Markov Equivalence in Cyclic Directed Graphs

authored by Tom Claassen, Joris Mooij

Outline

3 Markov
Equivalence

4 Evaluation

"[n]ew procedure to establish Markov equivalence between directed graphs that may or may not contain cycles under the d-separation criterion...based on the Cyclic Equivalence Theorem...rephrased from an ancestral perspective"

- Claassen, Mooij

Introduction

- need to handle feedback cycles in learning algorithms for real world causal discovery
- G1 and G2 are said to be d-separation (Markov) equivalent iff every d-separation in G1 also holds in G2 and vice versa
- Polynomial time algorithm for deciding Markov equivalence of directed cyclic graphs (Richardson, 1997)
- Linear complexity for sparse graphs (Claassen and Bucur, 2022)

Introduction

- A node Z is a collider on a path if the subpath is of the form $X \rightarrow Z \leftarrow Y$

- Otherwise, Z is a noncollider
- X is d-connected to Y given Z iff there is an x, y such that there is a path between X and Y on which every noncollider is not in Z and every collider is an ancestor of Z
- Otherwise, X and Y are d -separated given Z

Introduction

- Strongly connected component is a maximal set of vertices where every vertex is reachable via a directed path from every other vertex in the set
- Two nodes are virtually adjacent iff there is no edge between A and B but they have a common child C which is an ancestor of A or B
- Two nodes connected by virtual edge cannot be d-separated by any set of nodes

Introduction

- Sequence of vertices where all neighboring nodes in the sequence are (virtually) adjacent in the graph is called an itinerary
- Itinerary is uncovered if none of the nodes are (virtually) adjacent to each other except for the ones that occur consecutively

Introduction

- Triple (A, B, C) forms conductor if (A, B, C) is an
 itinerary and B is an ancestor of A and/or C
- A (non)conductor is unshielded if A and C are not (virtually) adjacent
- A nonconductor triple ($\mathrm{A}, \mathrm{B}, \mathrm{C}$) is a perfect nonconductor if B is also a descendant of a common child of A and C

Introduction

- Triples $\left(X_{0}, X_{1}, X_{2}\right)$ and $\left(X_{n-1}, X_{n}, X_{n+1}\right)$ are mutually exclusive conductors w.r.t an itinerary if $\left(X_{0} \ldots X_{n+1}\right)$ is a sequence of vertices such that:
- Each consecutive triple along the itinerary is a conductor
- All nodes X_{1} to X_{n} are ancestors of each other, but not ancestors of either X_{0} or X_{n+1}

Introduction

(A, D, F) and $(D, F, B) \rightarrow$ M.E. conductors on an uncovered itinerary (A, D, F, B)

Introduction

- Cyclic Equivalence Theorem (CET) conditions:
- Same (virtual) adjacencies
- Same unshielded conductors
- Same unshielded perfect nonconductors
- M.E. conductors ($\mathrm{A}, \mathrm{B}, \mathrm{C}$) and ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) on some uncovered itinerary in Cl iff they are also M.E. conductors on some uncovered itinerary in G2

Introduction

- Cyclic Equivalence Theorem (CET) conditions (cont'd):
- Unshielded imperfect nonconductors (A, X, B) and $(\mathrm{A}, \mathrm{Y}, \mathrm{B})$ of Cl and C 2 , then X is an ancestor of Y in Gl iff X is an ancestor of Y in G 2
- M.E. conductors on uncovered itinerary (A, B, C) and ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) and unshielded imperfect nonconductor (A, M, Z), then M is a descendant of B in $G 1$ iff M is a descendant of B in $G 2$

Introduction

- Cyclic Partial Ancestral Graph (CPAG)
- Gl and G 2 are Markov equivalent iff the algorithm (Richardson, 1996) outputs the same CPAG for both graphs
- Algorithm is $\mathrm{O}\left(\mathrm{n}^{7}\right)$ and d-separation complete

