Causal and Probabilistic Reasoning

Slides Set 5: Exact Inference Algorithms Bucket-elimination

Rina Dechter

(Dechter chapter 4, Darwiche chapter 6)

Inference for probabilistic networks

Bucket elimination (Dechter chapter 4)

- Belief-updating, P(e), partition function
- Marginals, probability of evidence
- The impact of evidence
- for MPE (\rightarrow MAP)
- for MAP (\rightarrow Marginal Map)
- Influence diagrams ?
- Induced-Width (Dechter, Chapter 3.4)

Inference for probabilistic networks

Bucket elimination

- Belief-updating, P(e), partition function
- Marginals, probability of evidence
- The impact of evidence
- for MPE (\rightarrow MAP)
- for MAP (\rightarrow Marginal Map)
- Induced-Width

Bayesian Networks: Example (Pearl, 1988)

P(S, C, B, X, D) = P(S) P(C|S) P(B|S) P(X|C,S) P(D|C,B)

Belief Updating:

P (lung cancer=yes | smoking=no, dyspnoea=yes) = ?

A Bayesian Network

Α	Θ_A
true	.6
false	.4

А	В	$\Theta_{B A}$
true	true	.2
true	false	.8
false	true	.75
false	false	.25

A	С	$\Theta_{C A}$
true	true	.8
true	false	.2
false	true	.1
false	false	.9

В	С	D	$\Theta_{D BC}$
true	true	true	.95
true	true	false	.05
true	false	true	.9
true	false	false	.1
false	true	true	.8
false	true	false	.2
false	false	true	0
false	false	false	1

С	Е	$\Theta_{E C}$
true	true	.7
true	false	.3
false	true	0
false	false	1

- **NP-hard**: exponentially many terms
- We will focus on exact and then on **approximation** algorithms
 - Anytime: very fast & very approximate ! Slower & more accurate

Belief Updating is NP-hard

- Each SAT formula can be mapped into a belief updating query in a Bayesian network
- Example $(\neg u \lor \neg w \lor y) \land (u \lor \neg v \lor w)$

A Simple Network

- How can we compute P(D)?, P(D|A=0)? P(A|D=0)?
- Brute force $O(k^4)$
- Maybe O(4k²)

		А	В	$\Theta_{B A}$	В	С	$\Theta_{C B}$
A	$\Theta_{\mathcal{A}}$	true	true	.9	true	true	.3
true	.6	true	false	.1	true	false	.7
false	.4	false	true	.2	false	true	.5
		false	false	8	false	false	5

To compute the prior marginal on variable C, Pr(C)

we first eliminate variable A and then variable B

- There are two factors that mention variable A, Θ_A and $\Theta_{B|A}$
- We multiply these factors first and then sum out variable A from the resulting factor.
- Multiplying Θ_A and $\Theta_{B|A}$:

A	В	$\Theta_A \Theta_{B A}$
true	true	.54
true	false	.06
false	true	.08
false	false	.32

Summing out variable A:

В	$\sum_{A} \Theta_{A} \Theta_{B A}$
true	.62 = .54 + .08
false	.38 = .06 + .32

- We now have two factors, Σ_A Θ_AΘ_{B|A} and Θ_{C|B}, and we want to eliminate variable B
- Since B appears in both factors, we must multiply them first and then sum out B from the result.
- Multiplying:

В	С	$\Theta_{C B} \sum_{A} \Theta_{A} \Theta_{B A}$
true	true	.186
true	false	.434
false	true	.190
false	false	.190

Summing out:

С	$\sum_{B} \Theta_{C B} \sum_{A} \Theta_{A} \Theta_{B A}$
true	.376
false	.624

- We now have two factors, Σ_A Θ_AΘ_{B|A} and Θ_{C|B}, and we want to eliminate variable B
- Since B appears in both factors, we must multiply them first and then sum out B from the result.
- Multiplying:

		\frown
В	С	$\Theta_{C B} = A \Theta_A \Theta_{B A}$
true	true	.186
true	false	.434
false	true	.190
false	false	.190

Summing out:

P (lung cancer=yes | smoking=no, dyspnoea=yes) = ?

Belief updating: P(X|evidence)=?

$$P(a, g = 1) = P(a) \sum_{c} P(c|a) \sum_{b} P(b|a) \sum_{f} P(f|b, c) \sum_{d} P(d|b, a) \sum_{g=1} P(g|f).$$
(4.1)

$$P(a, g = 1) = P(a) \sum_{c} P(c|a) \sum_{b} P(b|a) \sum_{f} P(f|b, c)\lambda_{G}(f) \sum_{d} P(d|b, a).$$
(4.2)

$$P(a, g = 1) = P(a) \sum_{c} P(c|a) \sum_{b} P(b|a)\lambda_{D}(a, b) \sum_{f} P(f|b, c)\lambda_{G}(f)$$
(4.3)

$$P(a, g = 1) = P(a) \sum_{c} P(c|a) \sum_{b} P(b|a)\lambda_{D}(a, b)\lambda_{F}(b, c)$$
(4.4)

$$P(a, g = 1) = P(a) \sum_{c} P(c|a)\lambda_{B}(a, c)$$
(4.5)

