276
 Causal and Probabilistic Reasoning

Rina Dechter, UCI

Linear Structural Causal Models

Slides: Daniel Kumor, Elias Bareinboim
(reading: Primer 3, Causality 5)
slides12, w24

Lecture Outline

1. Linear Regression
2. Introduction to Linear Structural Causal Models
3. Examples of when regression can and cannot be used to find causal effects.
4. Modern algorithmic approaches to identification in linear SCM

Regression

- Predict the value of Y based on X
- Used in Machine Learning too
- How to create a regression line?

O Plot data values of X, Y
O "Fit" them to $y=m x+b$

O The least square regression is the line that minimize the sum of the squared error average $\Sigma(y-b-m x)^{2}$
O Need to find b and m

- What do they represent on the graph?

Regression Coefficient

- $R_{Y X}$ is slope of regression line of Y on X
$m=R_{Y X}=\sigma_{X Y} / \sigma_{X}{ }^{2}$
O $R_{Y X}=R_{X Y}$?
O When is it?
- Slope gives correlation
- Positive number \rightarrow positive correlation
- Negative number \rightarrow negative correlation
- Zero \rightarrow independent or non-linear

$$
\sigma_{X Y} \triangleq E[(X-E(X))(Y-E(Y))]
$$

The covariance $\sigma_{X Y}$ is often normalized to yield the correlation coefficient

$$
\rho_{X Y}=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}
$$

Multiple Regression

o $y=r_{0}+r_{1} \cdot x+r_{2} \cdot z$

- How do we visualize?
- 3d plane
- What happens if we hold x at a value?
- $r_{1} \cdot x$ becomes a constant
- r_{2} is now the $2 d$ slope of slice along X-axis
- What happens if we hold z at a value?
- $r_{2} \cdot z$ becomes a constant
- r_{1} is now the $2 d$ slope of slice along Z-axis
- Symbol for regression coefficient of Y on X ?
- $R_{Y X}$
- Symbol for regression coefficient of Y on X when holding Z constant?
- $R_{Y X . Z}$
- Called partial regression coefficient
- What happens when $R_{Y X}$ is positive and $R_{Y X \cdot Z}$ is negative?

$$
\begin{equation*}
Y=r_{0}+r_{1} X_{1}+r_{2} X_{2}+\cdots+r_{k} X_{k}+\epsilon \tag{1.24}
\end{equation*}
$$

then, regardless of the underlying distribution of $Y, X_{1}, X_{2}, \ldots, X_{k}$, the best least-square coefficients are obtained when ϵ is uncorrelated with each of the regressors $X_{1}, X_{2}, \ldots, X_{k}$. That is,

$$
\operatorname{Cov}\left(\epsilon, X_{i}\right)=0 \quad \text { for } i=1,2, \ldots, k
$$

To see how this orthogonality principle is used to our advantage, assume we wish to compute the best estimate of $X=$ Die 1 given the sum

$$
Y=\operatorname{Die} 1+\operatorname{Die} 2
$$

Writing

$$
\begin{gather*}
X=\alpha+\beta Y+\epsilon \\
E[X]=\alpha+\beta E[Y] \tag{1.25}
\end{gather*}
$$

Further multiplying both sides of the equation by X and taking the expectation gives

$$
\begin{equation*}
E\left[X^{2}\right]=\alpha E[X]+\beta E[Y X]+E[X \epsilon] . \tag{1.26}
\end{equation*}
$$

The orthogonality principle dictates $E[X \epsilon]=0$, and (1.25) and (1.26) yield two equations with two unknowns, α and β. Solving for α and β, we obtain

$$
\begin{aligned}
& \alpha=E(X)-E(Y) \frac{\sigma_{X Y}}{\sigma_{Y}^{2}} \\
& \beta=\frac{\sigma_{X Y}}{\sigma_{Y}^{2}}
\end{aligned}
$$

Lecture Outline

1. Linear Regression

2. Introduction to Linear Structural Causal Models
3. Examples of when regression can and cannot be used to find causal effects.
4. Modern algorithmic approaches to identification in linear SCM

Linear Structural Causal Models

Linear SCM are defined as a system of linear equations representing ground-truth:

$$
Y:=\sum_{i} \lambda_{x_{i} y} X_{i}+\mathcal{E}_{y}
$$

1. All correlations between \mathcal{E} are explicitly specified.
2. X_{i} are the direct causes of Y, and $\lambda_{x_{i} y}$ is the change in Y per X_{i}.
3. WLOG assume normalized data $(\mathrm{E}[X]=0$ and $\mathrm{E}[X X]=1)$ to simplify math
4. Assume $\mathcal{E}_{y} \sim \mathcal{N}$, meaning that the distribution is fully specified by covariance matrix $\Sigma\left(\sigma_{i j}\right)$.

