Causal and Probabilistic Reasoning

Slides Set 5:
 Exact Inference Algorithms Bucket-elimination

Rina Dechter

(Dechter chapter 4, Darwiche chapter 6)

Inference for probabilistic networks

- Bucket elimination (Dechter chapter 4)
- Belief-updating, P(e), partition function
- Marginals, probability of evidence
- The impact of evidence
- for MPE (\rightarrow MAP)
- for MAP (\rightarrow Marginal Map)
- Influence diagrams ?
- Induced-Width (Dechter, Chapter 3.4)

Inference for probabilistic networks

- Bucket elimination
- Belief-updating, P(e), partition function
- Marginals, probability of evidence
- The impact of evidence
- for MPE (\rightarrow MAP)
- for MAP (\rightarrow Marginal Map)
- Induced-Width

Bayesian Networks: Example
 (Pearl, 1988)

$P(S, C, B, X, D)=P(S) P(C \mid S) P(B \mid S) P(X \mid C, S) P(D \mid C, B)$
Belief Updating:
P (lung cancer=yes | smoking=no, dyspnoea=yes) = ?

A Bayesian Network

A	C	$\Theta_{C \mid A}$
true	true	.8
true	false	.2
false	true	.1
false	false	.9

B	C	D	$\Theta_{D \mid B C}$
true	true	true	.95
true	true	false	.05
true	false	true	.9
true	false	false	.1
false	true	true	.8
false	true	false	.2
false	false	true	0
false	false	false	1

C	E	$\Theta_{E \mid C}$
true	true	.7
true	false	.3
false	true	0
false	false	1

Types of queries

- NP-hard: exponentially many terms
- We will focus on exact and then on approximation algorithms
- Anytime: very fast \& very approximate ! Slower \& more accurate

Belief Updating is NP-hard

- Each SAT formula can be mapped into a belief updating query in a Bayesian network
- Example

$$
(\neg u \vee \neg w \vee y) \wedge(u \vee \neg v \vee w)
$$

A Simple Network

Given:

- How can we compute $P(D)$?, $P(D \mid A=0)$? $P(A \mid D=0)$?
- Brute force $\mathrm{O}\left(k^{4}\right)$
- Maybe $O\left(4 k^{2}\right)$

Elimination as a Basis for Inference

A	Θ_{A}
true	.6
false	.4

A	B	$\Theta_{B \mid A}$
true	true	.9
true	false	.1
false	true	.2
false	false	.8

B	C	$\Theta_{C \mid B}$
true	true	.3
true	false	.7
false	true	.5
false	false	.5

To compute the prior marginal on variable $C, \operatorname{Pr}(C)$
we first eliminate variable A and then variable B

Elimination as a Basis for Inference

- There are two factors that mention variable A, Θ_{A} and $\Theta_{B \mid A}$
- We multiply these factors first and then sum out variable A from the resulting factor.
- Multiplying Θ_{A} and $\Theta_{B \mid A}$:

A	B	$\Theta_{A} \Theta_{B \mid A}$
true	true	.54
true	false	.06
false	true	.08
false	false	.32

- Summing out variable A :

B	$\sum_{A} \Theta_{A} \Theta_{B \mid A}$
true	$.62=.54+.08$
false	$.38=.06+.32$

Elimination as a Basis for Inference

- We now have two factors, $\sum_{A} \Theta_{A} \Theta_{B \mid A}$ and $\Theta_{C \mid B}$, and we want to eliminate variable B
- Since B appears in both factors, we must multiply them first and then sum out B from the result.
- Multiplying:

B	C	$\Theta_{C \mid B} \sum_{A} \Theta_{A} \Theta_{B \mid A}$
true	true	.186
true	false	.434
false	true	.190
false	false	.190

- Summing out:

C	$\sum_{B} \Theta_{C \mid B} \sum_{A} \Theta_{A} \Theta_{B \mid A}$
true	.376
false	.624

Elimination as a Basis for Inference

- We now have two factors, $\sum_{A} \Theta_{A} \Theta_{B \mid A}$ and $\Theta_{C \mid B}$, and we want to eliminate variable B
- Since B appears in both factors, we must multiply them first and then sum out B from the result.
- Multiplying:

B	C	.186
true	true	.18
true	false	.434
false	true	.190
false	false	.190

- Summing out:

Belief Updating

P (lung cancer=yes / smoking=no, dyspnoea=yes) = ?

Belief updating: $P(X \mid$ evidence $)=$?

$$
P(a \mid e=0) \propto P(a, e=0)=
$$

$$
\begin{aligned}
& \sum_{e=0, d, c, b} P(a) \underbrace{P(b \mid a)} P(c \mid a) \underbrace{P(d \mid b, a) P(e \mid b, c)}_{1}= \\
& P(a) \sum_{e=0}^{\sum_{e=0}^{\sum_{d}} \sum_{c} P\left(c \mid a \sum_{c} P(b \mid a) P(d \mid b, a) P(e \mid b, c)\right.} \\
& \text { Variable Elimination }
\end{aligned}
$$

Bucket elimination Algorithm BE-bel (Dechter 1996)

$$
P(A \mid E=0)=\alpha \sum_{E=0, D, C, B} P(A) \cdot P(B \mid A) \cdot P(C \mid A) \cdot P(D \mid A, B) \cdot P(E \mid B, C)
$$

$$
\begin{aligned}
& \text { bucket } B \text { : } \\
& \text { bucket } C \text { : } \\
& \text { bucket } D \text { : }
\end{aligned}
$$

$$
\overbrace{P(b \mid a) P(d \mid b, a)} P(e \mid b, c)
$$

bucket E:

$$
e=0 \quad \lambda^{\boldsymbol{D}}(\boldsymbol{a}, \boldsymbol{e})
$$

$$
W^{*}=4
$$

bucket A:

