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i Outline

= Graphoids: axioms of for inferring
conditional independence (CI)



Properties of Probabilistic independence

THEOREM 1: Let X, Y, and Z be three disjoint subsets of

variables from U. If I (X, Z, Y) stands for the relation ‘X is in-
dependent of Y, given Z’’ in some probabilistic model P, then /
must satisfy the following four independent conditions:

= Symmetry:
1(X,2,Y) > I(Y,ZX)

= Decomposition:
I(X,Z,YW)> I(X,Z,Y) and I(X,Z,W)

= Weak union:
I(X,Z,YW)->I(X,ZW,Y)

= Contraction:
I(X,Z,Y) and I(X,ZY,W)->I(X,Z,YW)

= Intersection:
I(X,ZY,W) and I(X,ZW,Y) > I(X,Z,YW)
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Graphoid axioms:
Symmetry, decomposition
Weak union and contraction

Positive graphoid:
+intersection

In Pearl: the 5 axioms
are called Graphids,
the 4, semi-graphois



Intersection

Holds only for strictly positive distributions
(X, ZUW.,Y) and Ip (X, ZUY, W) only if p.(X,Z,Y UW)

If information w is irrelevant given y, and y is irrelevant given w,
then combined information yw is irrelevant to start with.




Intersection
Holds only for strictly positive distributions

Ior (X, ZUW.Y) and Ip,(X.Z UY., W) only if Ip,(X.Z,Y UW)

If information w is irrelevant given y, and y is irrelevant given w,
then combined information yw is irrelevant to start with.

@ If we know the input A of

A B inverter X, its output C
becomes irrelevant to our belief

—? . v ] in the circuit output E.
(:;’f \\__ f/ @ If we know the output C of
cl [D inverter X, its input A becomes
\| irrelevant to this belief.
|\ — /I,.-l @ Yet, variables A and C are not
\Z/ irrelevant to our belief in the

TE circuit output E.



i Outline

= D-separation: Inferring CIs in graphs
=« I-maps, D-maps, perfect maps
= Markov boundary and blanket
=« Markov networks



i Outline

= D-separation: Inferring conditional
independences (Cis) in directed graphs



i What we know so far on BN?

= A probability distribution of a Bayesian network
having directed graph G, satisfies all the Markov
assumptions of independencies.

= 5 graphoid, (or positive) axioms allow inferring more
conditional independence relationship for the BN.

= d-separation in G will allow deducing easily many of
the inferred independencies.

s G with d-separation yields an I-MAP of the probability
distribution.



A Graphical Test of Independence

The inferential power of the graphoid axioms can be tersely
captured using a graphical test, known as d-separation, which
allows one to mechanically, and efficiently, derive the
independencies implied by these axioms.

@ [o test whether X and Y are d-separated by Z in DAG G,

written dsep(X,Z,Y), we need to consider every path
between a node in X and a node in Y, and then ensure that

the path is blocked by Z.

@ [he definition of d-separation relies on the notion of blocking
a path by a set of variables Z.

dseps (X, Z,Y) implies Ip(X,Z,Y) for every probability
distribution Pr induced by G.



d-speration

= To test whether X and Y are d-separated by Z in dag G, we
need to consider every path between a node in X and a node in
Y, and then ensure that the path is blocked by Z.

= A path is blocked by Z if at least one valve (node) on the path
is ‘closed’ given Z.
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The type of a valve is determined by its relationship to its
neighbors on the path. }

divergent convergent

oo
00 W

@ A sequential valve —W— arises when W is a parent of one of its
neighbors and a child of the other.

sequential

@ A divergent valve —W— arises when W is a parent of both neighbors.

@ A convergent valve — W+« arises when W is a child of both neighbors.
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A path with 6 valves. From left to right, convergent, divergent,
sequential, convergent, sequential, and sequential.




Let X, Y and Z be disjoint sets of nodes in a DAG G. We will say
that X and Y are d-separated by Z, written dsep(X,Z,Y), iff
every path between a node in X and a node in Y is blocked by Z,
where a path is blocked by Z iff at least one valve on the path is

closed given Z.

