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Slides Set 3b:
Building Bayesian Networks

Rina Dechter
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Construction a minimal I-map of a distribution
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Bayesian Networks as Knowledge-Bases

Given any distribution, P, and an ordering we can construct
a minimal i-map.

The conditional probabilities of x given its parents is all we
need.

In practice we go in the opposite direction: the parents must
be identified by human expert... they can be viewed as

direct causes, or direct influences.
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BAYESIAN NETWORK AS A KNOWLEDGE BASE

STRUCTURING THE NETWORK

Given any joint distribution P (x ...., x,) and an ordering d of the
variables in U, Corollary 4 prescribes a simple recursive
procedure for constructing a Bayesian network.

Choose X ; as a root and assign to it the marginal probability P (x )
dictated by P (x,..., x,, ).

If X, is dependent on X, a link from X, to X, is established and
quantified by P(x,lx;). Otherwise, we leave X; and X,
unconnected and assign the prior probability P (x,) to node X ,.

At the i-th stage, we form the node X;, draw a group of directed
links to X; from a parent set Ily defined by Eq. (3.27), and

quantify this group of links by the conditional probability
P (x; Ing ).

The result i1s a directed acyclic graph that represents all the
independencies that follow from the definitions of the parent sets.
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. In practice, P (x,...,x, ) is not available.

e  The parent sets I1y must be identified by human judgment.

. To specify the strengths of influences, assess the conditional
probabilities P (x; Iny) by some functions F;(x;,ny) and make
sure these assessments satisfy

Y Fixumg)=1, (330)
X
where 0 < F;(x;,ny) <1
e  This specification is complete and consistent because the product
form
Py(xy, o x,) =11 F (x;, ny ) (3.31)
1
constitutes a joint probability distribution that supports the
assessed quantities.
¥ Po(x s x,)
P, (x;, "x,.] x;i & (x; wily)
Pg(x;Iny) = = =F; (x;, my )332)
P, (ny) p
f b (X X))
I_f & I'lx‘
. DAGs constructed by this method will be called Bayesian belief

networks or causal networks interchangeably.



Outline

DAGS, Markov(G), Bayesian networks

Graphoids: axioms of for inferring conditional
independence (Cl)

D-separation: Inferring Cls in graphs
Soundness, completeness of d-seperation
l-maps, D-maps, perfect maps
Construction a minimal |-map of a distribution
Markov boundary and blanket
Markov networks
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Blankets and Boundaries

Let Pr be a distribution over variables X. A Markov blanket for a
variable X € X is a set of variables B C X such that X € B and

b (X,B, X\ B\ {X}).

A Markov blanket for X is a set of variables which, when known,
will render every other variable irrelevant to X.

Definition
A Markov blanket B is minimal iff no strict subset of B is also a
Markov blanket. A minimal Markov blanket is a Markov Boundary.

The Markov Boundary for a variable is not unique, unless the

distribution is strictly positive.
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Blanket Examples

If Pr is induced by DAG G, then a Markov blanket for variable X
with respect to Pr can be constructed using its parents, children,
and spouses in DAG G. Here, variable Y is a spouse of X if the
two variables have a common child in DAG G.

0,) (0,) (0,

{Si_1.5¢11, O} is a Markov
blanket for every variable S;,

What is a Markov blanket of C? 26276 2ggj1ere t>1



Blanket Examples

If Pr is induced by DAG G, then a Markov blanket for variable X
with respect to Pr can be constructed using its parents, children,
and spouses in DAG G. Here, variable Y is a spouse of X if the
two variables have a common child in DAG G.

Vit 0 Asi N - Smoke > - -
W A f[-!-'J B N e PPN . \I
- (S)(8)(8) -+ (S,
<r:r b-erlf:n lo > Q_im[gm : ) 1 ‘ 1
ey T D (B (O (O
e | )\
_..:*/ - T
/f ﬁ;;tivex-];l}? ) -_];y'apm.oen?_ .
W BT {Si_1.5¢11, O} is a Markov

{S,P, T} is a Markov blanket for blanket for every variable S;,
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Markov Blanket

aN
P ——
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Outline

D-separation: Inferring Cls in graphs

Markov networks, Markov Random Fields
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Undirected Graphs as I-maps of Distributions

Wesay < X,Z,Y >, iff once you remove Z from the graph X
and Y are not connected

Can we completely capture probabilistic independencies by the
notion of separation in a graph?