A Bayesian Network
Ordering: A,C,B,E,D,G

$$\int_{a,g=1}^{b} P(a,b,c,d,e,g) = \sum_{c,b,f,d,g=1}^{c} P(g|f)P(f|b,c)P(d|a,b)P(c|a)P(b|a)P(a).$$

$$P(a,g=1) = P(a)\sum_{c} P(c|a)\sum_{b} P(b|a)\sum_{f} P(f|b,c)\sum_{d} P(d|b,a)\sum_{g=1}^{c} P(g|f).$$

$$P(a,g=1) = P(a)\sum_{c} P(c|a)\sum_{b} P(b|a)\sum_{f} P(f|b,c)\Delta_{G}(f)\sum_{d} P(d|b,a).$$

$$P(a,g=1) = P(a)\sum_{c} P(c|a)\sum_{b} P(b|a)\Delta_{D}(a,b)\sum_{f} P(f|b,c)\Delta_{G}(f).$$

$$P(a,g=1) = P(a)\sum_{c} P(c|a)\sum_{b} P(b|a)\Delta_{D}(a,b)\sum_{f} P(f|b,c)\sum_{c} P(c|a)\sum_{b} P(b|a)\Delta_{D}(a,b)\sum_{f} P(f|b,c)\sum_{c} P(c|a)\sum_{b} P(b|a)\sum_{c} P(c|a)\sum_{b} P(b|a)\sum_{c} P(c|a)\sum_{c} P(c|a)\sum_{b} P(b|a)\sum_{c} P(c|a)\sum_{c} P(c|a)\sum_{c} P(c|a)\sum_{b} P(b|a)\sum_{c} P(c|a)\sum_{c} P(c|a)\sum_{c} P(c|a)\sum_{b} P(b|a)\sum_{c} P(c|a)\sum_{c} P(c|a)$$

A Bayesian Network Ordering: A,C,B,F,D,G

(a) Directed acyclic graph

(b) Moral graph

$$\begin{split} P(a,g=1) &= P(a) \sum_{f} \sum_{d} \sum_{c} P(c|a) \sum_{b} P(b|a) \ P(d|a,b) P(f|b,c) \sum_{g=1} P(g|f) \\ &= P(a) \sum_{f} \lambda_G(f) \sum_{d} \sum_{c} P(c|a) \sum_{b} P(b|a) \ P(d|a,b) P(f|b,c) \\ &= P(a) \sum_{f} \lambda_G(f) \sum_{d} \sum_{c} P(c|a) \lambda_B(a,d,c,f) \\ &= P(a) \sum_{f} \lambda_G(f) \sum_{d} \lambda_C(a,d,f) \\ &= P(a) \sum_{f} \lambda_G(f) \lambda_D(a,f) \\ &= P(a) \lambda_F(a) \end{split}$$

Figure 4.3: The bucket's output when processing along $d_2 = A, F, D, C, B, G$

$$P(a, g = 1) = P(a) \sum_{f} \sum_{d} \sum_{c} P(c|a) \sum_{b} P(b|a) P(d|a, b) P(f|b, c) \sum_{g=1} P(g|f)$$

$$= P(a) \sum_{f} \lambda_{G}(f) \sum_{d} \sum_{c} P(c|a) \sum_{b} P(b|a) P(d|a, b) P(f|b, c)$$

$$= P(a) \sum_{f} \lambda_{G}(f) \sum_{d} \sum_{c} P(c|a) \lambda_{B}(a, d, c, f)$$

$$= P(a) \sum_{f} \lambda_{G}(f) \sum_{d} \lambda_{C}(a, d, f)$$

$$= P(a) \sum_{f} \lambda_{G}(f) \lambda_{D}(a, f)$$

$$\sum_{Bucket G: P(G|F) G=1}$$

$$G$$

Figure 4.3: The bucket's output when processing along $d_2 = A, F, D, C, B, G$

The Operation In a Bucket

- Multiplying functions
- Marginalizing (summing-out) functions

Combination of Cost Functions

Α	В	f(A,B)
b	b	0.4
b	g	0.1
g	b	0
g	g	0.5

Α	В	С	f(A,B,C)
b	b	b	0.1
b	b	g	0
b	g	b	0
b	g	g	0.08
g	b	b	0
g	b	g	0
g	g	b	0
g	g	g	0.4

