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Exact Inference Algorithms 
Bucket-elimination

(Dechter chapter 4, Darwiche chapter 6)



Inference for probabilistic networks

◼ Bucket elimination (Dechter chapter 4)

◼ Belief-updating, P(e), partition function

◼ Marginals, probability of evidence

◼ The impact of evidence

◼ for MPE (→MAP)

◼ for MAP  (→ Marginal Map)

◼ Influence diagrams ?

◼ Induced-Width (Dechter, Chapter 3.4)
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Bayesian Networks: Example
(Pearl, 1988)

P(S, C, B, X, D) = P(S) P(C|S) P(B|S) P(X|C,S) P(D|C,B)

lung Cancer

Smoking

X-ray

Bronchitis

Dyspnoea

P(D|C,B)

P(B|S)

P(S)

P(X|C,S)

P(C|S)

Θ) (G,BN =

CPD:

C  B   P(D|C,B)
0  0    0.1  0.9
0  1    0.7  0.3
1  0    0.8  0.2
1  1    0.9  0.1

Belief Updating:

P (lung cancer=yes | smoking=no, dyspnoea=yes ) = ?
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 Sum-Inference

 Max-Inference

 Mixed-Inference

Types of queries

◼ NP-hard: exponentially many terms

◼ We will focus on exact and then on approximation algorithms

◼ Anytime: very fast & very approximate  ! Slower & more accurate
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Belief Updating is NP-hard

◼ Each SAT formula can be mapped into a 
belief updating query in a Bayesian network

◼ Example

)()( wvuywu 
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A Simple Network

◼ How can we compute P(D)?,  P(D|A=0)? P(A|D=0)?

◼ Brute force O(𝑘4)

◼ Maybe O(4𝑘2)

A DB CGiven: 
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Belief Updating

lung Cancer

Smoking

X-ray

Bronchitis

Dyspnoea

P (lung cancer=yes | smoking=no, dyspnoea=yes ) = ?
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Belief updating: P(X|evidence)=?

“Moral” graph

A

D E

CB

P(a|e=0)  P(a,e=0)=


= bcde ,,,0

P(a)P(b|a)P(c|a)P(d|b,a)P(e|b,c)=


=0e

P(a) 
d

),,,( ecdahB


b

P(b|a)P(d|b,a)P(e|b,c)

B C

ED

Variable Elimination

P(c|a
c
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Bucket elimination 
Algorithm BE-bel  (Dechter 1996)


b

Elimination operator

P(e=0)

W*=4

”induced width” 

(max clique size)

bucket  B: 

P(a)

P(c|a)

P(b|a)   P(d|b,a)   P(e|b,c)

bucket  C: 

bucket  D: 

bucket  E: 

bucket  A: 

e=0

B

C

D

E

A

e)(a,D

(a)E

e)c,d,(a,B

e)d,(a,C


=

==
BCDE

CBEPBADPACPABPAPEAP
,,,0

),|(),|()|()|()()0|( 

A

D E

CB

P(a,e=0) slides5 276 2024



A Bayesian Network
Ordering: A,C,B,E,D,G
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A Bayesian Network
Ordering: A,C,B,E,D,G
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A Bayesian Network
Ordering: A,C,B,F,D,G

slides5 276 2024



A Different Ordering

Ordering: A,F,D,C,B,G
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A Different Ordering

Ordering: A,F,D,C,B,G



A Bayesian Network
Processed Along 2 Orderings

d1=A,C,B,F,D,G
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The Operation In a Bucket

◼ Multiplying  functions

◼ Marginalizing (summing-out) functions
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Combination of Cost Functions

A B f(A,B)

b b 0.4

b g 0.1

g b 0

g g 0.5

B C f(B,C)

b b 0.2

b g 0

g b 0

g g 0.8
A B C f(A,B,C)

b b b 0.1

b b g 0

b g b 0

b g g 0.08

g b b 0

g b g 0

g g b 0

g g g 0.4

●

= 0.1 x 0.8
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Thanks to Darwiche
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W*=2