Example: 2 coins and a bell.
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Graphoids vs Undirected graphs

Graphoids: Conditional Independence Seperation in Graphs

Symmetry: 1(X,2,Y) > I(Y,Z,X) Symmetry: 1(x,zY) > I(Y,ZX)

Decomposition: 1(x,z,Yyw)-> 1(X,2,Y) and I(X,Z,Y)
Decomposition: 1(X,z,YW)-> I(X,Z,Y) and I(X,Z,W)

Intersection: 1(x,zw,Y) and I(X,ZY,W)>I(X,Z,YW)
Weak union: 1(X,z,YW)>1(X,ZW,Y) Strong union: 1(X,z,Y) > I(X,zZW, Y)
Transitivity: I(X,Z,Y) = exists t s.t. I(X,Z,t) or I(t,Z,Y)

Contraction: 1(X,z,Y) and I(X,ZY,W)>1(X,Z,YW)

Intersection: 1(X,zY,W) and I(X,ZW,Y) > I(X,Z,YW)
See Pearl’s book
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Markov Networks

An undirected graph G which is a minimal I-map of a
probability distribution Pr, namely deleting any edge
destroys its i-mappness relative to (undirected)
seperation, is called a Markov network of P.
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MARKOV NETWORK AS A KNOWLEDGE BASE

M,
How can we construct a probability
Distribution that will have all these
Fy F, independencies?
M,

Figure 3.2. An undirected graph representing
interactions among four individuals.

QUANTIFYING THE LINKS

. If couple (M, F,) meet less frequently than the couple (M, F,),
then the first link should be weaker than the second

. The model must be consistent, complete and a Markov field of G.

. Arbitrary specification of P(M,F,), P(F;,M;), P(M,, F,), and
P (F,, M) might lead to inconsistencies.

. If we specify the pairwise probabilities of only three pairs,

incompleteness will result,
slides3b 276 2024



Markov Random Field (MRF)

. A safe method (called Gibbs’ potential) for constructing a
complete and consistent quantitative model while preserving the
dependency structure of an arbitrary graph G.

I. Identify the cliquest of G, namely, the largest subgraphs
whose nodes are all adjacent to each other.

kJ

For each clique C;, assign a nonnegative compatibility
function g;(c;), which measures the relative degree of
compatibility associated with the value assignment ¢; to the
variables included in C,.

3. Form the product I1 g, (e,) of the compatibility functions over
i
all the cliques.

4.  Normalize the product over all possible value combinations
of the variables in the system

PEII,...,xn}zﬁ; I[ g*{c:), (3.13)
i

So, How do we learn
Markov networks From data?where

=1
K=[ ¥ l}g;'(lfi}l

B! L]
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Sample Applications for Graphical
Models

Computer Vision Genetic Linkage Sensor Networks
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Figure 1: Application areas and graphical models used to represent their respective systems: (a) Finding
correspondences between images, including depth estimation from stereo; (b) Genetic linkage analysis and
pedigree data; (c) Understanding patterns of behavior in sensor measurements using spatio-temporal models.
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Outline

« Bayesian networks and queries

« Building Bayesian Networks

Medical diagnosis

Circuit diagnosis
Probabilistic decoding
Commonsense reasoning

Linkage analysis
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Outline

« Bayesian networks and queries

slides3b 276 2024



The construction of a Bayesian network involves three major steps:

@ ldentify relevant variables and their possible values.
@ Build the network structure by connecting variables into DAG.

@ Define the CPT for each network variable.

Queries: Different queries may be relevant for different scenarios
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Reasoning with Bayesian Networks

[ Samlam: Sensitivity Analysis, Modeling, Inference and More :]@
File Edit Mode Query Tools View Preferences  Window  Help

G = B ORI AED shenoy-shafer v B2 e i [l | 100%:

|£| Query Mode - [C:\asia. net] E]@
in-out degree v T2 Network =
oo : S=
=-A1 Visik o Asia?
Pooyes A Wisit to Asia? S Smoker?
N

EIE amoker?

The network Asia will

be used as a running
T: Has tuberculosis pi T Has lung cancer B: Has bronchitis
-- example. Screenshot

from Samlam.