$P(a, e=0)$ slides $P\left(z_{a} \mid e_{4}=0\right)=\frac{P(a, e=0)}{P(e=0)}$

A Bayesian Network Ordering: A,C,B,E,D,G

(a) Directed acyclic graph

(b) Moral graph

$$
\begin{align*}
P(a, g=1) & =\sum_{c, b, e, d, g=1} P(a, b, c, d, e, g)=\sum_{c, b, f, d, g=1} P(g \mid f) P(f \mid b, c) P(d \mid a, b) P(c \mid a) P(b \mid a) P(a) . \\
P(a, g=1) & =P(a) \sum_{c} P(c \mid a) \sum_{b} P(b \mid a) \sum_{f} P(f \mid b, c) \sum_{d} P(d \mid b, a) \sum_{g=1} P(g \mid f) . \tag{4.1}\\
P(a, g=1) & =P(a) \sum_{c} P(c \mid a) \sum_{b} P(b \mid a) \sum_{f} P(f \mid b, c) \lambda_{G}(f) \sum_{d} P(d \mid b, a) \tag{4.2}\\
P(a, g=1) & =P(a) \sum_{c} P(c \mid a) \sum_{b} P(b \mid a) \lambda_{D}(a, b) \sum_{f} P(f \mid b, c) \lambda_{G}(f) \tag{4.3}\\
P(a, g=1) & =P(a) \sum_{c} P(c \mid a) \sum_{b} P(b \mid a) \lambda_{D}(a, b) \lambda_{F}(b, c) \tag{4.4}\\
P(a, g=1) & =P(a) \sum_{c} P(c \mid a) \lambda_{B}(a, c) \tag{4.5}
\end{align*}
$$

A Bayesian Network Ordering: A,C,B,E,D,G

(a) Directed acyclic graph

(b) Moral graph

$$
\begin{align*}
& P(a, g=1)=\sum_{c, b, e, d, g=1} P(a, b, c, d, e, g)=\sum_{c, b, f, d, g=1} P(g \mid f) P(f \mid b, c) P(d \mid a, b) P(c \mid a) P(b \mid a) P(a) . \\
& P(a, g=1)=P(a) \sum_{c} P(c \mid a) \sum_{b} P(b \mid a) \sum_{f} P(f \mid b, c) \sum_{d} P\left(d \mid b, a \sum_{d=1} P(g \mid f) .\right. \tag{4.1}\\
& P(a, g=1)=P(a) \sum_{c} P(c \mid a) \sum_{b} P(b \mid a) \sum_{f} P(f \mid b, c) \lambda_{G}(f) \sum_{d} P(d \mid b, a) . \tag{4.2}\\
& P(a, g=1)=P(a) \sum_{c} P(c \mid a) \sum_{b} P(b \mid a) \lambda_{D}(a, b) \sum_{\sum_{f} P(f \mid b, c) \lambda_{G}(f)} \tag{4.3}\\
& P(a, g=1)=P(a) \sum_{c} P(c \mid a) \underbrace{P(a, g=1)}_{\sum_{b} P(b \mid a) \lambda_{D}(a, b) \lambda_{F}(b, c)}=P(a) \sum_{c} P(c \mid a) \lambda_{B}(a, c) \tag{4.4}
\end{align*}
$$

A Bayesian Network Ordering: A,C,B,F,D,G

(a) Directed acyclic graph

(b) Moral graph

A Different Ordering

(a) Directed acyclic graph

(b) Moral graph

Ordering: A, F, D, C, B, G

A Different Ordering

(a) Directed acyclic graph

(b) Moral graph

Ordering: A, F, D, C, B, G

$P(a, g=1)=P(a) \sum_{f} \sum_{d} \sum_{c} P(c \mid a) \sum_{b} P(b \mid a) P(d \mid a, b) P(f \mid b, c) \sum_{g=1} P(g \mid f)$
$=P(a) \sum_{f} \lambda_{G}(f) \sum_{d} \sum_{c} P(c \mid a) \sum_{b} P(b \mid a) P(d \mid a, b) P(f \mid b, c)$
$=P(a) \sum_{f} \lambda_{G}(f) \sum_{d} \sum_{c} P(c \mid a) \lambda_{B}(a, d, c, f)$
$=P(a) \sum_{f} \lambda_{g}(f) \sum_{d} \lambda_{C}(a, d, f)$
$=P(a) \sum_{f} \lambda_{G}(f) \lambda_{D}(a, f)$
$=P(a) \lambda_{F}(a)$

(a)

(b)

A Bayesian Network Processed Along 2 Orderings

$\Sigma \Pi$

(a) Directed acyclic graph

(a)

(b) Moral graph

(b)
$d 1=A, C, B, F, D, G$
Figure 4.4: The bucket's output when processing along $d_{2}=A, F, D, C, B, G$.

The Operation In a Bucket

- Multiplying functions
- Marginalizing (summing-out) functions

Combination of Cost Functions

\mathbf{A}	\mathbf{B}	$\mathbf{f}(\mathbf{A}, \mathbf{B})$
b	b	0.4
b	g	0.1
g	b	0
g	g	0.5

Factors: Sum-Out Operation

The result of summing out variable X from factor $f(\mathbf{X})$

is another factor over variables $\mathbf{Y}=\mathbf{X} \backslash\{X\}$:

$$
\left(\sum_{x} f\right)(\mathbf{y}) \stackrel{\text { def }}{=} \sum_{x} f(x, \mathbf{y})
$$

B	C	D	f_{1}
true	true	true	.95
true	true	false	.05
true	false	true	.9
true	false	false	.1
false	true	true	.8
false	true	false	.2
false	false	true	0
false	false	false	1

