
Inference for probabilistic networks
(continued)

◼ Bucket elimination 

◼ Belief-updating, P(e), partition function

◼ Marginals, probability of evidence

◼ The impact of evidence

◼ for MPE (→MAP)

◼ for MAP  (→ Marginal Map)

◼ Induced-Width (Dechter 3.4,3.5)
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The Impact of Evidence?
Algorithm BE-bel
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Generating the MPE-tuple
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Inference for probabilistic networks

◼ Bucket elimination 

◼ Belief-updating, P(e), partition function

◼ Marginals, probability of evidence

◼ The impact of evidence

◼ for MPE (→MAP)

◼ for MAP  (→ Marginal Map)

◼ Induced-Width (Dechter 3.4,3.5)
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Finding a Small Induced-Width

◼ NP-complete

◼ A tree has induced-width of ?

◼ Greedy algorithms:
◼ Min width

◼ Min induced-width

◼ Max-cardinality and chordal graphs

◼ Fill-in (thought as the best)

◼ Anytime algorithms
◼ Search-based [Gogate & Dechter 2003]

◼ Stochastic (CVO)   [Kask, Gelfand & Dechter 2010]
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Min-width Ordering

Proposition: algorithm min-width finds a min-width ordering of a graph
 What is the Complexity of MW?  
O(e) slides6 276 2024



Greedy Orderings Heuristics

◼ Min-induced-width

◼ From last to first, pick a node with smallest 
width, then connect parent and remove

◼ Min-Fill

◼ From last to first, pick a node with smallest 
fill-edges

Complexity? O(𝑛3)
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Min-Fill Heuristic

◼ Select the variable that creates the fewest “fill-in” 
edges
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CB
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CB

F

Eliminate B next?
   Connect neighbors
   “Fill-in” = 3: 
    (A,D), (C,E), (D,E)

Eliminate E next?
   Neighbors already connected
   “Fill-in” = 0
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Different Induced-Graphs

A Min-fill ordering

A Miw ordering



Which Greedy Algorithm is Best?

◼ Min-Fill, prefers a node who adds the least 
number of fill-in arcs.

◼ Empirically, fill-in is the best among the 
greedy algorithms (MW,MIW,MF,MC)

◼ Complexity of greedy orderings?

◼ MW is O(e), MIW: O(𝑛3), MF O(𝑛3),  MC is 
O(e+n) (MC: read on your own)
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Inference for probabilistic networks

◼ Bucket elimination (Dechter chapter 4)

◼ Belief-updating, P(e), partition function

◼ Marginals, probability of evidence

◼ The impact of evidence

◼ for MPE (→MAP)

◼ for MAP  (→ Marginal Map)

◼ Influence diagrams ?

◼ Induced-Width (Dechter, Chapter 3.4)
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 Sum-Inference

 Max-Inference

 Mixed-Inference

Marginal Map

◼ NP-hard: exponentially many terms
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Example for MMAP Applications

◼ Haplotype in Family pedigrees

◼ Coding networks

◼ Probabilistic planning

◼ Diagnosis
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Bucket Elimination
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Bucket Elimination for MMAP
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In practice, constrained induced is much 

larger!

exact upper 

bound

Why is MMAP harder?

(Park & Darwiche, 2003)
(Yuan & Hansen, 2009)



Inference for probabilistic networks

◼ Bucket elimination (Dechter chapter 4)

◼ Belief-updating, P(e), partition function

◼ Marginals, probability of evidence

◼ The impact of evidence

◼ for MPE (→MAP)

◼ for MAP  (→ Marginal Map)

◼ Induced-Width (Dechter, Chapter 3.4)

◼ Mixed networks

◼ Influence diagrams ?
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Influence diagram ID = (X,D,P,R).

Influence Diagrams

Chance variables                             over domains.

Decision variables

CPT’s for chance variables

Reward components
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Task: Find an optimal policy that maximizes the expected utility.
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Influence Diagrams
(continue)

A decision rule for     is a mapping:

where       is the cross product of domains in S.

A policy is a list of decision rules
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General Graphical Models
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General Bucket Elimination
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Causal and Probabilistic Reasoning

Slides Set 6: 

Rina Dechter
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Exact Inference Algorithms 
Tree-Decomposition Schemes

(Dechter chapter 5, Darwiche chapter 6-7)



Outline

◼ From bucket-elimination (BE) to bucket-tree elimination (BTE)

◼ From BTE to CTE, Acyclic networks, the join-tree algorithm

◼ Generating join-trees, the treewidth

◼ Examples of CTE for Bayesian network

◼ Belief-propagation on acyclic probabilistic networks (poly-trees) 
and Loopy networks

◼ Conditioning with elimination (Dechter, 7.1, 7.2)
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From BE to Bucket-Tree Elimination(BTE)

D

G

A

B C

F

First, observe the BE operates on a tree.

Second, What if we want the marginal on D?

P(D)?

slides6 276 2024



BTE: Allows Messages Both Ways

D

G

A

B C

F

Initial buckets
+ messages

Output buckets
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𝑃(𝐷) = 

𝑎,𝑏

𝑃(𝐷|𝑎, 𝑏) 𝜋𝐵→𝐷(𝑎, 𝑏)𝑃(𝐹) = 

𝑏,𝑐

𝑃 𝐹 𝑏, 𝑐 𝜋𝐶→𝐹 𝑏, 𝑐 𝜆𝐺→𝐹(𝐹)



BTE

Theorem: When BTE terminates The 
product of functions in each bucket is the 
beliefs of the variables joint with the 
evidence.

elim(i,j) = scope(Bi)– scope(Bj)
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Bucket-Tree Construction From the Graph

1. Pick a (good) variable ordering, d.

2. Generate the induced ordered graph

3. From top to bottom, each bucket of X is mapped to 
pairs (variables, functions) 

4. The variables are the clique of X, the functions are 
those placed in the bucket

5. Connect the bucket of X to earlier bucket of Y if Y is 
the closest node connected to X
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Example: Create bucket tree for ordering A,B,C,D,F,G 



Asynchronous BTE:
Bucket-tree Propagation (BTP)
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Query Answering
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Complexity of BTE/BTP on Trees

This will be extended to acyclic graphical models shortly
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From Buckets to Tree-Clusters

◼ Merge non-maximal buckets into maximal clusters.