F: TE or cancer

fleaf
=-0: Cyspnosa?
i

P benm
=h-¥: Positive X-ray? o
yes e Positive M-ray? [ Dyspnoea?
feema
] ——————————|

Samlam available at http://reasoning.cs.ucla.edu/samiam/.

For other tools (e.g., GeNie/Smile) see class page


http://reasoning.cs.ucla.edu/samiam

Query: Probability of Evidence

Probability of some variable instantiation e, Pr(e). |

| Samlam: Sensitivity Analysis, Modeling. Inference and Hoie =] |
Bl Edb Poce Queey Took Wew  Profercrces  Windod  Bep
G=Bnh B OF @ shanoy-shafr vz Ee EE Y il

|4 Qwary Made - [C;\asia.net] = |:I|L;.<J1
£ Metwnrk =)

il Probability that the patient has
a positive X-ray, but no
dyspnoea, Pr(X =yes, D=no),
about 3.96%. Computed by
Samlam.

interna I
= -B1 Has brondhikis
L @as tubercul@@as lurg ¢a@ GHH.S brnnchm
= .-I'-'; s fat s _\_\_\_\__\__'_'_H_H__f
E A0

The variables E = {X, D} are called evidence variables. The query
Pr(e) is known as a probability-of-evidence.

Other type of evidence: We may want to know the probability that the patient has either a
positive X-ray or dyspnoea, X =yes or D=yes.



Query: Prior and Posterior Marginals

Prior Marginals

Given a joint probability distribution Pr(xi, ..., x,), the marginal
distribution Pr(xy,...,xm), m < n, is defined as follows:
Pr(xi, ..., xm) = Z Pr(xi, ..., xp).
Xm+1s---3Xn

o

The marginal distribution can be viewed as a projection of the joint
distribution on the smaller set of variables Xi,.... X,,.

Posterior marginal given evidence e

Pr(xy,....xmle) =>_, . Pr(xi,....xple).
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Prior Marginals in the Asia Network

<]

=" e Mna e (| 100%
=Jod
M=

[ Samlam: Sensitivity Analysis, Modeling, Inference and More
File Edit Mode Query Tools Wiew Preferences  Window Help

aBhioom 28D
[£: Query Mode - [C:\asia. net]

in-out degres i] = Network
oot
— = - S Sle{er7

EI A1 Wisit to Asia? & MWisit o Asiay
5 _ < 1.00% - yes> . S0.00% - ﬁ;es
;o no I 95.00% - no

55 Smoker? I 150.00% - no . .
e Prior marginal

C= lung cancer

shenoy-shafer

. Positive X-ray?

[ ]11.03% - vyes

] 52.97% -no

)

D: Dyspnoea?
.:| 43.60% - yes
.:| 56.40% - no

)
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linternal
EI Bt Has bronchitis .
= e T Has tuberculosis C: Has lung cancer B: Has bronchitis C P]_ ( C)
1.04% - yesag 550%—3;-33 r .:|45 0% - yes)
-]9896% ro -]9450%—n|:| .jaanu% ro 5 SO[V
yes 20%
EI F TE ar cancer (y
T e no | 94.50%
;o tena _ F' TE ar cancer
BT: Has tuberculosis 6,48 % - ':."ES>
§Yes -] 93,52% - no
Lo
lleaf
=+-0: Dyspnoea?
¥




Query: Posterior Marginals in the Asia Network

[ £ Samlam: Sensitivity Analysis, Modeling, Inference and More 3@
File Edit Mode Query Toals Wiew Preferences  window Help
i = BEOO0OETAED shenaoy-shafer v =N B2 "R o [l | 100%
|| Query Mode - [C:\asia. net] E]@
in-out degres l] g—g Metwork E]E]
oot ——
-1 Visit ko Asia? & Yisit o Asia? S: Smoker?
P peyes L] s - yes> B ]51.32%- 1,res> P . . |
B <-] 56.83% - no B 46.66% - no osterior margina
=3¢ Smoker?
Ljes
L .
linternal C P]_ ( C ‘E!)