W*=4
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D
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B

A

B

C

D

E
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W*=2

W*=4
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IntelligenceDifficulty

Grade

Letter

SAT

Job

Apply

Student Network Example

◼ P(J)?
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Induced Width (continued)

ddw  ordering alonggraph  primal  theof width induced the)(* −

The effect of the ordering:

4)( 1

* =dw 2)( 2

* =dw

Primal (moraal) 
graph

A

D E

CB

B

C

D

E

A

E

D

C

B

A
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Inference for Probabilistic Networks

◼ Bucket elimination 

◼ Belief-updating, P(e), partition function

◼ Marginals, probability of evidence

◼ The impact of evidence

◼ for MPE (→MAP)

◼ for MAP  (→ Marginal Map)

◼ Induced-Width
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The Impact of Evidence?
Algorithm BE-bel


b

Elimination operator

P(e=0)

W*=4

”induced width” 

(max clique size)

bucket  B: 

P(a)

P(c|a)

P(b|a)   P(d|b,a)   P(e|b,c)

bucket  C: 

bucket  D: 

bucket  E: 

bucket  A: 

e=0

B

C

D

E

A

e)(a,D

(a)E

e)c,d,(a,B

e)d,(a,C


=

==
BCDE

CBEPBADPACPABPAPEAP
,,,0

),|(),|()|()|()()0|( 

A

D E

CB

P(a|e=0)

B=1
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The Impact of Evidence?
Algorithm BE-bel


b

Elimination operator

P(e=0)

bucket  B: 

P(a)

P(c|a)

P(b|a)   P(d|b,a)   P(e|b,c)

bucket  C: 

bucket  D: 

bucket  E: 

bucket  A: 

e=0

B

C

D

E

A


=

==
BCDE

CBEPBADPACPABPAPEAP
,,,0

),|(),|()|()|()()0|( 

A

D E

CB

P(a|e=0)

B=1

P(e|b=1,c)

P(d|b=1,a)

P(b=1|a)
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The Impact of Observations

Induced graphOrdered graph Ordered conditioned graph



Inference for Probabilistic Networks

◼ Bucket elimination 

◼ Belief-updating, P(e), partition function

◼ Marginals, probability of evidence

◼ The impact of evidence

◼ for MPE (→MAP)

◼ for MAP  (→ Marginal Map)

◼ Induced-Width

slides5 276 2024



)xP(maxMPE
x

=

),|(),|()|()|()(max

by  replaced is              

,,,,
cbePbadPabPacPaPMPE

:

bcdea
=
 max 

A

D E

CB
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b

max Elimination operator

MPE

W*=4

”induced width” 

(max clique size)

bucket  B: 

P(a)

P(c|a)

P(b|a)   P(d|b,a)   P(e|b,c)

bucket  C: 

bucket  D: 

bucket  E: 

bucket  A: 

e=0

B

C

D

E

A

e)(a,hD

(a)hE

e)c,d,(a,hB

e)d,(a,hC

),|(),|()|()|()(max

by  replaced is              

,,,,
cbePbadPabPacPaPMPE

:

bcdea
=
 max 

A

D E

CB
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Generating the MPE-tuple

C: 

E: 

P(b|a)   P(d|b,a)   P(e|b,c)B: 

D: 

A: P(a)

P(c|a)

e=0 e)(a,hD

(a)hE

e)c,d,(a,hB

e)d,(a,hC

(a)hP(a)max arga'  1. E

a
=

0e'  2. =

)e'd,,(a'hmax argd'   3. C

d
=

)e'c,,d',(a'h

)a'|P(cmax argc'   4.
B

c



=

       

)c'b,|P(e')a'b,|P(d'

)a'|P(bmax argb'  5.
b



=

     

)e',d',c',b',(a'   Return
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primal 
graph

A

D E

CB

B

C

D

E

A

E

D

C

B

A

◼ Width is the max number of parents in the ordered graph

◼ Induced-width is the width of the induced ordered graph: recursively connecting 
parents going from last node to first.