Causal Inference In Linear Systems

Examples:

- What is the effect of birth control use on blood pressure after adjusting for confounders; or the total effect of an after-school study program on test scores;
- What is the direct effect or the unmediated by other variables, of the program on test scores.
- What is the effect of enrollment in an optional work training program on future earnings, when enrollment and earnings are confounded by a common cause (e.g., motivation).
- Continuous variables: We need to model with continuous variables. These traditionally been formulated as linear equation models .
- We will assume linear functions and Normal distributions of errors.

1. Efficient representation
2. Substitutability of expectations for probabilities
3. Linearity of expectations
4. Invariance of regression coefficients

Multivariate Gaussian can be expressed with expectation and covariance on pairs of variables at most. Also conditional probability can be captures by conditional expectation

Non-Parametric to Linear

The only substantive change we are making is that the function f becomes linear:

$$
V_{i} \leftarrow f_{i}\left(p a_{i}, U_{i}\right) \quad \Rightarrow \quad V_{i} \leftarrow \sum_{j \mid V_{j} \in p a_{i}} \lambda_{j i} V_{j}+\mathcal{E}_{i}
$$

1. $\lambda_{j i}$ is called the "Structural Coefficient".
2. Instead of using U_{i}, we rename it to \mathcal{E}_{i} by convention.
3. If we know all $\lambda_{j i}$, we can find the causal effect of V_{j} on V_{i}.

Example

$$
\begin{aligned}
X_{1} & =\varepsilon_{x_{1}} \\
X_{2} & =\varepsilon_{X_{2}} \\
Y & =\lambda_{x_{1} y} X_{1}+\lambda_{x_{2} y} X_{2}+\varepsilon_{y}
\end{aligned}
$$

We can draw the structural coefficients directly on the graph, which then fully specifies the model.

Latent Confounding

The covariance between e_{i} and e_{j} is represented by $e_{i j}$, and is used as the value of a bidirected edge:

$$
e_{x y} \equiv \mathrm{E}\left[e_{x} e_{y}\right]
$$

$e_{x y}$ is unobserved, since it is covariance of latent variables. It is mathematically useful, however, so we draw it on the graph just like structural coefficients.

This is different from graph of non-parametric SCM, where a bidirected edge represents an explicit latent variable.

Linear SCM: Interventions

$$
\mathbf{E}[Y \mid d o(X=x)]=?
$$

Linear SCM: Interventions

$$
\begin{aligned}
X & \xrightarrow{\lambda} \\
\mathrm{E}[Y \mid d o(X=x)] & =\mathbf{E}\left[\lambda x+\mathrm{e}_{y}\right] \\
& =\lambda x+\mathrm{E}\left[\mathrm{e}_{y}\right] \\
& =\lambda x
\end{aligned}
$$

Identification In Linear SCM: The Problem Statement

- Graph: We are assuming that you have a hypothesized causal graph structure. In other words, you think you know what causes what, and which variables have an unknown common cause.
- Observational Data: You have a set of datapoints with measurements of all of the observable variables.
- Goal: Structural Coefficients You do NOT have knowledge of the underlying structural coefficients. These represent the actual causal effects that we want to find.

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right) \\
& \left(x_{2}, y_{2}\right)
\end{aligned}
$$

$$
\left(x_{n}, y_{n}\right)
$$

Connecting Observed with Unobserved

Remember that we assumed $\mathrm{e} \sim N$, meaning that the distribution is fully specified by covariance matrix $\Sigma\left(\sigma_{i j}\right)$.

What happens when we compute the covariance $\sigma_{x y}$?