@"'E;_szsbimmitis T: Has tuberculosis T Has lung cancer B: Has bronchitis 0
6: 5.40% - yes > @j 25.23% y> <|: 15.32% v> ves | 25.23%
] 54.60% - no B 74.77% - no B | 20.68% - no 0
no | 74.77%

I:|f Has luno cancer

R -
Leenin

E---F: TE of cancer

R

Pobeng

(=-T: Has tuberculosis
Loyes

fei

e: X=yes,D=no

>

fleaf
=-0: Dyspnoga?

FeeypEs

—

E|>< Positive ¥-ray? £ Positive X-ray? [ Dyspnoea?
yes (- 100% - yes |7 <|:| 0% - yes
é [ ] 0%-no I 100 - o

L0

i ()
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Query: Most Probable Explanation (MPE)

Let Xi,..., X, be all network variables, and e be evidence. ldentify
an instantiation xi...., X, that maximizes the probability
Pr(xi,...,xn|e). Instantiation xi, ..., X, is called a most probable
explanation given evidence e.

MPE cannot be obtained directly from posterior marginals.

If X1....,X, Is an instantiation obtained by choosing each value x;
so as to maximize the probability Pr(x;|e), then xq, ..., x, is not
necessarily an MPE.
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Query: Most Probable Explanation (MPE)

2 Samlam: Sensitivity Analysis, Modeling. Inference and More :- [I:I]u
Ble Edic Mods Cuery  Tools Weiw  Preferences  window  Help

=R 2 A BT shenoy-shafer Py M s B[ 100%
& Query Mode - [C:asia.net] [___| a

in-ouk degres

0Ol
-0 YWigk bo Lelat

MPE given a positive

A IsiE to Asia? Sramoker?

X-ray and dyspnoea

e

|“*=uvf=mmnl.=.wé A patient that made no

Flz Edi Tools Miew Dcbug
: Has ||_'“.|EI ca Flmpe,8)=0. 025353446

Farelo sz visit to Asia; is a

ot smoker; has lung
cancer and bronchitis;

but no tuberculosis.

;I B Has branchicis

{obgg T: Has tuberculosis
:I Ci Has lumg canzer

Lowms

: no
:|:'. TE or cance

- : Hem long e=ncer
= THor caroer

= Sinokery

T Ha= tuberculoss

EFEEIEIE

F 1 1]
=-T: Has hoberculos=

P TE or cancer

X: Poaitve Xray? o= T

Lo
leaf - 100% - ves

i
i

I ;

O Dysphcea”

Wi Positive ¥-ray? I 100 - = O Owspnoea? f
1 0%

MPE is also called MAP

;E|--D:: Diyfsproear [ ] 0%-no

P hoes

R

—i-¥1 Pasithe #-ray?
Lpes Y
Lonn
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Query: Most Probable Explanation (MPE)

| Samlam: Sensitivity Analyele, Modeling . Inference and More - ol
Bl B Pode Coery Took e Prefereroes  mindos  Bep
=B h BN OF B[ shenoy-shafer vl Mo By 2 By oo B 100
| Quary Mods - [C:\asla.net] =)
- =

5

MPE given a positive

X-ray and no dyspnoea

Gmnmn@ ?@ (% 38.57%)
j "% wet Computation [ | 0]

Illrlllll‘: ::c;' @aswmml@@aﬂw . Fla Edt Tods Vew Debug A patlent that made no

Pimpe,=]=0.0052 B2 203250000001
Pimpe|e]=0. 35720134 10540573

S —— visit to Asia; is not a
smoker; has no lung
cancer, no bronchitis
and no tuberculosis.

HEBEHBE

Choosing values with maximal probability, we get:
a: A=no, S=vyes, T =no, C=no, B=no, P=no, X =vyes, D=no.
Probability ~ 20.03% given evidence e: X =yes. D =no.
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Query: Maximum a Posteriori Hypothesis (MAP)

= Samlam: Senzitivity Analysis . Modeling . Inference and More :_ [I:I |u.‘
fle Edi Mods Cuery  Tocls  Wew  Preferences  window  Help

0B == sheney-shater b IR M Sy = e e BN 100%
| Query Mode - [C:\asia.net] (=] a1
n-ouk degres §= Y

OOl
=00 VIEE b0 Lslad

A ‘Jlsitto;\ /;;Smckeh MAP Varla bles

"y, MAP Computation |.=_ILE|.|'E

A PMAR, Ey=0.0201 0742000000003

Focein b Exack b —
2 Boprooimatel ® Y| PEMAR| &)=i S0T3RISATTILEA09 M [e— A S a n d
TIme out (gecs): &0 b

Resuk is ezact,

{oteno
=5 Smoker?