В	С	f(B,C)
b	b	0.2
b	g	0
g	b	0
g	g	0.8

 $= 0.1 \times 0.8$

Factors: Sum-Out Operation

The result of summing out variable X from factor $f(\mathbf{X})$

is another factor over variables $\mathbf{Y} = \mathbf{X} \setminus \{X\}$:

$$\left(\sum_{X} f\right)(\mathbf{y}) \stackrel{def}{=} \sum_{x} f(x, \mathbf{y})$$

В	С	D	f_1
true	true	true	.95
true	true	false	.05
true	false	true	.9
true	false	false	.1
false	true	true	.8
false	true	false	.2
false	false	true	0
false	false	false	1

В	С	$\sum_{D} f_1$
true	true	1
true	false	1
false	true	1
false	false	1

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

slides5 276 2024

Thanks to Darwiche

Bucket Elimination and Induced Width

Bucket Elimination and Induced Width

 $W^{*}=2$

W*=4

Algorithm BE-bel

3.

4.

5.

Input: A belief network $\mathcal{B} = \langle \mathbf{X}, \mathbf{D}, \mathbf{P}_G, \prod \rangle$, an ordering $d = (X_1, \dots, X_n)$; evidence *e* **output:** The belief $P(X_1 | \mathbf{e})$ and probability of evidence $P(\mathbf{e})$

- Partition the input functions (CPTs) into *bucket*₁, ..., *bucket*_n as follows: for *i* ← *n* downto 1, put in *bucket*_i all unplaced functions mentioning X_i. Put each observed variable in its bucket. Denote by ψ_i the product of input functions in *bucket*_i.
- 2. backward: for $p \leftarrow n$ downto 1 do

for all the functions
$$\psi_{S_0}, \lambda_{S_1}, \dots, \lambda_{S_j}$$
 in $buck et_p$ do
If (observed variable) $X_p = x_p$ appears in $buck et_p$,
assign $X_p = x_p$ to each function in $buck et_p$ and then
put each resulting function in the bucket of the *closest* variable in its scope.
else,
 $\lambda_p \leftarrow \sum_{X_p} \psi_p \cdot \prod_{i=1}^j \lambda_{S_i}$

place λ_p in bucket of the latest variable in scope(λ_p),

6. return (as a result of processing *bucket*₁):

$$P(\mathbf{e}) = \alpha = \sum_{X_1} \psi_1 \cdot \prod_{\lambda \in bucket_1} \lambda$$
$$P(X_1 | \mathbf{e}) = \frac{1}{\alpha} \psi_1 \cdot \prod_{\lambda \in bucket_1} \lambda$$

Figure 4.5: BE-bel: a sum-product bucket-elimination algorithm.

Student Network Example

Induced Width (continued)

 $w^*(d)$ – the induced width of the primal graph along ordering d

The effect of the ordering:

Primal (moraal) graph

 $w^*(d_1) = 4$

 $w^*(d_2) = 2$

Inference for Probabilistic Networks

Bucket elimination

- Belief-updating, P(e), partition function
- Marginals, probability of evidence
- The impact of evidence
- for MPE (\rightarrow MAP)
- for MAP (\rightarrow Marginal Map)
- Induced-Width

The Impact of Evidence? Algorithm *BE-bel*

The Impact of Evidence? Algorithm **BE-bel** $P(A \mid E = 0) = \alpha \quad \sum P(A) \cdot P(B \mid A) \cdot P(C \mid A) \cdot P(D \mid A, B) \cdot P(E \mid B, C)$ E=0, D, C, BP(A/E=0,B=1)? Elimination operator B=1 P(b|a) P(d|b,a) P(e|b,c)bucket B: *P(e/b=1,c)* bucket C: P(c|a)bucket D: P(d/b=1,a) bucket E: e=0EP(a)bucket A: P(b=1|a)P(e=0)P(a|e=0)

The Impact of Observations

Figure 4.9: Adjusted induced graph relative to observing *B*.

Ordered graph

Induced graph

Ordered conditioned graph

Inference for Probabilistic Networks

Bucket elimination

- Belief-updating, P(e), partition function
- Marginals, probability of evidence
- The impact of evidence
- for MPE (\rightarrow MAP)
- for MAP (\rightarrow Marginal Map)

Induced-Width

 $MPE = \max_{a,e,d,c,b} P(a)P(c \mid a)P(b \mid a)P(d \mid a,b)P(e \mid b,c)$

 $MPE = \max P(\overline{x})$ Χ

Generating the MPE-tuple

- 5. b' = arg max P(b | a')× × P(d' | b, a')× P(e' | b, c')
- 4. c' = arg max P(c / a')×
 × h^B(a', d^c, c, e')
- **3.** $d' = \arg \max_{d} h^{c}(a', d, e')$
- **2. e'** = **0**

- B: P(b|a) P(d|b,a) P(e|b,c)
- C: P(c|a) $h^{B}(a, d, c, e)$
- D: *h^c* (a, d, e)
- E: e=0 $h^{D}(a,e)$
- 1. $a' = arg max P(a) \cdot h^{E}(a)$ $A: P(a) = h^{E}(a)$

Return (a',b',c',d',e')

Induced Width

- Width is the max number of parents in the ordered graph
- Induced-width is the width of the induced ordered graph: recursively connecting parents going from last node to first.
- Induced-width w*(d) is the max induced-width over all nodes in ordering d
- Induced-width of a graph, w* is the min w*(d) over all orderings d

Complexity of Bucket Elimination

Bucket-Elimination is time and space $O(r \exp(w_d^*))$

 w_d^* : the induced width of the primal graph along ordering d r = number of functions The effect of the ordering:

A Bayesian Network

Example with mpe?