Connecting Observed with Unobserved

Remember that we assumed $\mathrm{e} \sim N$, meaning that the distribution is fully specified by covariance matrix $\Sigma\left(\sigma_{i j}\right)$.

Remember, we normailize
The mean to 0 and variance to 1

$$
\begin{aligned}
\sigma_{x y} & =\mathbf{E}[X Y] \\
& =\mathbf{E}\left[X\left(\lambda X+\mathrm{e}_{y}\right)\right] \\
& =\mathbf{E}\left[\lambda X X+X e_{y}\right] \\
& =\lambda \mathbf{E}[X X]+\mathbf{E}\left[X e_{y}\right] \\
& =\lambda 1+0 \\
& =\lambda
\end{aligned}
$$

Connecting Observed with Unobserved

Solve for $\sigma_{x y}$ in terms of the structural coefficients λ and $\mathrm{e}_{x y}$

$$
\sigma_{x y}=?
$$

Connecting Observed with Unobserved

Solve for $\sigma_{x y}$ in terms of the structural coefficients λ and $\mathrm{e}_{x y}$

$$
\begin{aligned}
\sigma_{x y} & =\mathbf{E}[X Y] \\
& =\mathbf{E}\left[X\left(\lambda X+e_{y}\right)\right] \\
& =\mathbf{E}\left[\lambda X X+X e_{y}\right] \\
& =\lambda \mathbf{E}[X X]+\mathbf{E}\left[X e_{y}\right] \\
& =\lambda 1+\mathbf{E}\left[X e_{y}\right] \\
& =\lambda 1+\mathbf{E}\left[e_{x} e_{y}\right] \\
& =\lambda+e_{x y}
\end{aligned}
$$

A Curious Property

A Curious Property

$$
\begin{aligned}
\sigma_{x y} & =\mathbf{E}[X Y] \\
& =\mathbf{E}\left[X\left(\lambda_{z y} Z+e_{y}\right)\right] \\
& =\mathbf{E}\left[\lambda_{z y} X Z+X e_{y}\right] \\
& =\lambda_{z y} \mathbf{E}[X Z]+\mathbf{E}\left[X e_{y}\right] \quad \text { we replace } x \text { with e_x } \\
& =\lambda_{z y} \mathbf{E}[X Z] \\
& =\lambda_{z y} \mathbf{E}\left[X\left(\lambda_{x z} X+e_{z}\right)\right] \\
& =\lambda_{z y} \lambda_{x z} \mathbf{E}[X X]+\lambda_{z y} \mathbf{E}\left[X e_{z}\right] \\
& =\lambda_{z y} \lambda_{x z}
\end{aligned}
$$

A Curious Property

$$
\sigma_{x y}=?
$$

A Curious Property

$$
\begin{aligned}
\sigma_{x y} & =\mathrm{E}[X Y] \\
& =\mathrm{E}\left[X\left(\lambda_{z y} Z+e_{y}\right)\right] \\
& =\mathbf{E}\left[\lambda_{z y} X Z+X e_{y}\right] \\
& =\lambda_{z y} \mathrm{E}[X Z]+\mathbf{E}\left[X e_{y}\right] \\
& =\lambda_{z y} \mathrm{E}[X Z] \\
& =\lambda_{z y} \mathrm{E}\left[X\left(\lambda_{x z} X+e_{z}\right)\right] \\
& =\lambda_{z y} \lambda_{x z} \mathrm{E}[X X]+\lambda_{z y} \mathrm{E}\left[X e_{z}\right] \\
& =\lambda_{z y} \lambda_{x z}+\lambda_{z y} e_{x z}
\end{aligned}
$$

Paths \& Covariances

There seems to be a relationship between covariances and paths in the graph.

$$
\begin{aligned}
\sigma_{x y} & =\mathbf{E}[X Y]=\mathbf{E}\left[X\left(\lambda_{x y} X+e_{y}\right)\right] \\
& =\lambda_{x y} \mathbf{E}[X X]+\mathbf{E}\left[X e_{y}\right] \\
& =\lambda_{x y}+\mathbf{E}\left[\left(\lambda_{z x} Z+e_{x}\right) e_{y}\right] \\
& =\lambda_{x y}+\lambda_{z x} \mathbf{E}\left[e_{z} e_{y}\right]+\mathbf{E}[\text { e } x, \text { e_ } y] \\
& =\lambda_{x y}+\lambda_{z x} e_{z y}
\end{aligned}
$$