5181 Has branchizis []5kppy? | auiz Sop: U5 Watiable Yalus

| evidence

:——I o Has luma cameer 2 H.f’\F' H'aridj.ias + Marisble Selsction Taal
{ ewps A Yisk ko Asia?

En: 5: Smoker® = | e : X:}(e.._“-‘).| D :no

[R—TT—
MAP is A=no, S=yes.

T: Ha= tuber

teeno

i Eeenn
=--T: Has bubereuloss

W Positive X-ray?

leaf o - e

=B Dysprogat [ ] 0%-no

R

i beno

h-t Pogithis K-rap? D Dysproes?
--res W Positive X-ray? [ ] a%-yes O Dwspnoea?
Lona I 100 - o

MAP has probability of ~ 50.74% given the evidence.

MAP is also called Marginal Map (MMAP)
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Query: Maximum a Posteriori Hypothesis (MAP)

A common method for approximating MAP is to compute an MPE
and then return the values it assigns to MAP variables. We say in
this case that we are projecting the MPE on MAP variables.




Probabilistic Reasoning Problems

Exact Algorithm: Bucket Elimination, Complexity gtree-width

»  Max-Inference f(x“) — m;,l};H f&(xﬁ-)
. x
(most likely config.) a
»  Sum-Inference A Z H fa(Xa) -
(data likelihood) X @ D
o
»  Mixed-Inference f(xi‘”) — Hm};z H _fa{xm.)
(optimal prediction) *M X5
»  Mixed-Inference MEU = maXAEP(X,D) [ZU-eU U]
(maximﬁ{n expected utility) I ¢




Modeling with Bayesian Networks

Bayesian networks will be constructed in three consecutive steps.

Define the network variables and their values. \

@ A query variable is one which we need to ask questions about, such
as compute its posterior marginal.

@ An evidence variable is one which we may need to assert evidence
about.

@ An intermediary variable is neither query nor evidence and is meant
to aid the modeling process by detailing the relationship between
evidence and query variables.

The distinction between query, evidence and intermediary variables

is not a property of the Bayesian network, but of the task at hand.
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Modeling with Bayesian Networks

Bayesian networks will be constructed in three consecutive steps.

Define the network structure (edges).

We will be guided by a causal interpretation of network structure.

The determination of network structure will be reduced to
answering the following question about each network variable X:
what set of variables we regard as the direct causes of X7?
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Constructing a Bayesian Network for
any Distribution P

COROLLARY 3: Given a probability distribution P (x 1» X250 X, ) and
any ordering d of the variables, the DAG created by designating as
parents of X; any minimal set [Ty of predecessors satisfying

F(Ii II'IX‘_)IF(I; III!"'FIJ'—I] , r.[x'_ - {XI‘XE'"'! X‘_I} (3.27)

is a Bayesian network of P.

. If P is strictly positive, then all of the parent sets are unique (see
Theorem 4) and the Bayesian network is unique (given d ).

COROLLARY 4: Given a DAG D and a probability distribution P, a
necessary and sufficient condition for D to be a Bayesian network of P
is that each variable X be conditionally independent of all its non-
descendants, given its parents Ily, and that no proper subset of Iy
satisfy this condition.

Intuition: The causes of X can serve as the parents
Ask: who does a variable listen to
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Modeling with Bayesian Networks

Define the network CPTs. \

@ CPTs can sometimes be determined completely from the
problem statement by objective considerations.

@ CPTs can be a reflection of subjective beliefs.

@ CPTs can be estimated from data.
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Outline

« Building Bayesian Networks

Medical diagnosis

Circuit diagnosis
Probabilistic decoding
Commonsense reasoning

Linkage analysis
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Diagnosis |: Model from Expert

The flu is an acute disease characterized by fever, body aches and
pains, and can be associated with chilling and a sore throat. The

cold is a bodily disorder popularly associated with chilling and can
cause a sore throat. Tonsillitis is inflammation of the tonsils which

leads to a sore throat and can be associated with fever.

Our goal here is to develop a Bayesian network to capture this
knowledge and then use it to diagnose the condition of a patient
suffering from some of the symptoms mentioned above.