B	C	$\sum_{D} f_{1}$
true	true	1
true	false	1
false	true	1
false	false	1

$$
\top \quad \sum_{B} \sum_{C} \sum_{D} f_{1}
$$

Bucket Elimination and Induced Width

Bucket Elinnination and induced Midth

Algorithm BE-bel

Input: A belief network $\mathcal{B}=\left\langle\mathbf{X}, \mathbf{D}, \mathbf{P}_{G}, \Pi\right\rangle$, an ordering $d=\left(X_{1}, \ldots, X_{n}\right)$; evidence e output: The belief $P\left(X_{1} \mid \mathrm{e}\right)$ and probability of evidence $P(\mathrm{e})$

1. Partition the input functions (CPTs) into bucket $_{1}, \ldots$, bucket $_{n}$ as follows: for $i \leftarrow n$ downto 1 , put in bucket $_{i}$ all unplaced functions mentioning X_{i}. Put each observed variable in its bucket. Denote by ψ_{i} the product of input functions in bucket ${ }_{i}$.
2. backward: for $p \leftarrow n$ downto 1 do
3. for all the functions $\psi_{S_{0}}, \lambda_{S_{1}}, \ldots, \lambda_{S_{j}}$ in bucket $_{p}$ do

If (observed variable) $X_{p}=x_{p}$ appears in bucket $_{p}$, assign $X_{p}=x_{p}$ to each function in bucket $_{p}$ and then put each resulting function in the bucket of the closest variable in its scope. else,
4. $\quad \lambda_{p} \leftarrow \sum_{X_{p}} \psi_{p} \cdot \prod_{i=1}^{j} \lambda_{S_{i}}$
5. place λ_{p} in bucket of the latest variable in scope $\left(\lambda_{p}\right)$,
6. return (as a result of processing bucket $_{1}$):

$$
\begin{aligned}
& P(\mathrm{e})=\alpha=\sum_{X_{1}} \psi_{1} \cdot \prod_{\lambda \in \text { bucket }_{1}} \lambda \\
& P\left(X_{1} \mid \mathrm{e}\right)=\frac{1}{\alpha} \psi_{1} \cdot \prod_{\lambda \in \text { bucket }_{1}} \lambda
\end{aligned}
$$

Figure 4.5: BE-bel: a sum-product bucket-elimination algorithm.

Student Network Example

Induced Width (continued)

$w^{*}(d)$ - the induced width of the primal graph along ordering d The effect of the ordering:

$$
w^{*}\left(d_{1}\right)=4
$$

$$
w^{*}\left(d_{2}\right)=2
$$

Inference for Probabilistic Networks

- Bucket elimination
- Belief-updating, P(e), partition function
- Marginals, probability of evidence
- The impact of evidence
- for MPE (\rightarrow MAP)
- for MAP (\rightarrow Marginal Map)
- Induced-Width

The Impact of Evidence? Algorithm BE-bel

The Impact of Evidence?

 Algorithm BE-bel$$
P(A \mid E=0)=\alpha \sum_{E=0, D, C, B} P(A) \cdot P(B \mid A) \cdot P(C \mid A) \cdot P(D \mid A, B) \cdot P(E \mid B, C)
$$

$$
P(A / E=0, B=1) ?
$$

bucket B:

$$
\overbrace{P(b \mid a) \quad P(d \mid b, a) \quad P(e \mid b, c)}^{b} \quad B=1
$$

bucket C :

$$
P(c \mid a) \quad P(e \mid b=1, c)
$$

bucket E:

$$
e=0
$$

bucket A:

${ }_{\text {slides 5 }}^{276}\left(\boldsymbol{a} \mid{ }_{20}=\mathbf{e}=\mathbf{0}\right)=\frac{\boldsymbol{P}(\boldsymbol{a}, \boldsymbol{e}=\boldsymbol{0})}{\boldsymbol{P}(\boldsymbol{e}=0)}$

The Impact of Observations

(a)

(b)

(c)

Figure 4.9: Adjusted induced graph relative to observing B.

Inference for Probabilistic Networks

- Bucket elimination
- Belief-updating, P(e), partition function
- Marginals, probability of evidence
- The impact of evidence
- for MPE (\rightarrow MAP)
- for MAP (\rightarrow Marginal Map)
- Induced-Width

$\mathrm{MPE}=\max \mathrm{P}(\overline{\mathrm{x}})$
 $\overline{\mathrm{X}}$

$$
\begin{aligned}
& \sum_{M P E} \text { is replaced by } \max : \\
& \max _{a, e, d, c, b} P(a) P(c \mid a) P(b \mid a) P(d \mid a, b) P(e \mid b, c)
\end{aligned}
$$

$\mathrm{MPE}=\max \mathrm{P}(\overline{\mathrm{x}})$
 $\overline{\mathrm{x}}$

$$
\sum \text { is replaced by } \max :
$$

$M P E=\max _{a, e, d, c, b} P(a) P(c \mid a) P(b \mid a) P(d \mid a, b) P(e \mid b, c)$
bucket D:
bucket E:
bucket A:

Generating the MPE-tuple

5. $b^{\prime}=\arg \max P\left(b / a^{\prime}\right) \times$

$$
\times P\left(d^{\prime} \mid b, a^{b^{\prime}}\right) \times P\left(e^{\prime} \mid b, c^{\prime}\right)
$$

4. $c^{\prime}=\arg \max P\left(c / a^{\prime}\right) \times$

$$
\times h^{B}\left(a^{\prime}, d^{c}, c, e^{\prime}\right)
$$

3. $d^{\prime}=\arg \max _{d} h^{c}\left(a^{\prime}, d, e^{\prime}\right)$
4. $e^{\prime}=0$
5. $a^{\prime}=\arg \max _{a} P(a) \cdot h^{E}(a)$
$B: P(b \mid a) \quad P(d \mid b, a) \quad P(e \mid b, c)$
$C: \quad P(c \mid a) \quad h^{B}(\boldsymbol{a}, \boldsymbol{d}, \boldsymbol{c}, \boldsymbol{e})$