◼ Induced-width w*(d) is the max induced-width over all nodes in ordering d

◼ Induced-width of a graph, w* is the min w*(d) over all orderings d

Induced Width
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Complexity of Bucket Elimination

The effect of the ordering:

primal 
graph

A

D E

CB

B

C

D

E

A

E

D

C

B

A

Finding smallest induced-width is hard!

r = number of functions

Bucket-Elimination is time and space

:  the induced width of the primal graph along ordering d
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Example with mpe?
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Try to compute MPE when E=0
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Complexity of Bucket-Elimination

◼ Theorem:

BE is  O(n exp(w*+1)) time and O(n exp(w*)) 
space, when w* is the induced-width of the 
moral graph along d when evidence nodes are 
processed (edges from evidence nodes to 
earlier variables are removed.)

More accurately: O(r exp(w*(d)) where r is the number of CPTs.
For Bayesian networks r=n. For Markov networks?
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Inference for probabilistic networks

◼ Bucket elimination 

◼ Belief-updating, P(e), partition function

◼ Marginals, probability of evidence

◼ The impact of evidence

◼ for MPE (→MAP)

◼ for MAP  (→ Marginal Map)

◼ Induced-Width (Dechter 3.4,3.5)
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Finding a Small Induced-Width

◼ NP-complete

◼ A tree has induced-width of ?

◼ Greedy algorithms:
◼ Min width

◼ Min induced-width

◼ Max-cardinality and chordal graphs

◼ Fill-in (thought as the best)

◼ Anytime algorithms
◼ Search-based [Gogate & Dechter 2003]

◼ Stochastic (CVO)   [Kask, Gelfand & Dechter 2010]
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Finding a Small Induced-Width
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◼ Greedy algorithms:
◼ Min width
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◼ Fill-in (thought as the best)

◼ Anytime algorithms
◼ Search-based [Gogate & Dechter 2003]

◼ Stochastic (CVO)   [Kask, Gelfand & Dechter 2010]

slides5 276 2024



Min-width Ordering

Proposition: algorithm min-width finds a min-width ordering of a graph
 What is the Complexity of MW?  
O(e) slides5 276 2024



Greedy Orderings Heuristics

◼ Min-induced-width

◼ From last to first, pick a node with smallest 
width, then connect parent and remove

◼ Min-Fill

◼ From last to first, pick a node with smallest 
fill-edges

Complexity? O(𝑛3)
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Min-Fill Heuristic

◼ Select the variable that creates the fewest “fill-in” 
edges

A

E D

C

F

A

D

CB

F

A

E D

CB

F

Eliminate B next?
   Connect neighbors
   “Fill-in” = 3: 
    (A,D), (C,E), (D,E)

Eliminate E next?
   Neighbors already connected
   “Fill-in” = 0

slides5 276 2024



slides5 276 2024

Example



Different Induced-Graphs

A Min-fill ordering

A Miw ordering
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Which Greedy Algorithm is Best?

◼ Min-Fill, prefers a node who add the least 
number of fill-in arcs.

◼ Empirically, fill-in is the best among the 
greedy algorithms (MW,MIW,MF,MC)

◼ Complexity of greedy orderings?

◼ MW is O(e), MIW: O(𝑛3) MF O(𝑛3)  MC is 
O(e+n)
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Propagation in Both Directions

◼ Messages can propagate both ways and we 
get beliefs for each variable

P(X)

P(Y|X) P(Z|X)

P(T|Y) P(R|Y) P(L|Z) P(M|Z)

)(XmZX

)(XmXZ

)(ZmZM)(ZmZL

)(ZmMZ)(ZmLZ

)(XmYX

)(XmXY

)(YmTY

)(YmYT

)(YmRY

)(YmYR
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Inference for probabilistic networks

◼ Bucket elimination (Dechter chapter 4)

◼ Belief-updating, P(e), partition function

◼ Marginals, probability of evidence

◼ The impact of evidence

◼ for MPE (→MAP)

◼ for MAP  (→ Marginal Map)

◼ Influence diagrams ?

