Markov Equivalence in Cyclic Directed Graphs

authored by Tom Claassen, Joris Mooij

Arushi Arora, CS276

Outline

1

Introduction

Definitions, notations, terminology

2 Ancestral Perspective

3 Markov Equivalence

"[n]ew procedure to establish Markov equivalence between directed graphs that may or may not contain cycles under the d-separation criterion...based on the Cyclic Equivalence Theorem...rephrased from an ancestral perspective"

- need to handle feedback cycles in learning algorithms for real world causal discovery
- G1 and G2 are said to be d-separation (Markov) equivalent iff every d-separation in G1 also holds in G2 and vice versa
 - Polynomial time algorithm for deciding Markov equivalence of directed cyclic graphs (Richardson, 1997)
 - Linear complexity for sparse graphs (Claassen and Bucur, 2022)

- A node Z is a *collider* on a path if the subpath is of the form X → Z ← Y
 - Otherwise, Z is a *noncollider*
- X is *d-connected* to Y given Z iff there is an x, y such that there is a path between X and Y on which every noncollider is not in Z and every collider is an ancestor of Z
 - Otherwise, X and Y are *d-separated* given Z

- Strongly connected component is a maximal set of vertices where every vertex is reachable via a directed path from every other vertex in the set
- Two nodes are *virtually adjacent* iff there is no edge between A and B but they have a common child C which is an ancestor of A or B
 - Two nodes connected by virtual edge cannot be d-separated by any set of nodes

- Sequence of vertices where all neighboring nodes in the sequence are (virtually) adjacent in the graph is called an *itinerary*
 - Itinerary is *uncovered* if none of the nodes are (virtually) adjacent to each other except for the ones that occur consecutively

- Triple (A, B, C) forms *conductor* if (A, B, C) is an itinerary and B is an ancestor of A and/or C
 - A (non)conductor is *unshielded* if A and C are not (virtually) adjacent
- A nonconductor triple (A, B, C) is a *perfect nonconductor* if B is also a descendant of a common child of A and C

- Triples (X_0, X_1, X_2) and (X_{n-1}, X_n, X_{n+1}) are *mutually* exclusive conductors w.r.t an itinerary if $(X_0...X_{n+1})$ is a sequence of vertices such that:
 - Each consecutive triple along the itinerary is a conductor
 - \circ All nodes X_1 to X_n are ancestors of each other, but not ancestors of either X_0 or X_{n+1}

- Cyclic Equivalence Theorem (CET) conditions:
 - Same (virtual) adjacencies
 - Same unshielded conductors
 - Same unshielded perfect nonconductors
 - M.E. conductors (A, B, C) and (X, Y, Z) on some uncovered itinerary in G1 iff they are also M.E. conductors on some uncovered itinerary in G2

- Cyclic Equivalence Theorem (CET) conditions (cont'd):
 - Unshielded imperfect nonconductors (A, X, B) and (A, Y, B) of G1 and G2, then X is an ancestor of Y in G1 iff X is an ancestor of Y in G2
 - M.E. conductors on uncovered itinerary (A, B, C) and (X, Y, Z) and unshielded imperfect nonconductor (A, M, Z), then M is a descendant of B in G1 iff M is a descendant of B in G2

- Cyclic Partial Ancestral Graph (CPAG)
 - G1 and G2 are Markov equivalent iff the algorithm (Richardson, 1996) outputs the same CPAG for both graphs
 - Algorithm is O(n⁷) and d-separation complete

- Creating a simpler set of rules that directly correspond to features in the CPAG
- Cyclic Maximal Ancestral Graph (CMAG)
 - Edge between every distinct pair of vertices iff they can't be d-separated by any subset of vertices
 - Tail mark X –* Y iff there is a directed path from X to Y in G; otherwise, arrowhead mark X \leftarrow * Y
 - Every v-structure X → Z ← Y where Z is not a descendant of a common child of X and Y in G is represented by a (dashed) underline X → Z ← Y (virtual v-structures)

- Mapping of elements in CET to ancestral counterpart
 - Virtual adjacencies → edges
 - \circ Itineraries \rightarrow paths
 - Unshielded conductors + standard unshielded noncolliders
 - Unshielded nonconductors → v-structures
 - Unshielded imperfect nonconductors -> virtual v-structures

- CMAG M has a *u-structure*, quadruple of distinct nodes (X, Z, Z', Y) if X → Z and Z' ← Y are in M, Z' is part of SCC(Z) and there is an uncovered path (X, Z...Z', Y) in M where all intermediate nodes are also in SCC(Z)
 - Similar to a v-structure but central collider replaced by uncovered path through SCC
 - Not explicitly recorded in CMAG
- Triple of distinct nodes (X, Z, Y) is virtual collider triple iff (X, Z, Y) is virtual v-structure or there is some Z' in SCC(Z) such that either (X, Z, Z', Y) or (X, Z', Z, Y) is u-structure