Paths \& Covariances

There seems to be a relationship between covariances and paths in the graph.

$$
\sigma_{x y}=\lambda_{x y}+\lambda_{z x} e_{z y}
$$

The resulting terms correspond to paths between X and Y in the causal graph

Treks \& Wright's Rule

The covariance between variables X and Y is the sum of paths between them in the causal graph, i.e. any non-self-intersecting path without colliding arrowheads $(\rightarrow \leftarrow)$:

$$
x \leftarrow \ldots \leftrightarrow \ldots \rightarrow y \quad x \leftarrow \ldots \leftarrow w \rightarrow \ldots \rightarrow y \quad x \leftarrow \ldots \leftarrow y \quad x \rightarrow \ldots \rightarrow y
$$

$$
\begin{gathered}
\sigma_{x y}=\left(X \xrightarrow{\lambda_{x y}} Y\right)+\left(X \stackrel{\lambda_{z x}}{\leftrightarrows} z \stackrel{\theta_{z z}}{\hookrightarrow} Y\right) \\
\sigma_{x y}=\lambda_{x y}+\lambda_{z x} e_{z y}
\end{gathered}
$$

Reading Covariances off the Graph

The covariance between variables X and Y is the sum of open paths between them in the causal graph, so paths with no colliding arrowheads $(\rightarrow \leftarrow)$:

$$
x \leftarrow \ldots \leftrightarrow \ldots \rightarrow y \quad x \leftarrow \ldots \leftarrow w \rightarrow \ldots \rightarrow y \quad x \leftarrow \ldots \leftarrow y \quad x \rightarrow \ldots \rightarrow y
$$

$$
\sigma_{x y}=
$$

Reading Covariances off the Graph

The covariance between variables X and Y is the sum of open paths between them in the causal graph, so paths with no colliding arrowheads $(\rightarrow \leftarrow)$:

$$
x \leftarrow \ldots \leftrightarrow \ldots \rightarrow y \quad x \leftarrow \ldots \leftarrow w \rightarrow \ldots \rightarrow y \quad x \leftarrow \ldots \leftarrow y \quad x \rightarrow \ldots \rightarrow y
$$

$$
\sigma_{x y}=\quad \lambda_{x y}
$$

Reading Covariances off the Graph

The covariance between variables X and Y is the sum of open paths between them in the causal graph, so paths with no colliding arrowheads $(\rightarrow \leftarrow)$:

$$
x \leftarrow \ldots \leftrightarrow \ldots \rightarrow y \quad x \leftarrow \ldots \leftarrow w \rightarrow \ldots \rightarrow y \quad x \leftarrow \ldots \leftarrow y \quad x \rightarrow \ldots \rightarrow y
$$

$$
\begin{array}{rlr}
\sigma_{x y}= & & \lambda_{x y} \\
& + & \lambda_{w x w y} \\
& + &
\end{array}
$$

Reading Covariances off the Graph

The covariance between variables X and Y is the sum of open paths between them in the causal graph, so paths with no colliding arrowheads $(\rightarrow \leftarrow)$:

$$
x \leftarrow \ldots \leftrightarrow \ldots \rightarrow y \quad x \leftarrow \ldots \leftarrow w \rightarrow \ldots \rightarrow y \quad x \leftarrow \ldots \leftarrow y \quad x \rightarrow \ldots \rightarrow y
$$

$$
\begin{array}{rlr}
\sigma_{x y}= & \lambda_{x y} \\
& +\quad \lambda_{w x} \quad \\
& +\lambda_{z x} \lambda_{w z} e_{w y}
\end{array}
$$

Wright's Rules (1921)

Wright's Rules [9]

$$
\begin{aligned}
\sigma_{x y}= & \text { Sum of products of path coefficients } \\
& \text { along all open paths between } X \text { and } Y
\end{aligned}
$$

- $\sigma_{x y}$ is only 0 when X and Y are d-separated.
- If there is an edge $X \rightarrow Y$ in the model, then
$\sigma_{x y}=\alpha+$ other paths between x and y .
Thus $\sigma_{x y}=\alpha$ if X and Y are d-separated in G_{a} (graph where edge α is removed)
- Wright's rules are defined for acyclic models