A path with no valves (i.e., X — Y') is never blocked. |




DEPENDENCE SEMANTICS FOR BAYESIAN NETWORKS

DEFINITION: If X, Y, and Z are three disjoint subsets of nodes in a
DAG D, then Z is said mI from ¥, denoted
<X | Z 1Y >p, if there is no path berw anode in X and anodein¥
along which the following two conditions hold: (1) every node with
converging arrows is in Z or has a descendent in Z and (2) every other
node is outside Z .

. If a path satisfies the condition above, it is said to be active;
otherwise, it is said to be blocked by Z .

<21113>p , =<211513>,

Figure 3.10. A DAG depicting d-separation; node 1 blocks
the path 2-1-3, while node 5 activates the path 2-4-3.

No path

Is active =
Every path is
blocked



ayesian Networks as i-maps

E: Employment
V: Investment )
W: Wealth
H: Health

C: Charitable
contributions

P: Happiness

Are C and V d-separated give E and P?
Are C and H d-separated?
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i d-Seperation Using Ancestral Graph

= X is d-separated from Y given Z (<X,Z,Y>d) iff:

Take the ancestral graph that contains X,Y,Z and their ancestral subsets.
Moralized the obtained subgraph

Apply regular undirected graph separation

Check: <E,},Vv>,<EPH>,<CEW,P>,<CEHP>?

<E,P,H>

Moralized Ancestral graph
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i d-Seperation Using Ancestral Graph

= X is d-separated from Y given Z (<X,Z,Y>d) iff:

Take the ancestral graph that contains X,Y,Z and their ancestral subsets.
Moralized the obtained subgraph

Apply regular undirected graph separation

Check: <E,},Vv>,<EPH>,<CEW,P>,<CEHP>?

<C,EW P>

W
D

Y e o

Moralized Ancestral graph




d-Seperation Using Ancestral Graph

= X is d-separated from Y given Z (<X,Z,Y>d) iff:
= Take the ancestral graph that contains X,Y,Z and their ancestral subsets.
= Moralized the obtained subgraph

Apply regular undirected graph separation

Check: <E,},Vv>,<EPH>,<CEW,P>,<CEHP>?




Idsep(R, EC, B)7
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Barthquake? ™ G@;&N Example
S g
R ® - R and B are d-separated by E

/N// and C. The closure of only one
— valve is sufficient to block the

GadioD ;;l_all_lh L -
(R @ path, therefore, establishing
| d-separation.




Idsep(R,@,C)?

Earthquake?
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Ea;‘thquaiie‘? ﬁfm;;yq
S G D

-

/\ R and C are not d-separated
open .
since both valves are open.

C{:Eii)OD Algl)lh, Hence, the path is not blocked
— open ”T_/ and d-separation does not hold.

il

v

N



Idsep(c,s, B) =7

Visit to Asia?
(A)

Tuberculosis?

(1)

P —

Lung Cancer?
()
B

Tuberculosis or Cancer?

(F)
Positive X-Ray?
(X
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r/f Visit to Asia? E\I T Smaker? >

A S NG

-

J ) Example
,— “closed

( Tubeﬁgmm o Long Coreert C and B are d-separated by S

(C)

< Bmﬁmb since both paths between them
Tubmlm “Q are blocked by S.

(P >
LlOSEd |
T _"—-—-______ |
o — S
/f Positive K—Ra}-"’:-‘ﬂ“) // Dryspnoea? I
(x) P S



Is S1 conditionally on S2 independent of S3 and S4
In the following Bayesian network?
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Example

Any path between S; and {53, 5;}
. — - . must have the valve 5;—5,— 53

| on it, which is closed given 5.

| Hence, every path from 57 to

{S3, 54} is blocked by S;, and we
have dsepc(S1, S5, {S3, 54}),

) (0,) (0, ¢ H)-. which leads to
L 2/ N3 N2 Ipr(S1.S2.{S3.541}).

oy (S1, S2, {53, S4}) for any probability distribution Pr which is
induced by the DAG.



