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Outline

◼ DAGS, Markov(G),  Bayesian networks

◼ Graphoids: axioms of for inferring 
conditional independence (CI)

◼ D-separation: Inferring  CIs in graphs

◼ I-maps, D-maps, perfect maps

◼ Markov boundary and blanket

◼ Markov networks
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Properties of Probabilistic independence

◼ Symmetry:
◼ I(X,Z,Y) → I(Y,Z,X)  

◼ Decomposition: 

◼ I(X,Z,YW)→ I(X,Z,Y) and I(X,Z,W)

◼ Weak union: 
◼ I(X,Z,YW)→I(X,ZW,Y)

◼ Contraction: 
◼ I(X,Z,Y) and I(X,ZY,W)→I(X,Z,YW)

◼ Intersection:
◼ I(X,ZY,W) and I(X,ZW,Y) → I(X,Z,YW)

Graphoid axioms:
Symmetry, decomposition
Weak union and contraction

Positive graphoid:
+intersection

In Pearl: the 5 axioms 
are called Graphids, 
the 4, semi-graphois
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Outline

◼ Bayesian Networks, DAGS, Markov(G)

◼ Graphoids axioms for Conditional 
Independence

◼ D-separation: Inferring  conditional 
independences (Cis) in directed graphs
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What we know so far on BN?

◼ A probability distribution of a Bayesian network 
having directed graph G, satisfies all the Markov 
assumptions of independencies.

◼ 5 graphoid, (or positive) axioms allow inferring more 
conditional independence relationship for the BN.

◼ d-separation in G will allow deducing easily many of 
the inferred independencies.

◼ G with d-separation yields an I-MAP of the probability 
distribution. 
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d-speration

◼ To test whether X and Y are d-separated by Z in dag G, we 
need to consider every path between a node in X and a node in 
Y, and then ensure that the path is blocked by Z.

◼ A path is blocked by Z if at least one valve (node) on the path 
is ‘closed’ given Z.

◼ A divergent valve or a sequential valve is closed if it is in Z

◼ A convergent valve is closed if it is not on Z nor any of its 
descendants are in Z.
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No path 
Is active =
Every path is
blocked
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Bayesian Networks as i-maps 

◼ E: Employment

◼ V: Investment

◼ W: Wealth

◼ H: Health

◼ C: Charitable 
contributions

◼ P: Happiness

E
E
E

C

E V

W

C P

H

Are C and V d-separated give E and P?
Are C and H d-separated?
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d-Seperation Using Ancestral Graph

◼ X is d-separated from Y given Z (<X,Z,Y>d) iff:

◼ Take the ancestral graph that contains X,Y,Z and their ancestral subsets.

◼ Moralized the obtained subgraph

◼ Apply regular undirected graph separation

◼ Check:  <E,{},V>,<E,P,H>,<C,EW,P>,<C,E,HP>?

E
E
E

C

E V

W

C P

H

slides3 276 2024

E
E
E
E V

W

P

H

<E,P,H>

Moralized Ancestral graph



d-Seperation Using Ancestral Graph
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d-Seperation Using Ancestral Graph

◼ X is d-separated from Y given Z (<X,Z,Y>d) iff:

◼ Take the ancestral graph that contains X,Y,Z and their ancestral subsets.

◼ Moralized the obtained subgraph

◼ Apply regular undirected graph separation

◼ Check:  <E,{},V>,<E,P,H>,<C,EW,P>,<C,E,HP>?
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Idsep(R,EC,B)?
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Idsep(C,S,B)=?
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Is S1 conditionally on S2 independent of S3 and S4
In the following Bayesian network?
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Outline

◼ DAGS, Markov(G),  Bayesian networks

◼ Graphoids: axioms of for inferring conditional 
independence (CI)

◼ D-separation: Inferring  CIs in graphs

◼ Soundness, completeness of d-seperation

◼ I-maps, D-maps, perfect maps

◼ Construction a minimal I-map of a distribution

◼ Markov boundary and blanket

◼ Markov Networks
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It is not a d-map
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So how can we construct an I-MAP of a probability distribution?
And a minimal I-Map
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Earthquake Burglary

Radio
Alarm

Call
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Perfect Maps for DAGs

◼ Theorem 10 [Geiger and Pearl 1988]: For any dag D 
there exists a P such that D is a perfect map of P 
relative to d-separation.

◼ Corollary 7: d-separation identifies any implied 
independency that follows logically from the set of 
independencies characterized by its dag.
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Bayesian Networks as 
Knowledge-Bases

◼ Given any distribution, P, and an ordering we can 
construct a minimal i-map.

◼ The conditional probabilities of x given its parents is 
all we need.

◼ In practice we go in the opposite direction: the 
parents must be identified by human expert… they 

can be viewed as direct causes, or direct influences.

slides3 276 2024



slides3 276 2024



slides3 276 2024



Outline

◼ DAGS, Markov(G),  Bayesian networks

◼ Graphoids: axioms of for inferring conditional 
independence (CI)

◼ D-separation: Inferring  CIs in graphs

◼ Soundness, completeness of d-seperation

◼ I-maps, D-maps, perfect maps

◼ Construction a minimal I-map of a distribution

◼ Markov boundary and blanket

◼ Markov networks

slides3 276 2024



slides3 276 2024



Blanket Examples

What is a Markov blanket of C?

slides3 276 2024



Blanket Examples
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Markov Blanket
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Outline

◼ DAGS, Markov(G),  Bayesian networks

◼ Graphoids: axioms of for inferring conditional 
independence (CI)

◼ D-separation: Inferring  CIs in graphs

◼ Soundness, completeness of d-seperation

◼ I-maps, D-maps, perfect maps

◼ Construction a minimal I-map of a distribution

◼ Markov boundary and blanket

◼ Markov networks, Markov Random Fields
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Undirected Graphs as I-maps of Distributions

◼
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Graphoids vs Undirected graphs

◼ Symmetry:   I(X,Z,Y) → I(Y,Z,X)  

◼ Decomposition:  I(X,Z,YW)→ I(X,Z,Y) and I(X,Z,W)

◼ Weak union:  I(X,Z,YW)→I(X,ZW,Y)

◼ Contraction:  I(X,Z,Y) and I(X,ZY,W)→I(X,Z,YW)

◼ Intersection: I(X,ZY,W) and I(X,ZW,Y) → I(X,Z,YW)

Symmetry:  I(X,Z,Y) → I(Y,Z,X)  

Decomposition:  I(X,Z,YW)→ I(X,Z,Y) and I(X,Z,Y)

Intersection:  I(X,ZW,Y) and I(X,ZY,W)→I(X,Z,YW)

Strong union: I(X,Z,Y) → I(X,ZW, Y)

Transitivity: I(X,Z,Y) → exists t s.t. I(X,Z,t) or I(t,Z,Y)
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See Pearl’s book

Graphoids: Conditional Independence Seperation in Graphs 



Markov Networks

◼ An undirected  graph G which is a minimal I-map of  
a probability distribution Pr, namely deleting any 
edge destroys its i-mappness relative to (undirected) 
seperation, is called a Markov network of P.
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The unusual edge (3,4)
reflects the reasoning that if we fix 
the arrival time (5) the travel time (4) 
must depends on current time (3)
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How can we construct a probability
Distribution that will have all these 
independencies?
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So, How do we learn
Markov networks From data?

Markov Random Field (MRF)



Examples of Bayesian and Markov 
Networks
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Markov Networks 
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Sample Applications for Graphical 
Models
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