One More Example

$$
\sigma_{x y}=?
$$

One More Example

$$
\sigma_{x y}=\left(\lambda_{x z}+e_{x z}\right) \lambda_{z y}+\lambda_{w x} \lambda_{w v} \lambda_{v y}
$$

Testing D-Separation With Regression

Regression is deeply related to D-separation:

$$
(X \Perp Y \mid Z) \quad \text { iff } \quad r_{y \times z}=0
$$

We can test d-separation by performing the following regression:

$$
Y=\beta X+\alpha Z
$$

If $\beta=0$, we know that Z d-separates X from Y. If $\beta \neq 0$, we know that $(X \not \perp Y \mid Z)$.

Be Careful With Regression

Remember: alpha, beta are regression Coefficients and lambdas are causal

Be Careful With Regression

Remember: alpha, beta are regression Coefficients and lambdas are causal

Be Careful With Regression

$$
\begin{aligned}
& Y=\beta X+\alpha W+\gamma Z+e \\
& \beta=\lambda_{x y}-\frac{\epsilon_{x z} \epsilon_{z y}}{1-\lambda_{w x}^{2}-\epsilon_{x z}^{2}}
\end{aligned}
$$

Be Careful With Regression

$$
\begin{aligned}
& \text { (Z) } \\
& Y=\beta X+\alpha W+e \\
& \beta=\lambda_{x y}
\end{aligned}
$$

How to Use Regression Correctly?

Single-Door Criterion

We want to find $\lambda_{x y}$.

$$
r_{y x}=\sigma_{x y}=? ?
$$

Single-Door Criterion

We want to find $\lambda_{x y}$. How can it be isolated?

$$
r_{y x}=\sigma_{x y}=\lambda_{x y}+\lambda_{z x} e_{z y}
$$

Single-Door Criterion: Multiple Regression

What if wefind the least squares regression parameters of this model?

$$
Y=\alpha X+\beta Z+e
$$

$$
\begin{aligned}
& \alpha=\lambda_{x y} \\
& \beta=\mathrm{e}_{z y}
\end{aligned}
$$

$3 / 3 / 2024$

Single-Door Criterion

Theorem Single-Door (Identification of Direct Effects) [Causality, Pearl]

Let G be any path diagram in which λ is the path coefficient associated with the link $X \rightarrow Y$, and let G_{λ} denote the diagram that results when $X \rightarrow Y$ is removed from G. The coefficient λ is identifiable if there exists a set Z such that

1. Z contains no descendants of Y, and
2. Z D-separates X from Y in G_{λ}

Moreover, if Z satisfies these conditions, $\lambda=r_{y x z}$

Here, we use the notation $r_{y x z}$ to be the regression coefficient of x when performing regression y on x and z .

Example

Example

$$
\begin{aligned}
& \lambda_{b y}=r_{y b a} \\
& \lambda_{a y}=?
\end{aligned}
$$

Example

$$
\lambda_{x y}=?
$$

All paths between X and Y are blocked in G_lambax,y

$$
\lambda_{w z}=?
$$

Back-Door Criterion

Theorem Back-Door (Identification of Total Effects) [8]

For any two variables X and Y in a causal diagram G, the total effect of X on Y is identifiable if there exists a set of measurements Z such that

1. No member of Z is a descendant of X, and
2. Z d-separates X from Y in the subgraph $G_{\underline{X}}$

Moreover, if Z satisfies these conditions, the total effect of X on Y is given by $r_{y x z}$
Remember that $G_{\underline{x}}$ means delete all edges outgoing from X.

Why no Descendants of X ?

Example

What is the total effect of X on Y ?

Example

What is the total effect of X on Y ? $\quad \lambda_{x z 1} \lambda_{z 1 y}+\lambda_{x y}$
Can we find it using the back-door?