* Outline

s DAGS, Markov(G), Bayesian networks

= Graphoids: axioms of for inferring conditional
independence (CI)

= D-separation: Inferring CIs in graphs
= Soundness, completeness of d-seperation
« [-maps, D-maps, perfect maps
= Construction a minimal I-map of a distribution
= Markov boundary and blanket
= Markov Networks
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Soundness of d-separation

The d-separation test is sound in the following sense.

If Pr is a probability distribution induced by a Bayesian network
(G,©), then

dsepc(X,Z,Y) only if Ip,(X,Z,Y).

The proof of soundness is constructive, showing that every
independence claimed by d-separation can indeed be derived using
the graphoid axioms.



Completeness of d-separation

It is not a d-map
d-separation is not complete in the following sense:

@ Consider a network with three binary variables X—Y—/Z.
@ / is not d-separated from X.

@ / can be independent of X in a probability distribution
induced by this network.

Choose the CPT for variable Y so that 0, = 0,z.
Y independent of X since

o Pr(y) =Pr(y|x) = Pr(y|x
o Pr(y) =Pr(y|x) = Pr(y
Z is also independent of X.




* Outline

s DAGS, Markov(G), Bayesian networks

s Graphoids: axioms of for inferring conditional
independence (CI)

= D-separation: Inferring CIs in graphs
= Soundness, completeness of d-seperation
=« I-maps, D-maps, perfect maps
= Construction a minimal I-map of a distribution
= Markov boundary and blanket
= Markov networks
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More on DAGs and Independence

G is an Independence MAP (I-MAP) of Pr iff every independence
declared by d-separation on DAG G holds in the distribution Pr:

dsepc(X,Z,Y) only if Ip,(X,Z,Y).

Definition

An I-MAP G is minimal if G ceases to be an I-MAP when we
delete any edge from G.

By the semantics of Bayesian networks, if Pr is induced by a
Bayesian network (G, ©), then G must be an I-MAP of Pr,
although it may not be minimal.



More on DAGs and Independence

G is a Dependency MAP (D-MAP) of Pr iff

lpr(X,Z,Y) only if dsepg (X, Z,Y).

If G is a D-MAP of Pr, then the lack of d-separation in G implies
a dependence in Pr.

Definition

If DAG G is both an I-MAP and a D-MAP of distribution Pr, then
G is called a Perfect MAP (P-MAP) of Pr.




* Outline

s DAGS, Markov(G), Bayesian networks

= Graphoids: axioms of for inferring conditional
independence (CI)

= D-separation: Inferring CIs in graphs
= Soundness, completeness of d-seperation
« [-maps, D-maps, perfect maps
= Construction a minimal I-map of a distribution
= Markov boundary and blanket
= Markov Networks
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So how can we construct an I-MAP of a probability distribution?
And a minimal I-Map



Independence MAPs

Given a distribution Pr, how can we construct a DAG G which is
guaranteed to be a minimal I-MAP of Pr? J

Given an ordering Xi,.... X, of the variables in Pr:
e Start with an empty DAG G (no edges)
@ Consider the variables X; one by one, for i = 1,...,n.

@ For each variable X;, identify a minimal subset P of the
variables in X7, ..., X;_1 such that

Ioe(Xi, P U X1, ... Xi—1} \ P).

@ Make P the parents of X; in DAG G.
The resulting DAG is a minimal I-MAP of Pr.



Independence MAPs

Construct a minimal I-MAP G for some distribution Pr using the
previous procedure and variable order A, B, C. E. R. }

'u_ u; 9 Bm;'uv? \_
/]_:j‘ “:qg} kﬁ___f ) C {B} 4
/ N / Suppose that DAG G’ is a
~ Radio? ™, C Py P-MAP of distribution Pr
‘\__ (R) ,,/ fAJ /'
|
P
/ocan
N ©

Independence tests on Pr, Ip.(X;,P.{X1,....X;_1} \ P), can now be
reduced to equivalent d- separation tests on DAG G’,

dsepg (Xi, P.{ X1,. ... Xi-11 \ P).