Α	Θ_A
true	.6
false	.4

А	В	$\Theta_{B A}$
true	true	.2
true	false	.8
false	true	.75
false	false	.25

A	С	$\Theta_{C A}$
true	true	.8
true	false	.2
false	true	.1
false	false	.9

В	С	D	$\Theta_{D BC}$
true	true	true	.95
true	true	false	.05
true	false	true	.9
true	false	false	.1
false	true	true	.8
false	true	false	.2
false	false	true	0
false	false	false	1

С	Е	$\Theta_{E C}$
true	true	.7
true	false	.3
false	true	0
false	false	1

Try to compute MPE when E=0

Α	Θ_A
true	.6
false	.4

A	В	$\Theta_{B A}$
true	true	.2
true	false	.8
false	true	.75
false	false	.25

Α	С	$\Theta_{C A}$
true	true	.8
true	false	.2
false	true	.1
false	false	.9

В	С	D	$\Theta_{D BC}$
true	true	true	.95
true	true	false	.05
true	false	true	.9
true	false	false	.1
false	true	true	.8
false	true	false	.2
false	false	true	0
false	false	false	1

С	Е	$\Theta_{E C}$
true	true	.7
true	false	.3
false	true	0
false	false	1

Complexity of Bucket-Elimination

Theorem:

BE is O(n exp(w*+1)) time and O(n exp(w*)) space, when w* is the induced-width of the moral graph along d when evidence nodes are processed (edges from evidence nodes to earlier variables are removed.)

More accurately: O(r exp(w*(d)) where r is the number of CPTs. For Bayesian networks r=n. For Markov networks?

Inference for probabilistic networks

Bucket elimination

- Belief-updating, P(e), partition function
- Marginals, probability of evidence
- The impact of evidence
- for MPE (\rightarrow MAP)
- for MAP (\rightarrow Marginal Map)
- Induced-Width (Dechter 3.4,3.5)

- NP-complete
- A tree has induced-width of ?
- Greedy algorithms:
 - Min width
 - Min induced-width
 - Max-cardinality and chordal graphs
 - Fill-in (thought as the best)
- Anytime algorithms
 - Search-based [Gogate & Dechter 2003]
 - Stochastic (CVO) [Kask, Gelfand & Dechter 2010]

- NP-complete
- A tree has induced-width of ?
- Greedy algorithms:
 - Min width
 - Min induced-width
 - Max-cardinality and chordal graphs
 - Fill-in (thought as the best)
- Anytime algorithms
 - Search-based [Gogate & Dechter 2003]
 - Stochastic (CVO) [Kask, Gelfand & Dechter 2010]

- NP-complete
- A tree has induced-width of ?
- Greedy algorithms:
 - Min width
 - Min induced-width
 - Max-cardinality and chordal graphs
 - Fill-in (thought as the best)
- Anytime algorithms
 - Search-based [Gogate & Dechter 2003]
 - Stochastic (CVO) [Kask, Gelfand & Dechter 2010]

Min-width Ordering

MIN-WIDTH (MW) input: a graph $G = (V, E), V = \{v_1, ..., v_n\}$ output: A min-width ordering of the nodes $d = (v_1, ..., v_n)$. 1. for j = n to 1 by -1 do 2. $r \leftarrow$ a node in G with smallest degree. 3. put r in position j and $G \leftarrow G - r$. (Delete from V node r and from E all its adjacent edges) 4. endfor

Proposition: algorithm min-width finds a min-width ordering of a graph **What is the Complexity of MW?** O(e) slides5 276 2024

Greedy Orderings Heuristics

Min-induced-width

From last to first, pick a node with smallest width, then connect parent and remove

Min-Fill

 From last to first, pick a node with smallest fill-edges

Complexity? $O(n^3)$

Different Induced-Graphs

Which Greedy Algorithm is Best?

- Min-Fill, prefers a node who add the least number of fill-in arcs.
- Empirically, fill-in is the best among the greedy algorithms (MW,MIW,MF,MC)
- Complexity of greedy orderings?
- MW is O(e), MIW: O(n³) MF O(n³) MC is O(e+n)

Propagation in Both Directions

Messages can propagate both ways and we get beliefs for each variable

slides6 Compsci 2021

Inference for probabilistic networks

Bucket elimination (Dechter chapter 4)

- Belief-updating, P(e), partition function
- Marginals, probability of evidence
- The impact of evidence
- for MPE (\rightarrow MAP)
- for MAP (\rightarrow Marginal Map)

Influence diagrams ?