D:
$h^{c}(a, d, e)$
$E: \quad e=0 \quad h^{D}(\mathbf{a}, \boldsymbol{e})$

A: $\quad P(a) \quad h^{E}(a)$ Return ($\left.a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, e^{\prime}\right)$

Induced Width

- Width is the max number of parents in the ordered graph
- Induced-width is the width of the induced ordered graph: recursively connecting parents going from last node to first.
- Induced-width $\mathrm{w}^{*}(\mathrm{~d})$ is the max induced-width over all nodes in ordering d
- Induced-width of a graph, w^{*} is the $\min \mathrm{w}^{*}(\mathrm{~d})$ over all orderings d

primal graph

$w^{*}\left(d_{1}\right)=4$

$w^{*}\left(d_{2}\right)=2$

Complexity of Bucket Elimination

 Bucket-Elimination is time and space $O\left(r \exp \left(w_{d}^{*}\right)\right)$$w_{d}^{*}$: the induced width of the primal graph along ordering d
$r=$ number of functions \quad The effect of the ordering:

primal
graph Finding smallest induced-width is hard!

A Bayesian Network

Example with mpe?

A	C	$\Theta_{C \mid A}$
true	true	.8
true	false	.2
false	true	.1
false	false	.9

B	C	D	$\Theta_{D \mid B C}$
true	true	true	.95
true	true	false	.05
true	false	true	.9
true	false	false	.1
false	true	true	.8
false	true	false	.2
false	false	true	0
false	false	false	1

C	E	$\Theta_{E \mid C}$
true	true	.7
true	false	.3
false	true	0
false	false	1

Try to compute MPE when E=0

A	C	$\Theta_{C \mid A}$
true	true	.8
true	false	.2
false	true	.1
false	false	.9

B	C	D	$\Theta_{D \mid B C}$
true	true	true	.95
true	true	false	.05
true	false	true	.9
true	false	false	.1
false	true	true	.8
false	true	false	.2
false	false	true	0
false	false	false	1

C	E	$\Theta_{E \mid C}$
true	true	.7
true	false	.3
false	true	0
false	false	1

Complexity of Bucket-Elimination

- Theorem:
$B E$ is $O\left(n \exp \left(w^{*}+1\right)\right)$ time and $O\left(n \exp \left(w^{*}\right)\right)$ space, when w^{*} is the induced-width of the moral graph along d when evidence nodes are processed (edges from evidence nodes to earlier variables are removed.)

More accurately: $O\left(r \exp \left(w^{*}(d)\right)\right.$ where r is the number of CPTs. For Bayesian networks r=n. For Markov networks?

Inference for probabilistic networks

- Bucket elimination
- Belief-updating, P(e), partition function
- Marginals, probability of evidence
- The impact of evidence
- for MPE (\rightarrow MAP)
- for MAP (\rightarrow Marginal Map)
. Induced-Width (Dechter 3.4,3.5)

Finding a Small Induced-Width

- NP-complete
- A tree has induced-width of ?
- Greedy algorithms:
- Min width
- Min induced-width
- Max-cardinality and chordal graphs
- Fill-in (thought as the best)
- Anytime algorithms
- Search-based [Gogate \& Dechter 2003]
- Stochastic (CVO) [Kask, Gelfand \& Dechter 2010]

Finding a Small Induced-Width

- NP-complete
- A tree has induced-width of ?
- Greedy algorithms:
- Min width
- Min induced-width
- Max-cardinality and chordal graphs
- Fill-in (thought as the best)
- Anytime algorithms
- Search-based [Gogate \& Dechter 2003]
- Stochastic (CVO) [Kask, Gelfand \& Dechter 2010]

Finding a Small Induced-Width

- NP-complete
- A tree has induced-width of ?
- Greedy algorithms:
- Min width
- Min induced-width
- Max-cardinality and chordal graphs
- Fill-in (thought as the best)
- Anytime algorithms
- Search-based [Gogate \& Dechter 2003]
- Stochastic (CVO) [Kask, Gelfand \& Dechter 2010]

Min-width Ordering

MIN-WIDTH (MW)
input: a graph $G=(V, E), V=\left\{v_{1}, \ldots, v_{n}\right\}$
output: A min-width ordering of the nodes $d=\left(v_{1}, \ldots, v_{n}\right)$.

1. for $j=n$ to 1 by -1 do
2. $\quad r \leftarrow$ a node in G with smallest degree.
3. put r in position j and $G \leftarrow G-r$.
(Delete from V node r and from E all its adjacent edges)
4. endfor

Proposition: algorithm min-width finds a min-width ordering of a graph What is the Complexity of MW?

Greedy Orderings Heuristics

- Min-induced-width
- From last to first, pick a node with smallest width, then connect parent and remove
. Min-Fill
- From last to first, pick a node with smallest fill-edges

Complexity? $O\left(n^{3}\right)$

Min-Fill Heuristic

- Select the variable that creates the fewest "fill-in" edges

Example

slides5 2762024

Different Induced-Graphs

(a)

(b)

(c)

(d)

A Miw ordering

Which Greedy Algorithm is Best?

