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- Claassen, Mooij

“[n]ew procedure to establish Markov equivalence between 
directed graphs that may or may not contain cycles under 
the d-separation criterion…based on the Cyclic Equivalence 

Theorem…rephrased from an ancestral perspective”



● need to handle feedback cycles in learning 
algorithms for real world causal discovery 

● G1 and G2 are said to be d-separation (Markov) 
equivalent iff every d-separation in G1 also holds in 
G2 and vice versa

○ Polynomial time algorithm for deciding 
Markov equivalence of directed cyclic graphs 
(Richardson, 1997)

○ Linear complexity for sparse graphs  (Claassen 
and Bucur, 2022)
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● A node Z is a collider on a path if the subpath is of 
the form X → Z ← Y

○ Otherwise, Z is a noncollider

● X is d-connected to Y given Z iff there is an x, y such 
that there is a path between X and Y on which every 
noncollider is not in Z and every collider is an 
ancestor of Z

○ Otherwise, X and Y are d-separated given Z
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● Strongly connected component is a 
maximal set of vertices where every vertex 
is reachable via a directed path from every 
other vertex in the set

● Two nodes are virtually adjacent iff there is 
no edge between A and B but they have a 
common child C which is an ancestor of A 
or B

○ Two nodes connected by virtual edge 
cannot be d-separated by any set of 
nodes
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● Sequence of vertices where all neighboring nodes 
in the sequence are (virtually) adjacent in the graph 
is called an itinerary 

○ Itinerary is uncovered if none of the nodes are 
(virtually) adjacent to each other except for the 
ones that occur consecutively
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● Triple (A, B, C) forms conductor if (A, B, C) is an 
itinerary and B is an ancestor of A and/or C

○ A (non)conductor is unshielded if A and C are 
not (virtually) adjacent

● A nonconductor triple (A, B, C) is a perfect 
nonconductor if B is also a descendant of a 
common child of A and C
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● Triples (X0, X1, X2) and (Xn-1, Xn, Xn+1) are mutually 
exclusive conductors w.r.t an itinerary if (X0…Xn+1) is a 
sequence of vertices such that:

○ Each consecutive triple along the itinerary is a 
conductor

○ All nodes X1 to Xn are ancestors of each other, 
but not ancestors of either X0 or Xn+1 
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Introduction

(A, D, F) and (D, F, B) → M.E. conductors on an 
uncovered itinerary (A, D, F, B)



● Cyclic Equivalence Theorem (CET) conditions:

○ Same (virtual) adjacencies

○ Same unshielded conductors

○ Same unshielded perfect nonconductors

○ M.E. conductors (A, B, C) and (X, Y, Z) on some 
uncovered itinerary in G1 iff they are also M.E. 
conductors on some uncovered itinerary in G2
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● Cyclic Equivalence Theorem (CET) conditions 
(cont’d):

○ Unshielded imperfect nonconductors (A, X, B) 
and (A, Y, B)  of G1 and G2, then X is an ancestor 
of Y in G1 iff X is an ancestor of Y in G2

○ M.E. conductors on uncovered itinerary (A, B, C) 
and (X, Y, Z) and unshielded imperfect 
nonconductor (A, M, Z), then M is a descendant 
of B in G1 iff M is a descendant of B in G2
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● Cyclic Partial Ancestral Graph (CPAG)

○  G1 and G2 are Markov equivalent iff the algorithm 
(Richardson, 1996) outputs the same CPAG for both graphs

■ Algorithm is O(n7) and d-separation complete
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Ancestral Perspective

● Creating a simpler set of rules that directly correspond to 
features in the CPAG 

● Cyclic Maximal Ancestral Graph (CMAG) 

○ Edge between every distinct pair of vertices iff they 
can’t be d-separated by any subset of vertices 

○ Tail mark X –* Y iff there is a directed path from X to Y in 
G; otherwise, arrowhead mark X ←* Y

○ Every v-structure X → Z ← Y where Z is not a descendant 
of a common child of X and Y in G is represented by a 
(dashed) underline X → Z ← Y (virtual v-structures)



Ancestral Perspective

● Mapping of elements in CET to ancestral counterpart

○ Virtual adjacencies → edges

○ Itineraries → paths

○ Unshielded conductors → standard unshielded noncolliders

○ Unshielded nonconductors → v-structures

○ Unshielded imperfect nonconductors → virtual v-structures



Ancestral Perspective

● CMAG M has a u-structure, quadruple of distinct nodes (X, Z, 
Z’, Y) if X → Z and Z’ ← Y are in M, Z’ is part of SCC(Z) and there 
is an uncovered path (X, Z…Z’, Y) in M where all intermediate 
nodes are also in SCC(Z)

○ Similar to a v-structure but central collider replaced by 
uncovered path through SCC

○ Not explicitly recorded in CMAG 

● Triple of distinct nodes (X, Z, Y) is virtual collider triple iff (X, Z, 
Y) is virtual v-structure or there is some Z’ in SCC(Z) such that 
either (X, Z, Z’, Y) or (X, Z’, Z, Y) is u-structure 



Ancestral Perspective

● Restating CET in terms of CMAGs

○ CMAGs M1 and M2 are Markov equivalent iff 

■ Same skeleton

■ Same v-structures

■ Same virtual collider triples

■ If (A, B, C) is a virtual collider triple and (A, D, C) is 
virtual v-structure,, B is an ancestor of D in M1 iff B 
is an ancestor of D in M2



Markov Equivalence

● Derive consistent CPAG 
that uniquely defines 
equivalence class of cyclic 
directed graph without 
d-separation tests via 
intermediate CMAG 
representation 



Markov Equivalence

● Derive consistent CPAG 
that uniquely defines 
equivalence class of cyclic 
directed graph without 
d-separation tests via 
intermediate CMAG 
representation 

● G1 is Markov equivalent  to 
G2 iff CPAG(G1) = 
CPAG(G2)



Markov Equivalence

● O(N+Nd) to find SCC, loop over N vertices comparing d2 parents 
○ O(Nd2)

● Initializing skeleton and virtual v-structures 

○ O(Nd2)

● Loop over O(Nd) edges and establish connectedness in O(Nd) steps 
for u-structures

○ O(N2d2)

● Loop over v-structures considering links to d other edges while 
testing for connectedness

○ O(N2d3)



Markov Equivalence

● Overall time complexity is O(N2d3) or O(N5) worst case arbitrary 
density

○ Significant improvement over the previous O(N7)



Evaluation

● Scaling behavior of 
original (magenta) and 
new CPAG (blue/green) as 
a function of graph size for 
densities of 3.0, 5.0



Evaluation

● Time per stage for original 
vs new CPAG from graph 
algorithms



Conclusion

● Faster and more efficient procedure to obtain CPAG from 
arbitrary directed graph

○ Used to establish Markov equivalence 



Thanks!