Induced-Width (Dechter, Chapter 3.4)

Marginal Map

• **NP-hard**: exponentially many terms

Marginal MAP is Not Easy on Trees

- Pure MAP or summation tasks
 - Dynamic programming
 - Ex: efficient on trees

Marginal MAP

- Operations do not commute:
- Sum must be done first!

Bucket Elimination for MMAP

Bucket Elimination

Why is MMAP harder?

Inference for probabilistic networks

Bucket elimination (Dechter chapter 4)

- Belief-updating, P(e), partition function
- Marginals, probability of evidence
- The impact of evidence
- for MPE (\rightarrow MAP)
- for MAP (\rightarrow Marginal Map)
- Induced-Width (Dechter, Chapter 3.4)
- Mixed networks
- Influence diagrams ?

Ex: "oil wildcatter"

e.g., [Raiffa 1968; Shachter 1986]

Influence diagram:

- Three actions: test, drill, sales policy
- Chance variables:

P(oil) P(seismic|oil) P(result | seismic, test) P(produced | oil, drill) P(market)

• Utilities capture costs of actions, rewards of sale Oil sales - Test cost - Drill cost - Sales cost

Influence diagram ID = (X, D, P, R).

Chance variables $X = X_1,...,X_n$ over domains. Decision variables $D = D_1,...,D_m$ CPT's for chance variables $P_i = P(X_i | pa_i), i = 1..n$ Reward components $R = \{r_1,...,r_j\}$ Utility function $u = \sum_i r_i$

Common examples

- Markov decision process
 - Markov chain state sequence
 - Actions "di" influence state transition
 - Rewards based on action, new state
 - Temporally homogeneous
- Partially observable MDP
 - Hidden Markov chain state sequence
 - Generate observations
 - Actions based on observations

A decision rule for D_i is a mapping: $\delta i : \Omega p a_{D_i} \to \Omega_{D_i}$ where Ω_S is the cross product of domains in *S*.

A policy is a list of decision rules $\Delta = (\delta_1, \dots, \delta_m)$

Task: Find an optimal policy that maximizes the expected utility.

$$E = \max_{\Delta = (\delta_{1,\dots,\delta_{m}})} \sum_{x = (x_{1,\dots,x_{n}})} \prod_{i} P_{i}(x)u(x)$$

The Car Example (Howard 1976)

A car buyer needs to buy one of two used cars. The buyer can carry out tests with various costs, and then, decide which car to buy.

T: Test variable (t_0, t_1, t_2) (t_1 test car 1, t_2 test car 2)

D: the decision of which car to buy, $D \in \{buy1, buy2\}$

 C_i : the quality of car *i*, $C_i \in \{q_1, q_2\}$

 t_i : the outcome of the test on car *i*, $t_i \in \{pass, fail, null\}$.

r(T): The cost of testing,

 $r(C_1,D)$, $r(C_2,D)$: the reward in buying cars 1 and 2. The utility is: $r(T) + r(C_1,D) + r(C_2,D)$.

Task: determine decision rules T and D such that: $E = \max_{T,D} \sum_{t_2,t_1,C_2,C_1} P(t_2, | C_2, T) P(C_2) P(t_1 | C_1, T) \cdot$

 $P(C_1)[r(T) + r(C_2, D) + r(C_1, D)]$

 C_{1} C_{2} C_{2

Bucket Elimination for meu (Algorithm Elim-meu-id)

Input: An Influence diagram $ID = \{P_1, ..., P_n, r_1, ..., r_j\}$ **Output:** Meu and optimizing policies.

- 1. Order the variables and partition into buckets.
- 2. Process buckets from last to first:

$$o = T, t_{2}, t_{2}, D, C_{2}, C_{1}$$

$$bucket(C_{1}): P(C_{1}), P(t_{1}/C_{1}, T), r(C_{1}, D)$$

$$bucket(C_{2}): P(C_{2}), P(t_{2}/C_{2}, T), r(C_{2}, D)$$

$$bucket(D): \theta_{C_{1}}(t_{1}, T, D), \theta_{C_{2}}(t_{2}, T, D)$$

$$bucket(t_{1}): \lambda_{C_{1}}(t_{1}, T) = \theta_{D}(t_{1}, t_{2}, T), \delta(t_{1}, t_{2}, T)$$

$$bucket(t_{2}): \lambda_{C_{2}}(t_{2}, T) = \theta_{t_{1}}(t_{2}, T)$$

$$bucket(T): r(T) = \lambda_{t_{1}}(T) = \lambda_{t_{2}}(T) = \theta_{t_{1}}(T)$$

