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Building Bayesian Networks



Outline

DAGS, Markov(G),  Bayesian networks
Graphoids: axioms of for inferring conditional 

independence (CI)
D-separation: Inferring  CIs in graphs

I-maps, D-maps, perfect maps
Construction a minimal I-map of a distribution
Markov boundary and blanket
Markov networks
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Bayesian Networks as Knowledge-Bases

Given any distribution, P, and an ordering we can construct 
a minimal i-map.

The conditional probabilities of x given its parents is all we 
need.

In practice we go in the opposite direction: the parents must 
be identified by human expert… they can be viewed as 
direct causes, or direct influences.
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Outline

DAGS, Markov(G),  Bayesian networks
Graphoids: axioms of for inferring conditional 

independence (CI)
D-separation: Inferring  CIs in graphs

Soundness, completeness of d-seperation
I-maps, D-maps, perfect maps
Construction a minimal I-map of a distribution
Markov boundary and blanket
Markov networks
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Blanket Examples

What is a Markov blanket of C? slides3b 276 2024



Blanket Examples
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Markov Blanket
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Outline

DAGS, Markov(G),  Bayesian networks
Graphoids: axioms of for inferring conditional 

independence (CI)
D-separation: Inferring  CIs in graphs

Soundness, completeness of d-seperation
I-maps, D-maps, perfect maps
Construction a minimal I-map of a distribution
Markov boundary and blanket
Markov networks, Markov Random Fields
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Undirected Graphs as I-maps of Distributions
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Graphoids vs Undirected graphs

Symmetry:   I(X,Z,Y) I(Y,Z,X)  

Decomposition:  I(X,Z,YW) I(X,Z,Y) and I(X,Z,W)

Weak union:  I(X,Z,YW)I(X,ZW,Y)

Contraction:  I(X,Z,Y) and I(X,ZY,W)I(X,Z,YW)

Intersection: I(X,ZY,W) and I(X,ZW,Y)  I(X,Z,YW)

Symmetry:  I(X,Z,Y)  I(Y,Z,X)  

Decomposition:  I(X,Z,YW) I(X,Z,Y) and I(X,Z,Y)

Intersection:  I(X,ZW,Y) and I(X,ZY,W)I(X,Z,YW)

Strong union: I(X,Z,Y)  I(X,ZW, Y)

Transitivity: I(X,Z,Y)  exists t s.t. I(X,Z,t) or I(t,Z,Y)

See Pearl’s book

Graphoids: Conditional Independence Seperation in Graphs 
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Markov Networks

An undirected  graph G which is a minimal I-map of  a 
probability distribution Pr, namely deleting any edge 
destroys its i-mappness relative to (undirected) 
seperation, is called a Markov network of P.
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How can we construct a probability
Distribution that will have all these 
independencies?
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So, How do we learn
Markov networks From data?

Markov Random Field (MRF)
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Sample Applications for Graphical 
Models
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Outline
• Bayesian networks and queries
• Building Bayesian Networks

• Medical diagnosis
• Circuit diagnosis
• Probabilistic decoding
• Commonsense reasoning
• Linkage analysis
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Outline
• Bayesian networks and queries
• Building Bayesian Networks

• Medical diagnosis
• Circuit diagnosis
• Probabilistic decoding
• Commonsense reasoning
• Linkage analysis
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Queries: Different queries may be relevant for different scenarios
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For other tools (e.g., GeNie/Smile) see class page

http://reasoning.cs.ucla.edu/samiam

http://reasoning.cs.ucla.edu/samiam


Other type of evidence: We may want to know the probability that the patient has either a
positive X-ray or dyspnoea, X =yes or D=yes.
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C= lung cancer
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MPE is also called MAP
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MAP is also called Marginal Map (MMAP)
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Is it correct?
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Probabilistic Reasoning Problems
Exact Algorithm: Bucket Elimination, Complexity  

Test

Drill Oil sale
policy

Test
result

Seismic
structure

Oil
underground

Oil
produ
ced

Test
cost

Drill
cost

Sales
cost

Oil 
sales

Market
information

Bounded error

H
arder

 Max-Inference
   (most likely config.)

 Sum-Inference
   (data likelihood)

 Mixed-Inference
   (optimal prediction)

 Mixed-Inference
   (maximum expected utility)
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Construction a minimal I-map of a 
distribution



Constructing a Bayesian Network for 
any Distribution P

Intuition: The causes of X can serve as the parents
Ask: who does a  variable listen to 
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Outline
• Bayesian networks and queries
• Building Bayesian Networks

• Medical diagnosis
• Circuit diagnosis
• Probabilistic decoding
• Commonsense reasoning
• Linkage analysis

• Special representations of CPTs
• Causal independence (noisy-or, noisy-and)
• Decision trees
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Variables? Arcs? Try it.
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What about?
A naive Bayes structure
has the following edges C -> A1, . . . , C -> Am, where C is called 
the class variable and A1; : : : ;Am are called the attributes.
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I(ST, Cond=cold,Fever)?
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Learn the model from data
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Learning the model
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Try it: Variables and values? Structure? CPTs?slides3b 276 2024
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Try with GeNie/Smile
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Try it: Variables? Values? Structure?
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Variables? Values? Structure?
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Commonsense reasoning
When SamBot goes home at night, he wants to know if his family
is home before he tries the doors. 

Often when SamBot's wife leaves the house she turns on an outdoor light. However, 
she sometimes turns on this light if she is expecting a guest.

Also, SamBot's family has a dog. When nobody is home, the dog is in the back yard. 
The same is true if the dog has bowel trouble. 

If the dog is in the back yard, SamBot will probablyhear her barking, but sometimes 
he can be confused by other dogs barking. 

SamBot is equipped with two sensors: a light-sensor for detecting outdoor lights and 
a sound-sensor for detecting the barking
of dogs. Both of these sensors are not completely reliable and can
break. Moreover, they both require SamBot's battery to be in good
condition.
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Read on your own
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Two Loci Inheritance

Recombinant 

21A  A
B   B

a   a
b   b

A   a
B   b 3 4

a   a
b   b

A   a
b b 5 6

A   a
B   b
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Bayesian Network for Recombination
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Linkage analysis: 
6 people, 3 markers
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Outline
• Bayesian networks and queries
• Building Bayesian Networks

• Medical diagnosis
• Circuit diagnosis
• Probabilistic decoding
• Commonsense reasoning
• Linkage analysis
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