◼ Induced-Width (Dechter, Chapter 3.4)
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 Sum-Inference

 Max-Inference

 Mixed-Inference

Marginal Map

◼ NP-hard: exponentially many terms

H
a
rd

e
r
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Example for MMAP Applications

◼ Haplotype in Family pedigrees

◼ Coding networks

◼ Probabilistic planning

◼ Diagnosis
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Marginal MAP is Not Easy on Trees

◼ Pure MAP or summation tasks

◼ Dynamic programming

◼ Ex: efficient on trees

◼ Marginal MAP

◼ Operations do not commute:

◼ Sum must be done first!

Max variables
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Bucket Elimination

A

B C

ED

M
A

X
S

U
M

B: 

C: 

D: 

E: 

A: 

MAP* is the marginal MAP value

c
o

n
s
tr

a
in

e
d

 e
lim

in
a

ti
o

n
 o

rd
e

r

Bucket Elimination for MMAP
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In practice, constrained induced is much 

larger!

exact upper 

bound

Why is MMAP harder?

(Park & Darwiche, 2003)
(Yuan & Hansen, 2009)
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Inference for probabilistic networks

◼ Bucket elimination (Dechter chapter 4)

◼ Belief-updating, P(e), partition function

◼ Marginals, probability of evidence

◼ The impact of evidence

◼ for MPE (→MAP)

◼ for MAP  (→ Marginal Map)

◼ Induced-Width (Dechter, Chapter 3.4)

◼ Mixed networks

◼ Influence diagrams ?
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Influence diagram ID = (X,D,P,R).

Influence Diagrams

Chance variables                             over domains.

Decision variables

CPT’s for chance variables

Reward components

Utility function iiru =

},...,{ 1 jrrR =

nipaXPP iii ..1),|( ==

mDDD ,...,1=

nXXX ,...,1=

T DR

S O

OP OSP

MI

TC DC

SC

OS
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Task: Find an optimal policy that maximizes the expected utility.

)()(max
)1)1 ,...,(,...,(

xuxPE ii
xxx nm


==

=


Influence Diagrams
(continue)

A decision rule for     is a mapping:

where       is the cross product of domains in S.

A policy is a list of decision rules

iD ii DDpai →:

S

),....,( 1 m=
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The Car Example
(Howard 1976)

A car buyer needs to buy one of two used cars. The buyer can carry 

out tests with various costs, and then, decide which car to buy.

T: Test variable (t0, t1, t2) (t1 test car 1, t2 test car 2)

D: the decision of which car to buy, D  {buy1, buy2}

Ci: the quality of car i, Ci  {q1, q2} 

ti: the outcome of the test on car i, ti  {pass, fail, null}.

r(T): The cost of testing,

r(C1,D), r(C2,D): the reward in buying cars 1 and 2.

The utility is: r(T) + r(C1,D) + r(C2,D).

)],(),()()[(

)()()|,(max

121

,1|12,22

,,,, 1212

DCrDCrTrCP

TCtPCPTCtPE
CCttDT

++

= 
Task: determine decision rules T and D such that:

T

C2

t2t1

C1

r(C1,D)

r(T)

r(C2,D)

D
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bucket(C1): P(C1), P(t1|C1,T), r(C1,D)

bucket(C2): P(C2), P(t2|C2,T), r(C2,D)

bucket(D):

bucket(t1):

bucket(t2):

bucket(T): r(T)

Bucket Elimination for meu
(Algorithm Elim-meu-id)

Input: An Influence diagram ID = {P1,…,Pn,r1,…,rj}

Output: Meu and optimizing policies.