3. Forward: Assign values in ordering to 2024

The Bucket Description

Final buckets: (λ s or Ps) utility components (θ 's or r's).

bucket(C₁): $P(C_1), P(t_1/C_1, T), r(C_1, D)$ bucket(C₂): $P(C_2), P(t_2/C_2, T), r(C_2, D)$ bucket(D): $\theta_{C_1}(t_1, T, D), \theta_{C_2}(t2, T, D)$ bucket(t₁): $\lambda_{C_1}(t_1, T), \quad \theta_D(t_1, t_2, T)$ bucket(t₂): $\lambda_{C_2}(t_2, T), \quad \theta_{t_1}(t_2, T)$ bucket(T): r(T)

Optimizing policies: δ_T is argmax of θ_T computed in bucket(T), and $\theta_D(t_1, t_2, T)$ in $bucket(t_1)$.

General Graphical Models

Definition 2.2 Graphical model. A graphical model \mathcal{M} is a 4-tuple, $\mathcal{M} = \langle \mathbf{X}, \mathbf{D}, \mathbf{F}, \bigotimes \rangle$, where:

- 1. $\mathbf{X} = \{X_1, \dots, X_n\}$ is a finite set of variables;
- 2. **D** = { D_1, \ldots, D_n } is the set of their respective finite domains of values;
- 3. $\mathbf{F} = \{f_1, \ldots, f_r\}$ is a set of positive real-valued discrete functions, defined over scopes of variables $S = \{S_1, \ldots, S_r\}$, where $\mathbf{S}_i \subseteq \mathbf{X}$. They are called *local* functions.
- (product, sum, join). The combination operator can also be defined axiomatically as in [Shenoy, 1992], but for the sake of our discussion we can define it explicitly, by enumeration.

The graphical model represents a *global function* whose scope is **X** which is the combination of all its functions: $\bigotimes_{i=1}^{r} f_i$.

General Bucket Elimination

Algorithm General bucket elimination (GBE)

Input: $\mathcal{M} = \langle \mathbf{X}, \mathbf{D}, \mathbf{F}, \otimes \rangle$. $F = \{f_1, ..., f_n\}$ an ordering of the variables, $d = X_1, ..., X_n$; $\mathbf{Y} \subseteq \mathbf{X}$.

Output: A new compiled set of functions from which the query $\Downarrow_Y \otimes_{i=1}^n f_i$ can be derived in linear time.

1. Initialize: Generate an ordered partition of the functions into $bucket_1, ..., bucket_n$, where $bucket_i$ contains all the functions whose highest variable in their scope is X_i . An input function in each bucket $\psi_i, \psi_i = \bigotimes_{i=1}^n f_i$. 2. Backward: For $p \leftarrow n$ downto 1, do for all the functions $\psi_p, \lambda_1, \lambda_2, ..., \lambda_i$ in $bucket_p$, do

- If (observed variable) $X_p = x_p$ appears in *bucket*_p, assign $X_p = x_p$ in ψ_p and to each λ_i and put each resulting function in appropriate bucket.
- else, (combine and marginalize) $\lambda_p \leftarrow \Downarrow_{S_p} \psi_p \otimes (\otimes_{i=1}^j \lambda_i)$ and add λ_p to the largest-index variable in $scope(\lambda_p)$.

3. Return: all the functions in each bucket.

Theorem 4.23 Correctness and complexity. Algorithm GBE is sound and complete for its task. Its time and space complexities is exponential in the $w^*(d) + 1$ and $w^*(d)$, respectively, along the order of processing d.

Inference for probabilistic networks

Bucket elimination

- Belief-updating, P(e), partition function
- Marginals, probability of evidence
- The impact of evidence
- for MPE (\rightarrow MAP)
- for MAP (\rightarrow Marginal Map)
- Induced-Width (Dechter 3.4,3.5)

- NP-complete
- A tree has induced-width of ?
- Greedy algorithms:
 - Min width
 - Min induced-width
 - Max-cardinality and chordal graphs
 - Fill-in (thought as the best)
- Anytime algorithms
 - Search-based [Gogate & Dechter 2003]
 - Stochastic (CVO) [Kask, Gelfand & Dechter 2010]

- NP-complete
- A tree has induced-width of ?
- Greedy algorithms:
 - Min width
 - Min induced-width
 - Max-cardinality and chordal graphs
 - Fill-in (thought as the best)
- Anytime algorithms
 - Search-based [Gogate & Dechter 2003]
 - Stochastic (CVO) [Kask, Gelfand & Dechter 2010]
Finding a Small Induced-Width

- NP-complete
- A tree has induced-width of ?
- Greedy algorithms:
 - Min width
 - Min induced-width
 - Max-cardinality and chordal graphs
 - Fill-in (thought as the best)
- Anytime algorithms
 - Search-based [Gogate & Dechter 2003]
 - Stochastic (CVO) [Kask, Gelfand & Dechter 2010]