- Restating CET in terms of CMAGs
 - CMAGs M1 and M2 are Markov equivalent iff
 - Same skeleton
 - Same v-structures
 - Same virtual collider triples
 - If (A, B, C) is a virtual collider triple and (A, D, C) is virtual v-structure, B is an ancestor of D in M1 iff B is an ancestor of D in M2

Algorithm 1 Cyclic-Graph-to-CMAG

Input: directed cyclic graph G over nodes V Output: CMAG M, SCCs, $SCC \leftarrow Get_StronglyConnComps(\mathcal{G})$ part 1: CMAG rules (i) + (ii)for all $X \in \mathbf{V}$ do $\mathbf{Z} \leftarrow pa_{\mathcal{G}}(X)$ $\mathbf{Z}_{cuc} \leftarrow \mathbf{Z} \cap SCC(X)$ $\mathbf{Z}_{acy} \leftarrow \mathbf{Z} \smallsetminus \mathbf{Z}_{cyc}$ add all arcs $\mathbf{Z}_{acu} \longrightarrow \mathbf{Z}_{cuc} \cup \{X\}$ to \mathcal{M} add all undirected edges $\mathbf{Z}_{cuc} - \mathbf{Z}_{cuc} \cup \{X\}$ to \mathcal{M} end for part 2: CMAG rule (iii) for all $X \in \mathbf{V}$: $|SCC(X)| \ge 2$ do $\mathbf{Z} \leftarrow pa_{\mathcal{M}}(X)$ for all non-adjacent pairs $\{Z_i, Z_j\} \subseteq \mathbf{Z}$ do if $\{Z_i, Z_i\} \notin adj_{\mathcal{G}}(X)$ then if $X \notin de_{\mathcal{G}}(ch_{\mathcal{G}}(Z_i) \cap ch_{\mathcal{G}}(Z_i))$ then mark virtual v-structure (Z_i, X, Z_j) in \mathcal{M} end for end for

 Derive consistent CPAG that uniquely defines equivalence class of cyclic directed graph without d-separation tests via intermediate CMAG representation

Algorithm 2 Graph-to-CPAG

Input: directed cyclic graph G over nodes V, Output: CPAG \mathcal{P} , $(\mathcal{M}, SCC) \leftarrow Cyclic-Graph-to-CMAG(\mathcal{G})$ part 1: new-CET rules (i)-(iii) $\mathcal{P} \leftarrow \text{skeleton of } \mathcal{M} \text{ with all } \circ - \circ \text{ edges}$ $\mathcal{P} \leftarrow \text{copy all (virtual) } v\text{-structures from } \mathcal{M}$ for all $X \circ - \circ Z$ in $\mathcal{P}, X \longrightarrow Z$ in $\mathcal{M}, |SCC(Z)| \ge 2$ do if $\exists \langle X, Z, Z', Y \rangle$ as *u*-structure in \mathcal{M} then orient $X \longrightarrow Z$ in \mathcal{P} $\{Lemma 2\}$ end for part 2: new-CET rule (iv) for all virtual v-structures (X, Z, Y) in \mathcal{P} do for all not fully oriented edges Z * - * W in \mathcal{P} do if (X, W, Y) is virtual collider triple then copy edge Z * - *W from \mathcal{M} to \mathcal{P} end if end for end for

- Derive consistent CPAG that uniquely defines equivalence class of cyclic directed graph without d-separation tests via intermediate CMAG representation
- G1 is Markov equivalent to G2 iff CPAG(G1) = CPAG(G2)

- O(N+Nd) to find SCC, loop over N vertices comparing d² parents
 O(Nd²)
- Initializing skeleton and virtual v-structures
 - O(Nd²)
- Loop over O(Nd) edges and establish connectedness in O(Nd) steps for u-structures
 - O(N²d²)
- Loop over v-structures considering links to d other edges while testing for connectedness
 - O(N²d³)

- Overall time complexity is O(N²d³) or O(N⁵) worst case arbitrary density
 - Significant improvement over the previous $O(N^7)$

Evaluation

 Scaling behavior of original (magenta) and new CPAG (blue/green) as a function of graph size for densities of 3.0, 5.0

Evaluation

 Time per stage for original vs new CPAG from graph algorithms

Conclusion

- Faster and more efficient procedure to obtain CPAG from arbitrary directed graph
 - Used to establish Markov equivalence

Thanks!