Variables? Arcs? Try it.
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Diagnosis |: Model from Expert

A naive Bayes structure
What about?  has the following edges C -> A1, . .., C -> Am, where C is called

='\Lh'l:'|:|n|:|it'u:unj::I

P the class variable and A1; : : : ;Am are called the attributes.
e \\\
r ! -.__. .
//// I. '\._.. \\\
yd Y . N — L —
(Chilling?) (Body Ache?) (Sore Throat?) ( Fever? ) '(Ct}ld ‘?) I\xlﬂlu'? //' 'i: Tonsillitis? )
— - —
|II I|I I'nl
I."I I III"..
|II I"
/ \
\
|III ll'|'l,
|III { Il'll
__'L_ e — __"\t\ j_

Chitling?) (Body Ache?) (Sore Throar?) ( Fever?)

e

Variables are binary: values are either true or false. More refined
information may suggest different degrees of body ache. J
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Diagnosis |: Model from Expert

The naive Bayes structure commits to the single-fault assumption. )

~

-

(o)

N et N
.\\h /.| ‘&Tn_:'rllsﬂlltli._./) x\n_-c-'_nndmml )

(ST, Cond=cold,Fever)?

| ! \ ."l..
|I i | Y ;
,'I IIII.' | -.II '\
'II ."'.I I l". <+ \‘ /
l'l / I". / Y
{ ;.,-' \ | Y \
.'I II."l \ | II-II \\
i . | N . i "

T —r A — L — — — T
i’:@]illinﬁgj {]%Dd} Acl{?in é?_re ThroT_’E ) (\FEi'v’E‘_l'?s 'i\(?f]il]ill%ij ':Eﬂd} Achej} (’E?_re ThmTE ) ’:EFEiv?r? J

Suppose the patient is known to have a cold.

Naive Bayes structure

Fever and sore throat become independent as they are d-separated
by “Condition” .

Original structure

Fever may increase our belief in tonsillitis, which could then

Increase our belief in a sore throat.q]ideq% S




CPTs can be obtained from medical experts, who supply this
information based on known medical statistics or subjective beliefs

gained through practical experience.

CPTs can also be estimated from medical records of previous patients

Case Cold?  Flu? Tonsillitis? Chilling?  Bodyache?  Sorethroat?  Fever?

1 true false 1 true false false false
2 false true false true true false true
3 7 7 true false 7 true false

? indicates the unavailability of corresponding data for that patient.
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Diagnosis |:

@ lools for Bayesian network inference can generate a network
parameterization ©, which tries to maximize the probability of
seeing the given cases.

@ If each case is represented by event d;, such tools will
generate a parametrization © which leads to a probability
distribution Pr that attempts to maximize:

N
] Pr(dy).
i=1

@ Term Pr(d;) represents the probability of seeing the case /.

@ [he product represents the probability of seeing all N cases
(assuming the cases are independent).




Diagnosis |l: Model from Expert

A few weeks after inseminating a cow, we have three possible tests to confirm
pregnancy. The first is a scanning test which has a false positive of 1% and a
false negative of 10%. The second is a blood test, which detects progesterone
with a false positive of 10% and a false negative of 30%. The third test is a
urine test, which also detects progesterone with a false positive of 10% and a
false negative of 20%. The probability of a detectable progesterone level is 90%
given pregnancy, and 1% given no pregnancy. The probability that insemination
will impregnate a cow is 87%.

Our task here is to build a Bayesian network and use it to compute
the probability of pregnancy given the results of some of these
pregnancy tests.

Try it: Variables and values? Struditlgsai276 20047



Diagnosis |I: Model from Expert

e Lgnam*‘\ Try with GeNie/Smile
K T

o xi')j_____
/ Progesterone Level ™,

——

L
\~=-_____ (L) ______,_.// @canninc T::h

A NI

/Lﬁm:, Tu:l\\ /ﬁ-lnml Tul \

- _ () - \ (B)
p ‘ 9 P S s P L O11p
" ‘ E?? yes —ve | .10 yes undetectable | .10
y ' no +ve | .01 no detectable 01
L B b1 L U Ouli
detectable —ve .30 detectable —ve .20
undetectable +ve .10 undetectable +ve .10
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Diagnosis |I: Model from Expert

We inseminate a cow, wait for a few weeks, and then perform the
three tests which all come out negative:

e: S=-—ve, B=—ve, U=—ve.