- Min-Fill, prefers a node who add the least number of fill-in arcs.
- Empirically, fill-in is the best among the greedy algorithms (MW,MIW,MF,MC)
- Complexity of greedy orderings?
- MW is $\mathrm{O}(\mathrm{e})$, MIW: $\mathrm{O}\left(n^{3}\right)$ MF $\mathrm{O}\left(n^{3}\right)$ MC is $\mathrm{O}(\mathrm{e}+\mathrm{n})$

Propagation in Both Directions

- Messages can propagate both ways and we get beliefs for each variable

slides6 Compsci 2021

Inference for probabilistic networks

- Bucket elimination (Dechter chapter 4)
- Belief-updating, P(e), partition function
- Marginals, probability of evidence
- The impact of evidence
- for MPE (\rightarrow MAP)
- for MAP (\rightarrow Marginal Map)
- Influence diagrams ?
- Induced-Width (Dechter, Chapter 3.4)

Marginal Map

Max-Inference	$f\left(\mathbf{x}^{*}\right)=\max _{\mathbf{x}} \prod_{\alpha} f_{\alpha}\left(\mathbf{x}_{\alpha}\right)$
Sum-Inference	$Z=\sum_{\mathbf{x}} \prod_{\alpha} f_{\alpha}\left(\mathbf{x}_{\alpha}\right)$
Mixed-Inference	$f\left(\mathbf{x}_{M}^{*}\right)=\max _{\mathbf{x}_{\mathrm{M}}} \sum_{\mathbf{x}_{S}} \prod_{\alpha} f_{\alpha}\left(\mathbf{x}_{\alpha}\right)$

- NP-hard: exponentially many terms

Example for MMAP Applications
 6 people, 3 markers

- Haplotype in Family pedigrees
- Coding networks

- Probabilistic planning
- Diagnosis

Marginal MAP is Not Easy on Trees

- Pure MAP or summation tasks
- Dynamic programming
- Ex: efficient on trees

- Marginal MAP
- Operations do not commute:
- Sum must be done first!

$$
\sum \max \neq \max \sum
$$

Max variables

Bucket Elimination for MMAP

Bucket Elimination

$\mathbf{X}_{M}=\{A, D, E\}$
$\mathbf{X}_{S}=\{B, C\}$
$\max _{\mathbf{X}_{M}} \sum_{\mathbf{X}_{S}} P(\mathbf{X})$

$M A P^{*}$ is the marginal MAP value

Why is MMAP harder?

Inference for probabilistic networks

- Bucket elimination (Dechter chapter 4)
- Belief-updating, P(e), partition function
- Marginals, probability of evidence
- The impact of evidence
- for MPE (\rightarrow MAP)
- for MAP (\rightarrow Marginal Map)
- Induced-Width (Dechter, Chapter 3.4)
- Mixed networks
- Influence diagrams ?

Ex: "oil wildcatter"

- Influence diagram:

- Three actions: test, drill, sales policy
- Chance variables:

P(oil) P(seismic|oil) P(result \| seismic, test) P(produced \| oil, drill) P(market)

- Utilities capture costs of actions, rewards of sale Oil sales - Test cost - Drill cost - Sales cost

Influence Diagrams

Influence diagram $I D=(X, D, P, R)$.

Chance variables $X=X_{1, \ldots}, X_{n}$ over domains.
Decision variables $D=D_{1}, \ldots, D_{m}$
CPT's for chance variables $P_{i}=P\left(X_{i} \mid p a_{i}\right), i=1 . . n$
Reward components $R=\left\{r_{1}, \ldots, r_{j}\right\}$
Utility function $u=\sum_{i} r_{i}$

Common examples

- Markov decision process
- Markov chain state sequence
- Actions "di" influence state transition
- Rewards based on action, new state
- Temporally homogeneous
- Partially observable MDP
- Hidden Markov chain state sequence
- Generate observations
- Actions based on observations

Influence Diagrams

 (continue)A decision rule for D_{i} is a mapping: $\delta i: \Omega p a_{D_{i}} \rightarrow \Omega_{D_{i}}$ where Ω_{s} is the cross product of domains in S.

A policy is a list of decision rules $\Delta=\left(\delta_{1, \ldots}, \delta_{m}\right)$

Task: Find an optimal policy that maximizes the expected utility.

$$
E=\max _{\Delta=\left(\delta 1, \ldots, \delta_{n}\right)} \sum_{x=\left(x 1, \ldots, x_{n}\right)} \prod_{i} P_{i}(x) u(x)
$$

The Car Example

(Howard 1976)

A car buyer needs to buy one of two used cars. The buyer can carry out tests with various costs, and then, decide which car to buy.

T: Test variable (t_{0}, t_{1}, t_{2}) (t_{l} test car $1, t_{2}$ test car 2)
D : the decision of which car to buy, $D \in\{b u y 1$, buy 2$\}$
C_{i} : the quality of car $i, C_{i} \in\left\{q_{1}, q_{2}\right\}$
t_{i} : the outcome of the test on car $i, t_{i} \in\{$ pass, fail, null $\}$. $r(T)$: The cost of testing,
$r\left(C_{1}, D\right), r\left(C_{2}, D\right)$: the reward in buying cars 1 and 2.
The utility is: $r(T)+r\left(C_{1}, D\right)+r\left(C_{2}, D\right)$.
Task: determine decision rules T and D such that:
$E=\max _{T, D} \sum_{t 2, t_{1}, C_{2}, C_{1}} P\left(t_{2}, \mid C_{2}, T\right) P\left(C_{2}\right) P\left(t_{1} \mid C_{1}, T\right)$.

$P\left(C_{1}\right)\left[r(T)+r\left(C_{2}, D\right)+r\left(C_{1}, D\right)\right]$

Bucket Elimination for meu (Algorithm Elim-meu-id)

Input: An Influence diagram ID $=\left\{P_{l}, \ldots, P_{n} r_{l}, \ldots, r_{j}\right\}$ Output: Meu and optimizing policies.

1. Order the variables and partition into buckets.
2. Process buckets from last to first:
$o=T, t_{2}, t_{2}, D, C_{2}, C_{1}$
$\operatorname{bucket}\left(C_{1}\right): P\left(C_{1}\right), P\left(t_{l} \mid C_{1}, T\right), r\left(C_{1}, D\right)$
$\operatorname{bucket}\left(C_{2}\right): P\left(C_{2}\right), P\left(t_{2} \mid C_{2}, T\right), r\left(C_{2}, D\right)$

3. Forward: Assign values in orderiggth 2024

The Bucket Description

Final buckets: (λs or $P s$) utility components (θ 's or r's).