@ Variable A added with
P=10.

@ Variable B added with P = A, since dsepg, (B, A, ) holds and
dseps/ (B, 0, A) does not.

@ Variable C added with P = A, since dsep¢, (C, A, B) holds and
dsep(C.0,{A, B}) does not.

@ Variable E added with P = A, B since this is the smallest subset of
A, B, C such that dsep..(E,P,{A, B, C}\ P) holds.

@ Variable R added with P = E since this is the smallest subset of
A. B. C, E such that dsepq, (RES{A/BZEE} \ P) holds.



Independence MAPs

! . . . . . .
DAG G’ and distribution Pr Minimal I-MAP G
// Eanhflmke \.. ' Burglan" ™ //— Eﬂl‘““fl'-”'“’f}\\ - Burglary? ™
S~ fE] \K___ {B} __f,/' fE} i; “rfg?n __
— J /
/ R'ldlo’ ‘\ / A]a_rm”f' ™ f R'ldIO'-" \ Ala:m"’ ™
(R _// '\\H A /," ) __,/' \_.%_ “@ /
| |
— _*_ T — T
(" can? Ocar
~_ (O S '\H___(E}____ S

o If dseps(X,Z,Y), then dseps/(X,Z,Y) and Ip,(X,Z,Y).

@ This ceases to hold if we delete any of the five edges in G.

For example, if we delete the edge E «— B, we will have

dsepg(E., A, B), yet dsepe/(E, A, B) does not hold.



Independence MAPs

@ The minimal I-MAP of a distribution is not unique, as we may
get different ones depending on which variable ordering we
start with.

@ Even when using the same variable ordering, it is possible to
arrive at different minimal I-MAPs. This is possible since we

may have multiple minimal subsets P of {X1,..., Xj_1} for
which Ip(Xi, P, {X1,..., Xi—1} \ P) holds.

@ This can only happen if the probability distribution Pr
represents some logical constraints.

@ We can ensure the uniqueness of a minimal I-MAP for a given
variable ordering if we restrict ourselves to strictly positive
distributions.



i Perfect Maps for DAGs

= Theorem 10 [Geiger and Pearl 1988]: For any dag D
there exists a P such that D is a perfect map of P
relative to d-separation.

= Corollary 7: d-separation identifies any implied
independency that follows logically from the set of
independencies characterized by its dag.



Bayesian Networks as
i Knowledge-Bases

= Given any distribution, P, and an ordering we can
construct a minimal i-map.

= The conditional probabilities of x given its parents is
all we need.

= In practice we go in the opposite direction: the
parents must be identified by human expert... they

can be viewed as direct causes, or direct influences.



BAYESIAN NETWORK AS A KNOWLEDGE BASE

STRUCTURING THE NETWORK

Given any joint distribution P (x, ..., x,) and an ordering d of the
variables in U, Corollary 4 prescribes a simple recursive
procedure for constructing a Bayesian network.

Choose X | as a root and assign to it the marginal probability P (x,)
dictated by P (x,,..., x,, ).

If X, is dependent on X |, a link from X, to X, is established and
quantified by P(x,lx;). Otherwise, we leave X; and X,
unconnected and assign the prior probability P (x,) to node X ,.

At the i-th stage, we form the node X;, draw a group of directed
links to X; from a parent set Ily defined by Eq. (3.27), and
quantify this group of links by the conditional probability
P (x; Iny ).

The result is a directed acyclic graph that represents all the
independencies that follow from the definitions of the parent sets.



e  Inpractice, P(x.....x, ) is not available.
. The parent sets ITy must be identified by human judgment.