Ancestral Perspective

- Creating a simpler set of rules that directly correspond to features in the CPAG
- Cyclic Maximal Ancestral Graph (CMAG)
- Edge between every distinct pair of vertices iff they can't be d-separated by any subset of vertices
- Tail mark X-* Y iff there is a directed path from X to Y in G ; otherwise, arrowhead mark X ** $^{*} \mathrm{Y}$
- Every v -structure $\mathrm{X} \rightarrow \mathrm{Z} \leftarrow \mathrm{Y}$ where Z is not a descendant of a common child of X and Y in G is represented by a (dashed) underline $\mathrm{X} \rightarrow \mathrm{Z} \leftarrow \mathrm{Y}$ (virtual v-structures)

Ancestral Perspective

- Mapping of elements in CET to ancestral counterpart
- Virtual adjacencies \rightarrow edges
- Itineraries \rightarrow paths
- Unshielded conductors \rightarrow standard unshielded noncolliders
- Unshielded nonconductors \rightarrow v-structures
- Unshielded imperfect nonconductors \rightarrow virtual v-structures

Ancestral Perspective

- CMAG M has a u-structure, quadruple of distinct nodes (X, Z, Z^{\prime}, Y) if $X \rightarrow Z$ and $Z^{\prime} \leftarrow Y$ are in M, Z^{\prime} is part of $\operatorname{SCC}(Z)$ and there is an uncovered path $\left(X, Z \ldots Z^{\prime}, Y\right)$ in M where all intermediate nodes are also in SCC(Z)
- Similar to a v-structure but central collider replaced by uncovered path through SCC
- Not explicitly recorded in CMAG
- Triple of distinct nodes (X, Z, Y) is virtual collider triple iff $(X, Z$, Y) is virtual v-structure or there is some Z^{\prime} in $\operatorname{SCC}(Z)$ such that either $\left(X, Z, Z^{\prime}, Y\right)$ or $\left(X, Z^{\prime}, Z, Y\right)$ is u-structure

Ancestral Perspective

- Restating CET in terms of CMAGs
- CMAGs M1 and M2 are Markov equivalent iff
- Same skeleton
- Same v-structures
- Same virtual collider triples
- If (A, B, C) is a virtual collider triple and (A, D, C) is virtual v-structure,, B is an ancestor of D in $M 1$ iff B is an ancestor of D in M2

Markov Equivalence

```
Algorithm 1 Cyclic-Graph-to-CMAG
    Input: directed cyclic graph \(\mathcal{G}\) over nodes \(\mathbf{V}\)
    Output: CMAG M, SCCs,
    \(S C C \leftarrow\) Get_StronglyConnComps \((\mathcal{G})\)
    part 1: CMAG rules (i) + (ii)
    for all \(X \in \mathbf{V}\) do
        \(\mathrm{Z} \leftarrow p a_{\mathcal{G}}(X)\)
        \(\mathrm{Z}_{\text {cyc }} \leftarrow \mathrm{Z} \cap S C C(X)\)
        \(\mathbf{Z}_{a c y} \leftarrow \mathbf{Z} \backslash \mathbf{Z}_{c y c}\)
        add all arcs \(\mathbf{Z}_{a c y} \rightarrow \mathbf{Z}_{c y c} \cup\{X\}\) to \(\mathcal{M}\)
        add all undirected edges \(\mathbf{Z}_{c y c}-\mathbf{Z}_{c y c} \cup\{X\}\) to \(\mathcal{M}\)
    end for
    part 2: CMAG rule (iii)
    for all \(X \in \mathrm{~V}:|S C C(X)| \geq 2\) do
        \(\mathrm{Z} \leftarrow p a_{\mathcal{M}}(X)\)
        for all non-adjacent pairs \(\left\{Z_{i}, Z_{j}\right\} \subseteq \mathbf{Z}\) do
            if \(\left\{Z_{i}, Z_{j}\right\} \nsubseteq \operatorname{adj} \mathcal{G}_{\mathcal{G}}(X)\) then
                    if \(X \notin \operatorname{deg}\left(\operatorname{ch}_{\mathcal{G}}\left(Z_{i}\right) \cap \operatorname{ch}\left(Z_{j}\right)\right.\) then
                mark virtual v-structure \(\left\langle Z_{i}, X, Z_{j}\right\rangle\) in \(\mathcal{M}\)
        end for
    end for
```