1. Order the variables and partition into buckets.

2. Process buckets from last to first:

     o = T,t2,t2,D,C2,C1

3. Forward: Assign values in ordering d

),( 11
TtC



),,,( 11
DTtC

q

),( 22
TtC



),,( 22
DTtC

q

),,,( 21 TttD
q

),( 21
Tttq

)(
1

Tt
 )(

2
Tt

 )(
1

Tt
q

),,( 21 Ttt

TT
q ,
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The Bucket Description

bucket(C1): P(C1),P(t1|C1,T),r(C1,D)

bucket(C2): P(C2),P(t2|C2,T),r(C2,D)

bucket(D): 

bucket(t1):

bucket(t2):

bucket(T): r(T)

),,2(),,,(
21 1 DTtDTt CC qq

),,(),,( 2111
TttTt DC q

),(),,( 22 12
TtTt tC q

Optimizing policies:       is argmax of      computed in 

bucket(T), and                 in bucket(t1).
T Tq

),,( 21 TttDq

Final buckets: (s or Ps) utility components (q’s or r’s).

t2

C1

C2

D

t1

T
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General Graphical Models
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General Bucket Elimination
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Inference for probabilistic networks

◼ Bucket elimination 

◼ Belief-updating, P(e), partition function

◼ Marginals, probability of evidence

◼ The impact of evidence

◼ for MPE (→MAP)

◼ for MAP  (→ Marginal Map)

◼ Induced-Width (Dechter 3.4,3.5)
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Finding a Small Induced-Width

◼ NP-complete

◼ A tree has induced-width of ?

◼ Greedy algorithms:
◼ Min width

◼ Min induced-width

◼ Max-cardinality and chordal graphs

◼ Fill-in (thought as the best)

◼ Anytime algorithms
◼ Search-based [Gogate & Dechter 2003]

◼ Stochastic (CVO)   [Kask, Gelfand & Dechter 2010]
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Finding a Small Induced-Width

◼ NP-complete
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◼ Greedy algorithms:
◼ Min width
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Min-width Ordering

Proposition: algorithm min-width finds a min-width ordering of a graph
 What is the Complexity of MW?  
O(e) slides5 276 2024



Greedy Orderings Heuristics

◼ Min-induced-width

◼ From last to first, pick a node with smallest 
width, then connect parent and remove

◼ Min-Fill

◼ From last to first, pick a node with smallest 
fill-edges

Complexity? O(𝑛3)
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Min-Fill Heuristic

◼ Select the variable that creates the fewest “fill-in” 
edges

A

E D

C

F

A

D

CB

F

A

E D

CB

F

Eliminate B next?
   Connect neighbors
   “Fill-in” = 3: 
    (A,D), (C,E), (D,E)

Eliminate E next?
   Neighbors already connected
   “Fill-in” = 0
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Different Induced-Graphs

A Min-fill ordering

A Miw ordering
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Which Greedy Algorithm is Best?

◼ Min-Fill, prefers a node who add the least 
number of fill-in arcs.

◼ Empirically, fill-in is the best among the 
greedy algorithms (MW,MIW,MF,MC)

◼ Complexity of greedy orderings?

◼ MW is O(e), MIW: O(𝑛3) MF O(𝑛3)  MC is 
O(e+n)
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Propagation in Both Directions

◼ Messages can propagate both ways and we 
get beliefs for each variable

P(X)

P(Y|X) P(Z|X)

P(T|Y) P(R|Y) P(L|Z) P(M|Z)

)(XmZX

)(XmXZ

)(ZmZM)(ZmZL

)(ZmMZ)(ZmLZ

)(XmYX

)(XmXY

)(YmTY

)(YmYT

)(YmRY

)(YmYR
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Inference for probabilistic networks

◼ Bucket elimination (Dechter chapter 4)

◼ Belief-updating, P(e), partition function

◼ Marginals, probability of evidence

◼ The impact of evidence

◼ for MPE (→MAP)

◼ for MAP  (→ Marginal Map)

◼ Influence diagrams ?