. To specify the strengths of influences, assess the conditional
probabilities P (x; Iny,) by some functions F;(x;, my) and make
sure these assessments satisfy

ZFJ(II-’ I'IX‘_]= 1 § (3,300
X

where 0<F;(x;, ng,) < 1

e  This specification is complete and consistent because the product
form

Po(xy, o x, ) =TT F(x;, ny ) (3.31)
i

constitutes a joint probability distribution that supports the
assessed quantities.

p Pi(xqs.., x,)
Pﬂ (xi;i "XI-) _ IJ; & [Xj '\Jnx}

P, (ny)

Pa(x;lng )= =F; (x;, my Y332)

Y Pilxqe...x,)
IJ: & "x"

. DAGs constructed by this method will be called Bayesian belief
networks or causal networks intecchangeéably.



* Outline

s DAGS, Markov(G), Bayesian networks

s Graphoids: axioms of for inferring conditional
independence (CI)

= D-separation: Inferring CIs in graphs
= Soundness, completeness of d-seperation
« I-maps, D-maps, perfect maps
= Construction a minimal I-map of a distribution
= Markov boundary and blanket
= Markov networks
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Blankets and Boundaries

Let Pr be a distribution over variables X. A Markov blanket for a
variable X € X is a set of variables B C X such that X ¢ B and

A Markov blanket for X is a set of variables which, when known,
will render every other variable irrelevant to X.

Definition

A Markov blanket B is minimal iff no strict subset of B is also a
Markov blanket. A minimal Markov blanket is a Markov Boundary.

The Markov Boundary for a variable is not unique, unless the
distribution is strictly positive.



Blanket Examples

If Pr is induced by DAG G, then a Markov blanket for variable X
with respect to Pr can be constructed using its parents, children,
and spouses in DAG G. Here, variable Y is a spouse of X if the
two variables have a common child in DAG G.

0,) (0,) (0,

{S¢_1.5¢11. O} is a Markov

blanket for every variable S;,
What is a Markov blanket of C? where t > 1
slides3 276 2024 B B B




Blanket Examples

If Pr is induced by DAG G, then a Markov blanket for variable X
with respect to Pr can be constructed using its parents, children,
and spouses in DAG G. Here, variable Y is a spouse of X if the
two variables have a common child in DAG G.

0,) (0,) (0,

{Si_—1,S¢11, O} is a Markov

{S,P, T} is a Markov blanket for blanket for every variable S;,
h where t > 1

variable C - - -
slides3 276 2024




‘L Markov Blanket




* Outline

s DAGS, Markov(G), Bayesian networks

= Graphoids: axioms of for inferring conditional
independence (CI)

= D-separation: Inferring Cls in graphs
= Soundness, completeness of d-seperation
« [-maps, D-maps, perfect maps
= Construction a minimal I-map of a distribution
= Markov boundary and blanket
= Markov networks, Markov Random Fields
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Undirected Graphs as I-maps of Distributions

Wesay < X,Z,Y > iff once you remove Z from the graph X
and Y are not connected

= Can we completely capture probabilistic independencies by the
notion of separation in a graph?

= Example: 2 coins and a bell.



Graphoids vs Undirected graphs

Graphoids: Conditional Independence Seperation in Graphs

Symmetry:  I(X,z,Y) > I(Y,ZX) Symmetry: 1x,zY)> LY,ZX)
Decomposition: I(X,z,YW)> I(X,z,Y) and I(x,zw) DECOMPOSItion: 1(x,z,Yw)> 1(X,,Y) and I(X,Z,Y)

Weak Union: I(X.z, YW)>I(X,ZW.Y) Intersection: 1(x,zw,Y) and I(X,2Y,W)->I(X,Z,YW)

Strong union: 1(X,z,Y) > I(X,ZW, Y)
Contraction: 1(X,z,Y) and I(X,ZY,W)>I(X,Z,YW)
Transitivity: 1(X,Z,Y) > exists t s.t. I(X,Z,t) or I(t,Z,Y)

Intersection: 1(X,zY,W) and I(X,ZW,Y) = I(X,Z,YW)

See Pearl’s book
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i Markov Networks

= An undirected graph G which is a minimal I-map of
a probability distribution Pr, namely deleting any
edge destroys its i-mappness relative to (undirected)
seperation, is called a Markov network of P.