Posterior marginal for pregnancy given this evidence:

P Pr(Ple)
yes 10.21%
no 89.79%

Probability of pregnancy is reduced from 87% to 10.21%, but still
relatively high given that all three tests came out negative.
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Diagnosis |ll: Model from Design

A B
. Problem statement

X LYy ) Given some values for the circuit primary
P N inputs and output (test vector), decide if the
C— ‘ J — D circuit is behaving normally. If not, find the
N most likely health states of its components.
\\\HZH“/ o
|E

Try it: Variables? Values? Structure?
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Diagnosis |ll: Model from Design

A B
__ﬂ Problem statement

X Ly Given some values for the circuit primary
Q \‘“-[-"/ inputs and output (test vector), decide if the
C— L J — D circuit is behaving normally. If not, find the
N most likely health states of its components.
'x\.. Z -a/;.-' r
|E

Evidence variables
Primary inputs and output of the circuit, A, B and E.
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Diagnosis |ll: Model from Design

A B
__ﬂ Problem statement

X Ly ) Given some values for the circuit primary
Q \“-[-""/ inputs and output (test vector), decide if the
C— ‘ l —D circuit is behaving normally. If not, find the
N most likely health states of its components.
'\\. Z /;_.- .
|E

Evidence variables
Primary inputs and output of the circuit, A, B and E.

Health of components X, Y and Z.
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Diagnosis |1l: Model from Design

A B
. Problem statement

X Ly ) Given some values for the circuit primary
Q \““-[ g inputs and output (test vector), decide if the
C— ‘ J — D circuit is behaving normally. If not, find the
\ 1 most likely health states of its components.
\\..Zj/, r
|E

Query variables
Health of components X, Y and Z.

Intermediary variables
Internal wires, C and D.

slides3b 276 2024




Diagnosis |ll: Model from Design

‘A) (B)
T 7 Values of
- ! I circuit wires:
0 c) o D) :
ol " < (z) low or high
N L"I \ ] /
L E )

Health states: ok or faulty

faulty is too vague as a component may fail in a number of modes.

@ stuck-at-zero fault: low output regardless of gate inputs.
@ stuck-at-one fault: high output regardless of gate inputs.

@ input-output-short fault: inverter shorts input to its output.

Fault modes demand more whemspeeitying the CPTs.



Diagnosis |ll: Model from Design

Three classes of CPTs

@ primary inputs (A, B)
@ gate outputs (C, D, E)
@ component health (X, Y, 2)

CPTs for health variables depend on their values

X 9. X 6,
ok .99

ok .99

Eault 01 stuckatO | .005

Aty |- stuckatl | .005

Need to know the probabilities of various fault modes.
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Diagnosis |ll: Model from Design

CPTs for component outputs determined from functionality. J
A X C Oc)ax
high ok high | 0
low ok high | 1
CPT for inverter X. high  stuckat0  high | 0
low stuckat0  high | 0
high  stuckatl  high 1
low stuckatl  high | 1
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Diagnosis Ill: Model from Design

CPTs for component outputs determined from functionality. J
A X C Oc)ax
high ok high | 0
low ok high 1
CPT for inverter X. high  stuckat0  high | 0
low stuckat0  high | 0
high  stuckatl  high 1
low stuckatl  high 1

>
If we do not represent health states:

A X C 0

high ok high 0
low ok high 1
high  faulty  high 7
low faulty  high 7

cla,x

Commeon to use a probability of .50 in this case.
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A Diagnosis Example

Given test vector e: A=high, B=high, E =low, compute MAP
over health variables X, Y and Z.
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A Diagnosis Example

Given test vector e: A=high, B=high, E=low, compute MAP
over health variables X, Y and Z.

Network with fault modes gives two MAP instantiations:

MAP givene | X Y VA4
ok stuckat0 ok each probability ~ 49.4%
ok ok stuckatO
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A Diagnosis Example

Given test vector e: A=high, B=high, E =low, compute MAP
over health variables X, Y and Z.