$\operatorname{bucket}\left(C_{l}\right): P\left(C_{l}\right), P\left(t_{l} \mid C_{l}, T\right), r\left(C_{l}, D\right)$ $\operatorname{bucket}\left(C_{2}\right): P\left(C_{2}\right), P\left(t_{2} \mid C_{2}, T\right), r\left(C_{2}, D\right)$ $\operatorname{bucket}(D): \quad \theta_{C_{1}}\left(t_{1}, T, D\right), \theta_{C_{2}}(t 2, T, D)$ bucket $\left(t_{1}\right): \quad \lambda_{C_{1}}\left(t_{1}, T\right), \quad \theta_{D}\left(t_{1}, t_{2}, T\right)$ $\operatorname{bucket}\left(t_{2}\right): \quad \lambda_{C_{2}}\left(t_{2}, T\right), \quad \theta_{t_{1}}\left(t_{2}, T\right)$ $\operatorname{bucket}(T): r(T)$)

Optimizing policies: δ_{T} is argmax of θ_{T} computed in $\operatorname{bucket}(T)$, and $\theta_{D}\left(t_{1}, t_{2}, T\right)$ in $\operatorname{bucket}\left(t_{l}\right)$.

General Graphical Models

Definition 2.2 Graphical model. A graphical model \mathcal{M} is a 4-tuple, $\mathcal{M}=\langle\mathbf{X}, \mathbf{D}, \mathbf{F}, \otimes\rangle$, where:

1. $\mathrm{X}=\left\{X_{1}, \ldots, X_{n}\right\}$ is a finite set of variables;
2. $\mathbf{D}=\left\{D_{1}, \ldots, D_{n}\right\}$ is the set of their respective finite domains of values;
3. $\mathbf{F}=\left\{f_{1}, \ldots, f_{r}\right\}$ is a set of positive real-valued discrete functions, defined over scopes of variables $\mathcal{S}=\left\{S_{1}, \ldots, S_{r}\right\}$, where $\mathbf{S}_{i} \subseteq \mathbf{X}$. They are called local functions.
4. \otimes is a combination operator (e.g., $\otimes \in\left\{\Pi, \sum, \bowtie\right\}$ (product, sum, join)). The combination operator can also be defined axiomatically as in [Shenoy, 1992], but for the sake of our discussion we can define it explicitly, by enumeration.

The graphical model represents a global function whose scope is \mathbf{X} which is the combination of all its functions: $\bigotimes_{i=1}^{r} f_{i}$.

General Bucket Elimination

Algorithm General bucket elimination (GBE)

Input: $\mathcal{M}=\langle\mathbf{X}, \mathbf{D}, \mathbf{F}, \otimes\rangle . F=\left\{f_{1}, \ldots, f_{n}\right\}$ an ordering of the variables, $d=X_{1}, \ldots, X_{n}$; $\mathbf{Y} \subseteq \mathbf{X}$.

Output: A new compiled set of functions from which the query $\Downarrow_{Y} \otimes_{i=1}^{n} f_{i}$ can be derived in linear time.

1. Initialize: Generate an ordered partition of the functions into bucket $_{1}, \ldots$, bucket $_{n}$, where bucket $_{i}$ contains all the functions whose highest variable in their scope is X_{i}. An input function in each bucket $\psi_{i}, \psi_{i}=\otimes_{i=1}^{n} f_{i}$.
2. Backward: For $p \leftarrow n$ downto 1 , do
for all the functions $\psi_{p}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{j}$ in bucket $_{p}$, do

- If (observed variable) $X_{p}=x_{p}$ appears in bucket $_{p}$, assign $X_{p}=x_{p}$ in ψ_{p} and to each λ_{i} and put each resulting function in appropriate bucket.
- else, (combine and marginalize) $\lambda_{p} \leftarrow \Downarrow_{S_{p}} \psi_{p} \otimes\left(\otimes_{i=1}^{j} \lambda_{i}\right)$ and add λ_{p} to the largest-index variable in $\operatorname{scope}\left(\lambda_{p}\right)$.

3. Return: all the functions in each bucket.

Theorem 4.23 Correctness and complexity. Algorithm GBE is sound and complete for its task. Its time and space complexities is exponential in the $w^{*}(d)+1$ and $w^{*}(d)$, respectively, along the order of processing d.

Inference for probabilistic networks

- Bucket elimination
- Belief-updating, P(e), partition function
- Marginals, probability of evidence
- The impact of evidence
- for MPE (\rightarrow MAP)
- for MAP (\rightarrow Marginal Map)
. Induced-Width (Dechter 3.4,3.5)

Finding a Small Induced-Width

- NP-complete
- A tree has induced-width of ?
- Greedy algorithms:
- Min width
- Min induced-width
- Max-cardinality and chordal graphs
- Fill-in (thought as the best)
- Anytime algorithms
- Search-based [Gogate \& Dechter 2003]
- Stochastic (CVO) [Kask, Gelfand \& Dechter 2010]

Finding a Small Induced-Width

- NP-complete
- A tree has induced-width of ?
- Greedy algorithms:
- Min width
- Min induced-width
- Max-cardinality and chordal graphs
- Fill-in (thought as the best)
- Anytime algorithms
- Search-based [Gogate \& Dechter 2003]
- Stochastic (CVO) [Kask, Gelfand \& Dechter 2010]

Finding a Small Induced-Width

- NP-complete
- A tree has induced-width of ?
- Greedy algorithms:
- Min width
- Min induced-width
- Max-cardinality and chordal graphs
- Fill-in (thought as the best)
- Anytime algorithms
- Search-based [Gogate \& Dechter 2003]
- Stochastic (CVO) [Kask, Gelfand \& Dechter 2010]

Min-width Ordering

MIN-WIDTH (MW)
input: a graph $G=(V, E), V=\left\{v_{1}, \ldots, v_{n}\right\}$
output: A min-width ordering of the nodes $d=\left(v_{1}, \ldots, v_{n}\right)$.