Example

What is the total effect of X on Y ? $\quad \lambda_{x z 1} \lambda_{z 1 y}+\lambda_{x y}$
Can we find it using the back-door? $r_{y x z z}$

Algorithmic Identification Methods

3/3/2024

The Equations of Linear Identification

The Equations of Linear Identification

The General Idea of Identification

Given a SCM and an observational dataset, is it possible to uniquely determine $\lambda_{x y}$? Can $\lambda_{x y}$ be solved in terms of σ ?

$$
\begin{aligned}
& \sigma_{x z}=\lambda_{z x} \\
& \sigma_{x y}=\lambda_{x y}+\lambda_{z x} e_{z y} \\
& \sigma_{z y}=\lambda_{z x} \lambda_{x y}+\mathrm{e}_{z y}
\end{aligned}
$$

The σ are known, the λ, unknown

The General Idea of Identification

Given an SCM and an observational dataset, is it possible to uniquely determine $\lambda_{x y}$? Can $\lambda_{x y}$ be solved in terms of σ ?

$$
\begin{aligned}
& \sigma_{x z}=\lambda_{z x} \\
& \sigma_{x y}=\lambda_{x y}+\lambda_{z x} e_{z y} \\
& \sigma_{z y}=\lambda_{z x} \lambda_{x y}+\mathrm{e}_{z y}
\end{aligned}
$$

Know the value $\lambda_{z x}=\sigma_{x z}$

The General Idea of Identification

Given an SCM and an observational dataset, is it possible to uniquely determine $\lambda_{x y}$? Can $\lambda_{x y}$ be solved in terms of σ ?

$$
\begin{aligned}
& \sigma_{x z}=\lambda_{z x} \\
& \sigma_{x y}=\lambda_{x y}+\sigma_{x z} e_{z y} \\
& \sigma_{z y}=\sigma_{x z} \lambda_{x y}+\mathrm{e}_{z y}
\end{aligned}
$$

Substitute in other equations

The General Idea of Identification

Given an SCM and an observational dataset, is it possible to uniquely determine $\lambda_{x y}$? Can $\lambda_{x y}$ be solved in terms of σ ?

$$
\begin{aligned}
& \sigma_{x z}=\lambda_{z x} \\
& \sigma_{x y}=\lambda_{x y}+\sigma_{x z} e_{z y} \\
& \sigma_{z y}=\sigma_{x z} \lambda_{x y}+\mathrm{e}_{z y}
\end{aligned}
$$

2 full-rank* linear equations in two unknowns.

A Familiar Graph

A Familiar Graph

A Familiar Graph

Is it possible to solve for $\lambda_{x y}$ here?

$$
\sigma_{x y}=\lambda_{x y}+\mathrm{e}_{x y}
$$

One equation in two unknowns: infinite number of values of $\lambda_{x y}$ and $\mathrm{e}_{x y}$ give same covariance matrix!

Another Possibility

$$
\begin{array}{ll}
\sigma_{x w}=\lambda_{x w}+\mathrm{e}_{x w} & \sigma_{w z}=\lambda_{x w} \lambda_{x z}+\lambda_{x z} e_{x w}+\lambda_{x w} e_{x z} \\
\sigma_{x z}=\lambda_{x z}+\mathrm{e}_{x z} & \sigma_{w y}=\lambda_{x w} \lambda_{x y}+\lambda_{x w} e_{x y}+\lambda_{x y} e_{x w} \\
\sigma_{x y}=\lambda_{x y}+\mathrm{e}_{x y} & \sigma_{z y}=\lambda_{x z} \lambda_{x y}+\lambda_{x z} e_{x y}+\lambda_{x y} e_{x z}
\end{array}
$$

Another Possibility

$$
\begin{aligned}
0= & \left(\sigma_{x w} \sigma_{x z}-\sigma_{w z}\right) \lambda_{x y}^{2}+2\left(\sigma_{x y} \sigma_{w z}-\sigma_{x w} \sigma_{x z} \sigma_{x y}\right) \lambda_{x y} \\
& +\left(\sigma_{y w} \sigma_{x z} \sigma_{x y}+\sigma_{y z} \sigma_{x w} \sigma_{x y}-\sigma_{x y}^{2} \sigma_{w z}-\sigma_{y z} \sigma_{y w}\right)
\end{aligned}
$$

Another Possibility

The 3 Cases of Linear ID

- Identifiable - Single value of $\lambda_{x y}$ consistent with observational data
- Not Identifiable - Infinite values of $\lambda_{x y}$ consistent with observations
- Finite ID - A finite number of possible values for $\lambda_{x y}$ consistent with data