- Derive consistent CPAG that uniquely defines equivalence class of cyclic directed graph without d-separation tests via intermediate CMAG representation

Markov Equivalence

```
Algorithm 2 Graph-to-CPAG
    Input: directed cyclic graph }\mathcal{G}\mathrm{ over nodes V,
    Output: CPAG }\mathcal{P}\mathrm{ ,
    (\mathcal{M},SCC)}\leftarrow\mathrm{ Cyclic-Graph-to-CMAG(G)
    part 1: new-CET rules (i)-(iii)
    P}\leftarrow\mathrm{ skeleton of }\mathcal{M}\mathrm{ with all o-o edges
    P}\leftarrow\mathrm{ copy all (virtual) v-structures from }\mathcal{M
    for all }X\circ-% \mathrm{ in }\mathcal{P},X\longrightarrowZ in \mathcal{M, }|SCC(Z)|\geq2 do
        if }\exists\langleX,Z,\mp@subsup{Z}{}{\prime},Y)\mathrm{ as }u\mathrm{ -structure in }\mathcal{M}\mathrm{ then
            orient }X->Z\mathrm{ in }\mathcal{P}\quad{\mathrm{ Lemma[2}
    end for
    part 2: new-CET rule (iv)
    for all virtual v
        for all not fully oriented edges }Z*-*W\mathrm{ in }\mathcal{P}\mathrm{ do
            if }\langleX,W,Y\rangle\mathrm{ is virtual collider triple then
                copy edge }Z*-*W\mathrm{ from }\mathcal{M}\mathrm{ to }\mathcal{P
            end if
        end for
    end for
```

- Derive consistent CPAG that uniquely defines equivalence class of cyclic directed graph without d-separation tests via intermediate CMAG representation
- G1 is Markov equivalent G2 iff CPAG(G1) = CPAG(G2)

Markov Equivalence

- $O(N+N d)$ to find $S C C$, loop over N vertices comparing d^{2} parents
- $\mathrm{O}\left(\mathrm{Nd}^{2}\right)$
- Initializing skeleton and virtual v-structures
- $\mathrm{O}\left(\mathrm{Nd}^{2}\right)$
- Loop over $\mathrm{O}(\mathrm{Nd})$ edges and establish connectedness in $\mathrm{O}(\mathrm{Nd})$ steps for u-structures
- $O\left(N^{2} d^{2}\right)$
- Loop over v-structures considering links to d other edges while testing for connectedness
- $O\left(N^{2} d^{3}\right)$

Markov Equivalence

- Overall time complexity is $O\left(N^{2} d^{3}\right)$ or $O\left(N^{5}\right)$ worst case arbitrary density
- Significant improvement over the previous $O\left(N^{7}\right)$

Evaluation

- Scaling behavior of original (magenta) and new CPAG (blue/green) as a function of graph size for densities of 3.0, 5.0
\rightarrow avg. CPAG-from-Graph (d=3.0)
- - idern max.
-0- avg. CPAG-from-Graph (d-5.0)
idern max
\rightarrow avg. new G-to-CPAG (d-3.0)
- - idern max
——avg. new G-to-CPAG $1 \mathrm{~d}=5.0$) idern max

Evaluation

- Time per stage for original vs new CPAG from graph algorithms

Conclusion

- Faster and more efficient procedure to obtain CPAG from arbitrary directed graph
- Used to establish Markov equivalence

Thanks!