1. for $j=n$ to 1 by -1 do
2. $\quad r \leftarrow$ a node in G with smallest degree.
3. put r in position j and $G \leftarrow G-r$.
(Delete from V node r and from E all its adjacent edges)
4. endfor

Proposition: algorithm min-width finds a min-width ordering of a graph What is the Complexity of MW?

Greedy Orderings Heuristics

- Min-induced-width
- From last to first, pick a node with smallest width, then connect parent and remove
. Min-Fill
- From last to first, pick a node with smallest fill-edges

Complexity? $O\left(n^{3}\right)$

Min-Fill Heuristic

- Select the variable that creates the fewest "fill-in" edges

Example

slides5 2762024

Different Induced-Graphs

(a)

(b)

(c)

(d)

A Miw ordering

Which Greedy Algorithm is Best?

- Min-Fill, prefers a node who add the least number of fill-in arcs.
- Empirically, fill-in is the best among the greedy algorithms (MW,MIW,MF,MC)
- Complexity of greedy orderings?
- MW is $\mathrm{O}(\mathrm{e})$, MIW: $\mathrm{O}\left(n^{3}\right)$ MF $\mathrm{O}\left(n^{3}\right)$ MC is $\mathrm{O}(\mathrm{e}+\mathrm{n})$

Propagation in Both Directions

- Messages can propagate both ways and we get beliefs for each variable

slides6 Compsci 2021

Inference for probabilistic networks

- Bucket elimination (Dechter chapter 4)
- Belief-updating, P(e), partition function
- Marginals, probability of evidence
- The impact of evidence
- for MPE (\rightarrow MAP)
- for MAP (\rightarrow Marginal Map)
- Influence diagrams ?
- Induced-Width (Dechter, Chapter 3.4)

Marginal Map

Max-Inference	$f\left(\mathbf{x}^{*}\right)=\max _{\mathbf{x}} \prod_{\alpha} f_{\alpha}\left(\mathbf{x}_{\alpha}\right)$
Sum-Inference	$Z=\sum_{\mathbf{x}} \prod_{\alpha} f_{\alpha}\left(\mathbf{x}_{\alpha}\right)$
Mixed-Inference	$f\left(\mathbf{x}_{M}^{*}\right)=\max _{\mathbf{x}_{\mathrm{M}}} \sum_{\mathbf{x}_{S}} \prod_{\alpha} f_{\alpha}\left(\mathbf{x}_{\alpha}\right)$

- NP-hard: exponentially many terms

Example for MMAP Applications
 6 people, 3 markers

- Haplotype in Family pedigrees
- Coding networks

- Probabilistic planning
- Diagnosis

Marginal MAP is Not Easy on Trees

- Pure MAP or summation tasks
- Dynamic programming
- Ex: efficient on trees

- Marginal MAP
- Operations do not commute:
- Sum must be done first!

$$
\sum \max \neq \max \sum
$$

Max variables

Bucket Elimination for MMAP

Bucket Elimination

$\mathbf{X}_{M}=\{A, D, E\}$
$\mathbf{X}_{S}=\{B, C\}$
$\max _{\mathbf{X}_{M}} \sum_{\mathbf{X}_{S}} P(\mathbf{X})$

$M A P^{*}$ is the marginal MAP value

Why is MMAP harder?

Inference for probabilistic networks

- Bucket elimination (Dechter chapter 4)
- Belief-updating, P(e), partition function
- Marginals, probability of evidence
- The impact of evidence
- for MPE (\rightarrow MAP)
- for MAP (\rightarrow Marginal Map)
- Induced-Width (Dechter, Chapter 3.4)
- Mixed networks
- Influence diagrams ?

Ex: "oil wildcatter"

- Influence diagram:

- Three actions: test, drill, sales policy
- Chance variables:

P(oil) P(seismic|oil) P(result \| seismic, test) P(produced \| oil, drill) P(market)

- Utilities capture costs of actions, rewards of sale Oil sales - Test cost - Drill cost - Sales cost

Influence Diagrams

Influence diagram $I D=(X, D, P, R)$.

Chance variables $X=X_{1, \ldots}, X_{n}$ over domains.
Decision variables $D=D_{1}, \ldots, D_{m}$
CPT's for chance variables $P_{i}=P\left(X_{i} \mid p a_{i}\right), i=1 . . n$
Reward components $R=\left\{r_{1}, \ldots, r_{j}\right\}$
Utility function $u=\sum_{i} r_{i}$

Common examples

- Markov decision process
- Markov chain state sequence
- Actions "di" influence state transition
- Rewards based on action, new state
- Temporally homogeneous
- Partially observable MDP
- Hidden Markov chain state sequence
- Generate observations
- Actions based on observations

Influence Diagrams

 (continue)A decision rule for D_{i} is a mapping: $\delta i: \Omega p a_{D_{i}} \rightarrow \Omega_{D_{i}}$ where Ω_{s} is the cross product of domains in S.

A policy is a list of decision rules $\Delta=\left(\delta_{1, \ldots}, \delta_{m}\right)$

Task: Find an optimal policy that maximizes the expected utility.

$$
E=\max _{\Delta=\left(\delta 1, \ldots, \delta_{n}\right)} \sum_{x=\left(x 1, \ldots, x_{n}\right)} \prod_{i} P_{i}(x) u(x)
$$

The Car Example

(Howard 1976)

A car buyer needs to buy one of two used cars. The buyer can carry out tests with various costs, and then, decide which car to buy.