Min-width Ordering

MIN-WIDTH (MW) input: a graph $G = (V, E), V = \{v_1, ..., v_n\}$ output: A min-width ordering of the nodes $d = (v_1, ..., v_n)$. 1. for j = n to 1 by -1 do 2. $r \leftarrow$ a node in G with smallest degree. 3. put r in position j and $G \leftarrow G - r$. (Delete from V node r and from E all its adjacent edges) 4. endfor

Proposition: algorithm min-width finds a min-width ordering of a graph **What is the Complexity of MW?** O(e) slides5 276 2024

Greedy Orderings Heuristics

Min-induced-width

From last to first, pick a node with smallest width, then connect parent and remove

Min-Fill

 From last to first, pick a node with smallest fill-edges

Complexity? $O(n^3)$

Different Induced-Graphs

Which Greedy Algorithm is Best?

- Min-Fill, prefers a node who add the least number of fill-in arcs.
- Empirically, fill-in is the best among the greedy algorithms (MW,MIW,MF,MC)
- Complexity of greedy orderings?
- MW is O(e), MIW: O(n³) MF O(n³) MC is O(e+n)

Propagation in Both Directions

Messages can propagate both ways and we get beliefs for each variable

slides6 Compsci 2021

Inference for probabilistic networks

Bucket elimination (Dechter chapter 4)

- Belief-updating, P(e), partition function
- Marginals, probability of evidence
- The impact of evidence
- for MPE (\rightarrow MAP)
- for MAP (\rightarrow Marginal Map)

Influence diagrams ?

Induced-Width (Dechter, Chapter 3.4)

Marginal Map

• **NP-hard**: exponentially many terms

Marginal MAP is Not Easy on Trees

- Pure MAP or summation tasks
 - Dynamic programming
 - Ex: efficient on trees

Marginal MAP

- Operations do not commute:
- Sum must be done first!

Bucket Elimination for MMAP

Bucket Elimination

Why is MMAP harder?

Inference for probabilistic networks

Bucket elimination (Dechter chapter 4)

- Belief-updating, P(e), partition function
- Marginals, probability of evidence
- The impact of evidence
- for MPE (\rightarrow MAP)
- for MAP (\rightarrow Marginal Map)
- Induced-Width (Dechter, Chapter 3.4)
- Mixed networks
- Influence diagrams ?

Ex: "oil wildcatter"

e.g., [Raiffa 1968; Shachter 1986]

Influence diagram:

- Three actions: test, drill, sales policy
- Chance variables:

P(oil) P(seismic|oil) P(result | seismic, test) P(produced | oil, drill) P(market)

• Utilities capture costs of actions, rewards of sale Oil sales - Test cost - Drill cost - Sales cost

Influence diagram ID = (X, D, P, R).

Chance variables $X = X_1,...,X_n$ over domains. Decision variables $D = D_1,...,D_m$ CPT's for chance variables $P_i = P(X_i | pa_i), i = 1..n$ Reward components $R = \{r_1,...,r_j\}$ Utility function $u = \sum_i r_i$

Common examples

- Markov decision process
 - Markov chain state sequence
 - Actions "di" influence state transition
 - Rewards based on action, new state
 - Temporally homogeneous
- Partially observable MDP
 - Hidden Markov chain state sequence
 - Generate observations
 - Actions based on observations

A decision rule for D_i is a mapping: $\delta i : \Omega p a_{D_i} \to \Omega_{D_i}$ where Ω_S is the cross product of domains in *S*.

A policy is a list of decision rules $\Delta = (\delta_1, \dots, \delta_m)$

Task: Find an optimal policy that maximizes the expected utility.

$$E = \max_{\Delta = (\delta_{1,\dots,\delta_{m}})} \sum_{x = (x_{1,\dots,x_{n}})} \prod_{i} P_{i}(x)u(x)$$

The Car Example (Howard 1976)

A car buyer needs to buy one of two used cars. The buyer can carry out tests with various costs, and then, decide which car to buy.

T: Test variable (t_0, t_1, t_2) (t_1 test car 1, t_2 test car 2)

D: the decision of which car to buy, $D \in \{buy1, buy2\}$

 C_i : the quality of car *i*, $C_i \in \{q_1, q_2\}$

 t_i : the outcome of the test on car *i*, $t_i \in \{pass, fail, null\}$.

r(T): The cost of testing,

 $r(C_1,D)$, $r(C_2,D)$: the reward in buying cars 1 and 2. The utility is: $r(T) + r(C_1,D) + r(C_2,D)$.