Network with fault modes gives two MAP instantiations:

MAP givene | X Y /
ok stuckat0 ok each probability ~ 49.4%
ok ok stuckatO

Network with no fault modes gives two MAP instantiations:

MAP givene | X Y /

ok faulty ok each probability ~ 49.4%
ok ok faulty
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Integrating Time

Suppose we have two test vectors instead of only one. )
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Integrating Time

Suppose we have two test vectors instead of only one. )

Additional evidence variables

A’ B" and E’
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Integrating Time

Suppose we have two test vectors instead of only one. |

Additional evidence variables
A, B" and E’

Additional intermediary variables

C' and D’
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Integrating Time

Suppose we have two test vectors instead of only one. |

Additional evidence variables

A B and E’

Additional intermediary variables

C' and D'

Additional health variables on whether we allow intermittent faults

If health of a component can change from one test to another, we
need additional health variables X', Y/, and Z’. Otherwise, the
original health variables are sufficient.

slides3b 276 2024

Variables? Values? Structure?



Integrating Time: No Intermittent Faults

Two test vectors

e : A=high, B=high, E=low

e': A=low, B=Ilow, E =low.
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Integrating Time: No Intermittent Faults

Two test vectors

e : A=high, B=high, E=low

e: A=low, B=low. E =low.

MAP using second structure

MAP givene.e | X Y Z
‘ok ok faulty

with probability &~ 97.53%
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Integrating Time: Intermittent Faults

Dynamic Bayesian network

(DBN)
) ({5?/@} Two test vectors
K\H !
7

e: A=high, B=high, E=low
e': A=low, B=low, E =low.

ok
faulty
ok
faulty

99
01
001
999

healthy component becomes faulty
faulty component becomes healthy
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Read on your own

Commonsense reasoning

When SamBot goes home at night, he wants to know if his family
is home before he tries the doors.

Often when SamBot's wife leaves the house she turns on an outdoor light. However,
she sometimes turns on this light if she is expecting a guest.

Also, SamBot's family has a dog. When nobody is home, the dog is in the back yard.
The same is true if the dog has bowel trouble.

If the dog is in the back yard, SamBot will probablyhear her barking, but sometimes
he can be confused by other dogs barking.

SamBot is equipped with two sensors: a light-sensor for detecting outdoor lights and
a sound-sensor for detecting the barking

of dogs. Both of these sensors are not completely reliable and can

break. Moreover, they both require SamBot's battery to be in good

condition.
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Commonsense Knowledge

—
-

—

",
Expect'u1gCompun;N'—b/Fami]yHnm:‘- |
.y / S

— — DogBowel \I
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(/Dutdou:urLight ) S~ \"n__ __,-’/
N /
f
o / / —
~~ f
f DogBarking
(]/_-l,__htseanBJDkeﬁl { r/.f—-' '\\\_ 3 >
— I Battery / i o - __"'“-\_\_\
".I || [ SoundSensorBroken )
i |,-' | 1\\\ ___J_,/
! f _—
.' f _)__,,.
. L +___“,/
};. htS '/‘S dSe N
K ightSensor .\\:}un n:;fr//.

Parameters based on a combination of sources

@ Statistical information such as reliabilities of sensors and battery.

@ Subjective beliefs relating to how often the wife goes out, guests are
expected, the dog has bowel trouble, etc.

@ Objective beliefs regardingiitha furratdonality of sensors.




Genetic Linkage Analysis

A pedigree

is useful in reasoning about heritable characteristics which are
determined by genes, where different genes are responsible for the
expression of different characteristics.
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Genetic Linkage Analysis

A pedigree

is useful in reasoning about heritable characteristics which are
determined by genes, where different genes are responsible for the
expression of different characteristics.

may occur in different states called alleles. Each individual carries
two alleles of each gene, one received from their mother and the
other from their father. The alleles of an individual are called the
genotype, while the heritable characteristic expressed by these
alleles (such as hair color, blood type, etc) are called the
phenotype of the individual.

slides3b 276 2024



Two Loci Inheritance

A |A | a
BB (2)
A
B

a
b

S >

\

Recombinant
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Bayesian Network for Recombination

Locus 1

Locus 2

0
P(85, | $13,,0) :{ 0 1_9} wherer & 1m.t/

93



LinKage analysis.:
6 people, 3 markers




Outline

« Bayesian networks and queries

« Building Bayesian Networks

Medical diagnosis

Circuit diagnosis
Probabilistic decoding
Commonsense reasoning

Linkage analysis
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