, Q is still identifiable in the graph resulting from removing a directed or bidirected edge from G.

Non-identifiability Machinery

- Proof idea. Suppose M_{1}, M_{2} induce the same $P(v)$ but differ in $P(y \mid d o(x))$. Construct two new models $M_{1}{ }^{\prime}, M_{2}{ }^{\prime}$ with any $P(z)$ and let
$P_{i}{ }^{\prime}\left(x \mid z, u_{x y}\right)=P_{i}\left(x \mid u_{x y}\right), i=1,2$.

This construction entails

$$
P_{1}{ }^{\prime}(y \mid d o(x)) \neq P_{2}^{\prime}(y \mid d o(x)) .
$$

Question: Do all non-ID models look like the bow graph?

Non-identifiability Puzzle

- Is $P(y \mid d o(x))$ identifiable from G ?
- Is G of bow-shape?
- Is $P(y \mid d o(x), z 2)$ identifiable from G ?

Y

- Is $P(y \mid d o(x, z 2))$ identifiable from G ?
$\mathrm{P}(\mathrm{Y} \mid \mathrm{do}(\mathrm{x})$ is not identifiable
But when conditioning on Z_1, or Z_2 they are.
So, computing the effect of a joint intervention can be easier than Their individual interventions.

Non-Identifiability Criterion

Theorem (Graphical criterion for non-identifiability of joint interventional distributions (Tian, 2002)).

If there is a bidirected path connecting X to any of its children in G, then $P(v \mid d o(x))$ is not identifiable from $P(v)$ and G.

Some Identifiable Graphs

Some Non-Identifiable Graphs

(e)

(b)

(f)

(c)

slides10 $2^{(\mathrm{g}} \mathrm{F}_{6} 2024$

(d)

(h)

Summary

- The do-calculus provides a syntactical characterization to the problem of policy evaluation for atomic interventions.
- The problem of confounding and identification is essentially solved, non-parametrically.
- Simpson's Paradox is mathematized and dissolved.
- Applications are pervasive in the social and health sciences as well as in statistics, machine learning, and artificial intelligence.