◼ Connect  clusters into a tree: connect each cluster to one with which it 
shares a largest subset of variables.

◼ Separators are variable-intersection on adjacent clusters.

F

B,C A,B

A,B

G,F

A,B,C

D,B,A

B,A

A

F,B,C

(A)

D

G

A

B C

F

A super-bucket-tree is an i-map of the Bayesian network

F

B,C

G,F

A,B,C

D,B,AF,B,C

(B)

F

G,F

A,B,C,D,F

(C)

Time exp(3)
Memory exp(2)

Time exp(5)
Memory exp(1)
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u v

x1

x2

xn

𝒎𝒖→𝒗

For max-product
Just replace σ
With max.

Message Passing on a Tree Decomposition

Cluster(u) = 𝜓(𝑢) ∪ {𝑚𝑋1→𝑢
, 𝑚𝑋1→𝑢

, 𝑚𝑋2→𝑢
, … 𝑚𝑋𝑛→𝑢

}

Type equation here.

𝒎𝒖→𝒗 =σ𝑒𝑙𝑖𝑚(𝑢,𝑣) 𝜓 𝑢 ∏𝑟 ∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑢 ,𝑟≠𝑣 𝒎𝒓→𝒖

Elim(u,v) = cluster(u)-sep(u,v)
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Propagation in Both Directions

◼ Messages can propagate both ways and we 
get beliefs for each variable

P(X)

P(Y|X) P(Z|X)

P(T|Y) P(R|Y) P(L|Z) P(M|Z)

)(XmZX

)(XmXZ

)(ZmZM)(ZmZL

)(ZmMZ)(ZmLZ

)(XmYX

)(XmXY

)(YmTY

)(YmYT

)(YmRY

)(YmYR
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Outline

◼ From bucket-elimination (BE) to bucket-tree elimination (BTE)

◼ From BTE to CTE, Acyclic networks, the join-tree algorithm

◼ Generating join-trees, the treewidth

◼ Examples of CTE for Bayesian network

◼ Belief-propagation on acyclic probabilistic networks (poly-trees) 
and Loopy networks

◼ Conditioning with elimination (Dechter, 7.1, 7.2)
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The Idea of Cutset-Conditioning
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Conditioning - the Probability Tree

Complexity of conditioning: exponential time, linear space
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Cycle-Cutset Conditioning
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1-cutset = {A,B,C}, size 3
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Search Over the Cutset (cont)
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• Inference may require too much memory

• Condition on some of the variables
A

C
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G
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Graph
Coloring
problem

2-cutset = {A,B}, size =2slides6 276 2024



The Impact of Observations

Induced graphOrdered graph Ordered conditioned graph



The Idea of Cutset-Conditioning

We observed  that when variables are assigned, connectivity reduces.
The magnitude of saving is reflected through the “conditioned-induced graph”

• Cutset-conditioning exploit this in a systematic way: 
• Select a subset of variables, assign them values, and 
• Solve the conditioned problem by bucket-elimination. 
• Repeat for all assignments to the cutset.

Algorithm VEC
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The Cycle-Cutset Scheme:
Condition Until Treeness

• Cycle-cutset

• i-cutset

• C(i)-size of i-cutset
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Loop-Cutset Conditioning

◼ You condition until you get a polytree

B

CB

F

A

B

CB

F

A=0 A=0 A=0

B

CB

F

A=1 A=1 A=1

P(B|F=0) = P(B, A=0|F=0)+P(B,A=1|F=0)

A=0 A=1

Loop-cutset method is time exponential in loop-cutset size
but linear space. For each cutset we can do BE (belief propagation.)



Loop-Cutset, q-Cutset, cycle-cutset

◼ A loop-cutset is a subset of nodes of a 
directed graph that when removed the 
remaining graph is a poly-tree

◼ A q-cutset is a subset of nodes of an 
undirected graph that when removed 
the remaining graph has an induced-
width of q or less.

◼ A cycle-cutset is a q-cutset such that 
q=1.
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Search Over the Cutset (cont)
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VEC: Variable Elimination with Conditioning;
or, q-cutset lgorithms

◼ VEC-bel:

◼ Identify a q-cutset, C,  of the network

◼ For each assignment to C=c solve the conditioned 
sub-problem by CTE or BTE.

◼ Accumulate probabilities.

◼ Time complexity: 𝑛𝑘𝑐+𝑞+1

◼ Space complexity: 𝑛𝑘𝑞
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Algorithm VEC (Variable-elimination with conditioning)
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What Hybrid Should We Use?

◼ q=1? (loop-cutset?)

◼ q=0? (Full search?)

◼ q=w* (Full inference)?

◼ q in between?

◼ depends… on the graph

◼ What is relation between cycle-cutset
and the induced-width?
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Properties; Conditioning+Elimination
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Tradeoff between w* and q-cutstes
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Generating Join-trees
(Junction-trees); a special type of 
tree-decompositions
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Examples of (Join)-Trees Construction
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