T: Test variable (t_{0}, t_{1}, t_{2}) (t_{l} test car $1, t_{2}$ test car 2)
D : the decision of which car to buy, $D \in\{b u y 1$, buy 2$\}$
C_{i} : the quality of car $i, C_{i} \in\left\{q_{1}, q_{2}\right\}$
t_{i} : the outcome of the test on car $i, t_{i} \in\{$ pass, fail, null $\}$. $r(T)$: The cost of testing,
$r\left(C_{1}, D\right), r\left(C_{2}, D\right)$: the reward in buying cars 1 and 2.
The utility is: $r(T)+r\left(C_{1}, D\right)+r\left(C_{2}, D\right)$.
Task: determine decision rules T and D such that:
$E=\max _{T, D} \sum_{t 2, t_{1}, C_{2}, C_{1}} P\left(t_{2}, \mid C_{2}, T\right) P\left(C_{2}\right) P\left(t_{1} \mid C_{1}, T\right)$.

$P\left(C_{1}\right)\left[r(T)+r\left(C_{2}, D\right)+r\left(C_{1}, D\right)\right]$

Bucket Elimination for meu (Algorithm Elim-meu-id)

Input: An Influence diagram ID $=\left\{P_{l}, \ldots, P_{n} r_{l}, \ldots, r_{j}\right\}$ Output: Meu and optimizing policies.

1. Order the variables and partition into buckets.
2. Process buckets from last to first:
$o=T, t_{2}, t_{2}, D, C_{2}, C_{1}$
$\operatorname{bucket}\left(C_{1}\right): P\left(C_{1}\right), P\left(t_{l} \mid C_{1}, T\right), r\left(C_{1}, D\right)$
$\operatorname{bucket}\left(C_{2}\right): P\left(C_{2}\right), P\left(t_{2} \mid C_{2}, T\right), r\left(C_{2}, D\right)$

3. Forward: Assign values in orderiggth 2024

The Bucket Description

Final buckets: (λs or $P s$) utility components (θ 's or r's).

$\operatorname{bucket}\left(C_{l}\right): P\left(C_{l}\right), P\left(t_{l} \mid C_{l}, T\right), r\left(C_{l}, D\right)$ $\operatorname{bucket}\left(C_{2}\right): P\left(C_{2}\right), P\left(t_{2} \mid C_{2}, T\right), r\left(C_{2}, D\right)$ $\operatorname{bucket}(D): \quad \theta_{C_{1}}\left(t_{1}, T, D\right), \theta_{C_{2}}(t 2, T, D)$ bucket $\left(t_{1}\right): \quad \lambda_{C_{1}}\left(t_{1}, T\right), \quad \theta_{D}\left(t_{1}, t_{2}, T\right)$ $\operatorname{bucket}\left(t_{2}\right): \quad \lambda_{C_{2}}\left(t_{2}, T\right), \quad \theta_{t_{1}}\left(t_{2}, T\right)$ $\operatorname{bucket}(T): r(T)$)

Optimizing policies: δ_{T} is argmax of θ_{T} computed in $\operatorname{bucket}(T)$, and $\theta_{D}\left(t_{1}, t_{2}, T\right)$ in $\operatorname{bucket}\left(t_{l}\right)$.

General Graphical Models

Definition 2.2 Graphical model. A graphical model \mathcal{M} is a 4-tuple, $\mathcal{M}=\langle\mathbf{X}, \mathbf{D}, \mathbf{F}, \otimes\rangle$, where:

1. $\mathrm{X}=\left\{X_{1}, \ldots, X_{n}\right\}$ is a finite set of variables;
2. $\mathbf{D}=\left\{D_{1}, \ldots, D_{n}\right\}$ is the set of their respective finite domains of values;
3. $\mathbf{F}=\left\{f_{1}, \ldots, f_{r}\right\}$ is a set of positive real-valued discrete functions, defined over scopes of variables $\mathcal{S}=\left\{S_{1}, \ldots, S_{r}\right\}$, where $\mathbf{S}_{i} \subseteq \mathbf{X}$. They are called local functions.
4. \otimes is a combination operator (e.g., $\otimes \in\left\{\Pi, \sum, \bowtie\right\}$ (product, sum, join)). The combination operator can also be defined axiomatically as in [Shenoy, 1992], but for the sake of our discussion we can define it explicitly, by enumeration.

The graphical model represents a global function whose scope is \mathbf{X} which is the combination of all its functions: $\bigotimes_{i=1}^{r} f_{i}$.

General Bucket Elimination

Algorithm General bucket elimination (GBE)

Input: $\mathcal{M}=\langle\mathbf{X}, \mathbf{D}, \mathbf{F}, \otimes\rangle . F=\left\{f_{1}, \ldots, f_{n}\right\}$ an ordering of the variables, $d=X_{1}, \ldots, X_{n}$; $\mathbf{Y} \subseteq \mathbf{X}$.

Output: A new compiled set of functions from which the query $\Downarrow_{Y} \otimes_{i=1}^{n} f_{i}$ can be derived in linear time.

1. Initialize: Generate an ordered partition of the functions into bucket $_{1}, \ldots$, bucket $_{n}$, where bucket $_{i}$ contains all the functions whose highest variable in their scope is X_{i}. An input function in each bucket $\psi_{i}, \psi_{i}=\otimes_{i=1}^{n} f_{i}$.
2. Backward: For $p \leftarrow n$ downto 1 , do
for all the functions $\psi_{p}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{j}$ in bucket $_{p}$, do

- If (observed variable) $X_{p}=x_{p}$ appears in bucket $_{p}$, assign $X_{p}=x_{p}$ in ψ_{p} and to each λ_{i} and put each resulting function in appropriate bucket.
- else, (combine and marginalize) $\lambda_{p} \leftarrow \Downarrow_{S_{p}} \psi_{p} \otimes\left(\otimes_{i=1}^{j} \lambda_{i}\right)$ and add λ_{p} to the largest-index variable in $\operatorname{scope}\left(\lambda_{p}\right)$.

3. Return: all the functions in each bucket.

Theorem 4.23 Correctness and complexity. Algorithm GBE is sound and complete for its task. Its time and space complexities is exponential in the $w^{*}(d)+1$ and $w^{*}(d)$, respectively, along the order of processing d.