Identification in Linear SCM

Given an SCM and an observational dataset, is it possible to uniquely determine $\lambda_{x y}$? Can $\lambda_{x y}$ be solved in terms of σ ?

$$
\begin{aligned}
\sigma_{w z} & =\lambda_{w z} \\
\sigma_{w x} & =\lambda_{w x}+\lambda_{w z}\left(\lambda_{z x}+\mathrm{e}_{z x}\right) \\
\sigma_{z x} & =\lambda_{z x}+e_{z x}+\lambda_{w z} \lambda_{w x} \\
\sigma_{w y} & =\left(\lambda_{w x}+\lambda_{w z}\left(\lambda_{z x}+{ }_{z x}\right)\right) \lambda_{x y}+e_{w y} \\
\sigma_{z y} & =\left(\lambda_{z x}+e_{z x}+\lambda_{w z} \lambda_{w x}\right) \lambda_{x y}+\lambda_{w z} \\
e_{w y} & \sigma_{x y}=\left(\lambda_{w z} \lambda_{z x}+\lambda_{w x}\right) e_{w y}+\lambda_{x y}
\end{aligned}
$$

Identification in Linear SCM

Given an SCM and an observational dataset, is it possible to uniquely determine $\lambda_{x y}$? Can $\lambda_{x y}$ be solved in terms of σ ?

$$
\begin{aligned}
\sigma_{w z} & =\lambda_{w z} \\
\sigma_{w x} & =\lambda_{w x}+\lambda_{w z}\left(\lambda_{z x}+e_{z x}\right) \\
\sigma_{z x} & =\lambda_{z x}+e_{z x}+\lambda_{w z} \lambda_{w x} \\
\sigma_{w y} & =\left(\lambda_{w x}+\lambda_{w z}\left(\lambda_{z x}+e_{z x}\right)\right) \lambda_{x y}+e_{w y} \\
\sigma_{z y} & =\left(\lambda_{z x}+e_{z x}+\lambda_{w z} \lambda_{w x}\right) \lambda_{x y}+\lambda_{w z} e_{w y} \\
\sigma_{x y} & =\left(\lambda_{w z} \lambda_{z x}+\lambda_{w x}\right) e_{w y}+\lambda_{x y}
\end{aligned}
$$

Computer algebra approach doubly exponential in \# params [2, 6$]$

Identification in Linear SCM

The goal of an ID algorithm is to efficiently find patterns reflecting solvable subsystems of equations/series of substitutions. This is approached through graphical criteria.

$$
\begin{aligned}
\sigma_{w z} & =\lambda_{w z} \\
\sigma_{w x} & =\lambda_{w x}+\lambda_{w z}\left(\lambda_{z x}+e_{z x}\right) \\
\sigma_{z x} & =\lambda_{z x}+e_{z x}+\lambda_{w z} \lambda_{w x} \\
\sigma_{w y} & =\left(\lambda_{w x}+\lambda_{w z}\left(\lambda_{z x}+{ }_{z x}\right)\right) \lambda_{x y}+e_{w y} \\
\sigma_{z y} & =\left(\lambda_{z x}+e_{z x}+\lambda_{w z} \lambda_{w x}\right) \lambda_{x y}+\lambda_{w z} e_{w y} \\
\sigma_{x y} & =\left(\lambda_{w z} \lambda_{z x}+\lambda_{w x}\right) e_{w y}+\lambda_{x y}
\end{aligned}
$$

The Starting Point: Instrumental Variables

Suppose that an independent doctor's recommendation was added to the original drug/biomarker dataset, which influences how much drug patients take.

The Starting Point: Instrumental Variables

Suppose that an independent doctor's recommendation was added to the original drug/biomarker dataset, which influences how much drug patients take.

The Starting Point: Instrumental Variables

Suppose that an independent doctor's recommendation was added to the original drug/biomarker dataset, which influences how much drug patients take.

The Starting Point: Instrumental Variables

Suppose that an independent doctor's recommendation was added to the original drug/biomarker dataset, which influences how much drug patients take.