CONCEPTUAL DEPENDENCIES AND
THEIR MARKOV NETWORKS

An agent identifies the following variables as having influence on
the main question of being late to a meeting:

1. The time shown on the watch of Passerby 1,

b

The time shown on the watch of Passerby 2.
The correct time.

The time it takes to travel to the meeting place.

L .

The arrival time at the meeting place.

The construction of G can proceed by one of two methods:

. The edge-deletion method.

. The Markov boundary method.

The first method requires that for every pair of variables (o, B) we

determine whether fixing the values of all other variables in the
system will render our belief in o sensitive to .

For example, the reading on Passerby 1’s watch (1) will vary with
the actual time (3) even if all other variables are known, so
connect node 1 to node 3



The Markov boundary method requires that for every variable a in
the system, we identify a minimal set of variables sufficient to
render the belief in o insensitive to all other variables in the
system.

For instance, once we know the current time (3), no other variable
can affect what we expect to read on passerby 1’s watch (1).

(1) watch - 1 {2} watch - 2

{4) wavel time The unusual edge (3,4)

reflects the reasoning that if we fix
the arrival time (5) the travel time (4)
must depends on current time (3)

{3} current ime

(5} amival dme

Figure 3.6. The Markov network representing the prediction
of A 's arrival time,

G can be used as an inference instrument.

. For example, knowing the current time (3) renders the time
on Passerby 1’s watch (1) irrelevant for estimating the travel
time (4) (i.e., 1(1,3,4)); 3 is a cutset in G, separating 1 from
4,



MARKOV NETWORK AS A KNOWLEDGE BASE

M,
How can we construct a probability
Distribution that will have all these
F, Fsy independencies?
M,

Figure 3.2. An undirected graph representing
interactions among four individuals.

QUANTIFYING THE LINKS

. If couple (M, F,) meet less frequently than the couple (M, F,),
then the first link should be weaker than the second

. The model must be consistent, complete and a Markov field of G.

. Arbitrary specification of P(M,,F,), P(F{,M,), P(M,, F,), and
P{F,, M) might lead to inconsistencies.

. If we specify the pairwise probabilities of only three pairs,
incompleteness will result.



Markov Random Field (MRF)

. A safe method (called Gibbs' potential) for constructing a
complete and consistent quantitative model while preserving the
dependency structure of an arbitrary graph G.

I Identify the cliquest of G, namely, the largest subgraphs
whose nodes are all adjacent to each other.

2. For each clique C;, assign a nonnegative compatibility
function g;(c;), which measures the relative degree of
compatibility associated with the value assignment ¢; to the

variables included in C,.

3. Form the product I g, (c;) of the compatibility functions over
i

all the cliques.

4. Normalize the product over all possible value combinations
of the variables in the system

Plxq...x)=K I[1g(c), (3.13)
So, How do we learn ‘ :

Markov networks From data?+here

-1
K=[ % l;IS;-(r;-}J

Ea s ]

T We use the term cligue for the more commaon tenmn maximal cligue,



+

Examples of Bayesian and Markov
Networks
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Markov Networks

H,(A.B) H,(B.C)

D E H.(D,E)

0 0 20.2

0 1 12

1 0 23.4

1 1 11.7
(a) (b)

Figure 2.6: (a) An example 3 x 3 square Grid Markov network (ising model) and (b) An
example potential Hg(D. E)

network represents a global joint distribution over the variables X given by:

P@) = [[H . 2= [[H@
i=1

zeX i=1
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Sample Applications for Graphical
Models

Computer Vision

Genetic Linkage Sensor Networks

S

a||lA 3 A

B B{ \b Bl |o
C C c| |e

P CrOSSOvEr il
ﬁan'reia\

G paopla, 3 markars

O-0-0O K ﬁﬁﬁ*

Figure 1: Application areas and graphical models used to represent their respective systems: (a) Finding
correspondences between images, including depth estimation from stereo; (b) Genetic linkage analysis and
pedigree data; (c) Understanding patterns of behavior in sensor measurements using spatio-temporal models.
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