Task: determine decision rules T and D such that: $E = \max_{T,D} \sum_{t_2,t_1,C_2,C_1} P(t_2, | C_2, T) P(C_2) P(t_1 | C_1, T) \cdot$

 $P(C_1)[r(T) + r(C_2, D) + r(C_1, D)]$

 C_{1} C_{2} C_{2

Bucket Elimination for meu (Algorithm Elim-meu-id)

Input: An Influence diagram $ID = \{P_1, ..., P_n, r_1, ..., r_j\}$ **Output:** Meu and optimizing policies.

- 1. Order the variables and partition into buckets.
- 2. Process buckets from last to first:

$$o = T, t_{2}, t_{2}, D, C_{2}, C_{1}$$

$$bucket(C_{1}): P(C_{1}), P(t_{1}/C_{1}, T), r(C_{1}, D)$$

$$bucket(C_{2}): P(C_{2}), P(t_{2}/C_{2}, T), r(C_{2}, D)$$

$$bucket(D): \theta_{C_{1}}(t_{1}, T, D), \theta_{C_{2}}(t_{2}, T, D)$$

$$bucket(t_{1}): \lambda_{C_{1}}(t_{1}, T) = \theta_{D}(t_{1}, t_{2}, T), \delta(t_{1}, t_{2}, T)$$

$$bucket(t_{2}): \lambda_{C_{2}}(t_{2}, T) = \theta_{t_{1}}(t_{2}, T)$$

$$bucket(T): r(T) = \lambda_{t_{1}}(T) = \lambda_{t_{2}}(T) = \theta_{t_{1}}(T)$$

3. Forward: Assign values in ordering to 2024

The Bucket Description

Final buckets: (λ s or Ps) utility components (θ 's or r's).

bucket(C₁): $P(C_1), P(t_1/C_1, T), r(C_1, D)$ bucket(C₂): $P(C_2), P(t_2/C_2, T), r(C_2, D)$ bucket(D): $\theta_{C_1}(t_1, T, D), \theta_{C_2}(t2, T, D)$ bucket(t₁): $\lambda_{C_1}(t_1, T), \quad \theta_D(t_1, t_2, T)$ bucket(t₂): $\lambda_{C_2}(t_2, T), \quad \theta_{t_1}(t_2, T)$ bucket(T): r(T)

Optimizing policies: δ_T is argmax of θ_T computed in bucket(T), and $\theta_D(t_1, t_2, T)$ in $bucket(t_1)$.

General Graphical Models

Definition 2.2 Graphical model. A graphical model \mathcal{M} is a 4-tuple, $\mathcal{M} = \langle \mathbf{X}, \mathbf{D}, \mathbf{F}, \bigotimes \rangle$, where:

- 1. $\mathbf{X} = \{X_1, \dots, X_n\}$ is a finite set of variables;
- 2. **D** = { D_1, \ldots, D_n } is the set of their respective finite domains of values;
- 3. $\mathbf{F} = \{f_1, \ldots, f_r\}$ is a set of positive real-valued discrete functions, defined over scopes of variables $S = \{S_1, \ldots, S_r\}$, where $\mathbf{S}_i \subseteq \mathbf{X}$. They are called *local* functions.
- (product, sum, join). The combination operator can also be defined axiomatically as in [Shenoy, 1992], but for the sake of our discussion we can define it explicitly, by enumeration.

The graphical model represents a *global function* whose scope is **X** which is the combination of all its functions: $\bigotimes_{i=1}^{r} f_i$.

General Bucket Elimination

Algorithm General bucket elimination (GBE)

Input: $\mathcal{M} = \langle \mathbf{X}, \mathbf{D}, \mathbf{F}, \otimes \rangle$. $F = \{f_1, ..., f_n\}$ an ordering of the variables, $d = X_1, ..., X_n$; $\mathbf{Y} \subseteq \mathbf{X}$.

Output: A new compiled set of functions from which the query $\Downarrow_Y \otimes_{i=1}^n f_i$ can be derived in linear time.

1. Initialize: Generate an ordered partition of the functions into $bucket_1, ..., bucket_n$, where $bucket_i$ contains all the functions whose highest variable in their scope is X_i . An input function in each bucket $\psi_i, \psi_i = \bigotimes_{i=1}^n f_i$. 2. Backward: For $p \leftarrow n$ downto 1, do for all the functions $\psi_p, \lambda_1, \lambda_2, ..., \lambda_i$ in $bucket_p$, do

- If (observed variable) $X_p = x_p$ appears in *bucket*_p, assign $X_p = x_p$ in ψ_p and to each λ_i and put each resulting function in appropriate bucket.
- else, (combine and marginalize) $\lambda_p \leftarrow \Downarrow_{S_p} \psi_p \otimes (\otimes_{i=1}^j \lambda_i)$ and add λ_p to the largest-index variable in $scope(\lambda_p)$.

3. Return: all the functions in each bucket.

Theorem 4.23 Correctness and complexity. Algorithm GBE is sound and complete for its task. Its time and space complexities is exponential in the $w^*(d) + 1$ and $w^*(d)$, respectively, along the order of processing d.