The Starting Point: Instrumental Variables

Suppose that an independent doctor's recommendation was added to the original drug/biomarker dataset, which influences how much drug patients take.

A variable Z is an IV (p. 248 [Causalityl) for $\lambda_{x y}$ from X to Y if

- Z is d-separated from Y in the subgraph $G_{\lambda_{x y}}$,
- Z is not d-separated from X in $G_{\lambda_{x y}}$

Conditional Instrumental Variables

Conditional IV Definition [3]

A variable Z qualifies as a conditional IV given a set W for structural coefficient $\lambda_{x y}$ from X to Y if

- W contains only non-descendants of Y
- W d-separates Z from Y in the subgraph $G_{\lambda_{x y}}$
- W does not d-separate Z from X in $G_{\lambda_{x y}}$

IV in Practice

- Goal: Estimate effect of tutoring program on GPA
- The relationship between attending the tutoring program and GPA may be confounded: students attending the program may care more about their grades or may be struggling with their work.
- If students are assigned dormitories at random, the proximity of the dorm to the tutors is a natural candidate instrumental variable

IV in Practice

What if the tutoring program is located in the college library? In that case, Proximity may also cause students to spend more time at the library, which in turn improves their GPA

IV in Practice

Now, suppose the student's "natural ability" affects his or her number of hours in the library as well as his or her GPA.

IV in Practice

Finally, suppose that Library Hours does not actually affect GPA because students who do not study in the library simply study elsewhere

Summary on direct and total effects in SEM

Regression is essential for identification and causal effect computation.
To estimate causal effect we need to do a particular regression and specify:

What variables should be included
Which coefficient we are interested in.
As long as we have a Markovian system every structural parameter can be identified this way. We can use various regression equations. But when some variables are not measurable or errors are correlated G_alpha can be used.

In nonlinear systems, on the other hand, the direct effect is defined through expressions such as (3.18), or $D E=E[Y \mid \operatorname{do}(x, z)]-E[Y \mid \operatorname{do}(x, z)$
where $Z=z$ represents a specific stratum of all other parents of Y (besides X).
Even when the identification conditions are satisfied, and we are able to reduce the $d o($) operators (by adjustments) to ordinary conditional expectations, the result will still depend on the specific values of x, x, and z.

Moreover, the indirect effect cannot be given a definition in terms as do-expressions, since we cannot disable the capacity of Y to respond to X by holding variables constant. Nor can the indirect effect be defined as the difference between the total and direct effects, since differences do not faithfully reflect operations in non-linear systems.

References

1 https:
//en.wikipedia.org/wiki/Instrumental variables estimation\#Selecting suitable instruments. Accessed: 2017-11-1.

2 M. Bardet. On the Complexity of a grobner Basis Algorithm. page 8, 2002.
3 C. Brito and J. Pearl. Generalized instrumental variables. In Proceedings of the Eighteenth conference on Uncertainty in artificial intelligence, pages 85-93, 2002.

4 B. Chen, J. Pearl, and E. Bareinboim. Incorporating knowledge into structural equation models using auxiliary variables. In Proceedings of the 25th International Joint Conference on Artificial Intelligence, pages 3577-3583, 2016.
5 C. Cinelli, D. Kumor, B. Chen, J. Pearl, and E. Bareinboim. Sensitivity analysis of linear structural causal models. In Proceedings of the 36th International Conference on Machine Learning, volume 97, pages 12521261, Long Beach, CA, 2019.

6 L. D. Garcia-Puente, S. Spielvogel, and S. Sullivant. Identifying Causal Effects with Computer Algebra. page 8, 2010.

3/3/2024

7 D. Kumor, B. Chen, and E. Bareinboim. Efficient identification in linear structural causal models with instrumental cutsets. In Advances in Neural Information Processing Systems 32, pages 12477-12486, Vancouver, Canada, 2019.

8 J. Pearl. Causality: models, reasoning and inference. 2003.
9 S. Wright. Correlation and causation. Journal of agricultural research, 20(7):557-585, 1921.
10 C. Zhang, B. Chen, and J. Pearl. A simultaneous discover-identify approach to causal inference in linear models. In Proceedings of the Thirty-fourth AAAI Conference on Artificial Intelligence, 2020.

3/3/2024