◼ Induced-Width (Dechter, Chapter 3.4)
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 Sum-Inference

 Max-Inference

 Mixed-Inference

Marginal Map

◼ NP-hard: exponentially many terms

H
a
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Example for MMAP Applications

◼ Haplotype in Family pedigrees

◼ Coding networks

◼ Probabilistic planning

◼ Diagnosis
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Marginal MAP is Not Easy on Trees

◼ Pure MAP or summation tasks

◼ Dynamic programming

◼ Ex: efficient on trees

◼ Marginal MAP

◼ Operations do not commute:

◼ Sum must be done first!

Max variables
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Bucket Elimination

A

B C

ED

M
A

X
S

U
M

B: 

C: 

D: 

E: 

A: 

MAP* is the marginal MAP value
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Bucket Elimination for MMAP
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In practice, constrained induced is much 

larger!

exact upper 

bound

Why is MMAP harder?

(Park & Darwiche, 2003)
(Yuan & Hansen, 2009)
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Inference for probabilistic networks

◼ Bucket elimination (Dechter chapter 4)

◼ Belief-updating, P(e), partition function

◼ Marginals, probability of evidence

◼ The impact of evidence

◼ for MPE (→MAP)

◼ for MAP  (→ Marginal Map)

◼ Induced-Width (Dechter, Chapter 3.4)

◼ Mixed networks

◼ Influence diagrams ?
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Influence diagram ID = (X,D,P,R).

Influence Diagrams

Chance variables                             over domains.

Decision variables

CPT’s for chance variables

Reward components
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Task: Find an optimal policy that maximizes the expected utility.
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Influence Diagrams
(continue)

A decision rule for     is a mapping:

where       is the cross product of domains in S.

A policy is a list of decision rules

iD ii DDpai →:

S
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The Car Example
(Howard 1976)

A car buyer needs to buy one of two used cars. The buyer can carry 

out tests with various costs, and then, decide which car to buy.

T: Test variable (t0, t1, t2) (t1 test car 1, t2 test car 2)

D: the decision of which car to buy, D  {buy1, buy2}

Ci: the quality of car i, Ci  {q1, q2} 

ti: the outcome of the test on car i, ti  {pass, fail, null}.

r(T): The cost of testing,

r(C1,D), r(C2,D): the reward in buying cars 1 and 2.

The utility is: r(T) + r(C1,D) + r(C2,D).
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Task: determine decision rules T and D such that:
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bucket(C1): P(C1), P(t1|C1,T), r(C1,D)

bucket(C2): P(C2), P(t2|C2,T), r(C2,D)

bucket(D):

bucket(t1):

bucket(t2):

bucket(T): r(T)

Bucket Elimination for meu
(Algorithm Elim-meu-id)

Input: An Influence diagram ID = {P1,…,Pn,r1,…,rj}

Output: Meu and optimizing policies.

1. Order the variables and partition into buckets.

2. Process buckets from last to first:

     o = T,t2,t2,D,C2,C1

3. Forward: Assign values in ordering d
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The Bucket Description

bucket(C1): P(C1),P(t1|C1,T),r(C1,D)

bucket(C2): P(C2),P(t2|C2,T),r(C2,D)

bucket(D): 

bucket(t1):

bucket(t2):

bucket(T): r(T)

),,2(),,,(
21 1 DTtDTt CC qq

),,(),,( 2111
TttTt DC q

),(),,( 22 12
TtTt tC q

Optimizing policies:       is argmax of      computed in 

bucket(T), and                 in bucket(t1).
T Tq

),,( 21 TttDq

Final buckets: (s or Ps) utility components (q’s or r’s).
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C2
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T
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General Graphical Models
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General Bucket Elimination
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