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“In]lew procedure to establish Markov equivalence between

directed graphs that may or may not contain cycles under

the d-separation criterion...based on the Cyclic Equivalence
Theorem...rephrased from an ancestral perspective”

= Claassen, Mooij




Introduction

e need to handle feedback cycles in learning
algorithms for real world causal discovery

e Gland G2 are said to be d-separation (Markov)
equivalent iff every d-separation in G1 also holds in

G2 and vice versa

o Polynomial time algorithm for deciding
Markov equivalence of directed cyclic graphs
(Richardson, 1997)

o Linear complexity for sparse graphs (Claassen
and Bucur, 2022)




Introduction

e AnodeZisacollider on a path if the subpath is of
theform X->Z«Y

o Otherwise, Z is a noncollider

e Xisd-connectedtoY given Z iff there is an x, y such
that there is a path between X and Y on which every
noncollider is not in Z and every collider is an
ancestor of Z

o Otherwise, Xand Y are d-separated given Z




Introduction

Component 3
Component 2 = ,

e Strongly connected componentis a e
maximal set of vertices where every vertex A
is reachable via a directed path from every
other vertex in the set

e Two nodes are virtually adjacent iff there is
no edge between A and B but they have a
common child C which is an ancestor of A
or B

o Two nodes connected by virtual edge
cannot be d-separated by any set of
nodes




Introduction

e Sequence of vertices where all neighboring nodes
in the sequence are (virtually) adjacent in the graph
is called an itinerary

o Itinerary is uncovered if none of the nodes are
(virtually) adjacent to each other except for the
ones that occur consecutively




Introduction

Qe—{D)e—(E)e

e Triple (A, B, C) forms conductor if (A, B, C) is an
itinerary and B is an ancestor of A and/or C

o A (non)conductor is unshielded if Aand C are
not (virtually) adjacent

e A nonconductor triple (A, B, C) is a perfect
nonconductor if B is also a descendant of a
common child of Aand C




Introduction

e Triples (X, X, X,)and (X_, X, X_,,) are mutually
exclusive conductors w.r.t an itinerary if (X,..X_,
sequence of vertices such that:

)is a

o Each consecutive triple along the itinerary is a
conductor

o All nodes X1 to Xn are ancestors of each other,
but not ancestors of either X or X_ .




Introduction

® ®

(A, D, F) and (D, F, B) » M.E. conductors on an
uncovered itinerary (A, D, F, B)




Introduction

e Cyclic Equivalence Theorem (CET) conditions:

o Same (virtual) adjacencies
o Same unshielded conductors
o Same unshielded perfect nonconductors

o M.E. conductors (A, B, C) and (X, Y, Z) on some
uncovered itinerary in Gl iff they are also M.E.
conductors on some uncovered itinerary in G2




Introduction

e Cyclic Equivalence Theorem (CET) conditions
(cont'd):

(@)

Unshielded imperfect nonconductors (A, X, B)
and (A,Y, B) of Gl and G2, then X is an ancestor
of Yin G1iff Xis an ancestor of Y in G2

M.E. conductors on uncovered itinerary (A, B, C)
and (X,Y, Z) and unshielded imperfect
nonconductor (A, M, Z), then M is a descendant
of B in G1iff M is a descendant of B in G2




Introduction

e Cyclic Partial Ancestral Graph (CPAG)

o Gland G2 are Markov equivalent iff the algorithm
(Richardson, 1996) outputs the same CPAG for both graphs

m Algorithm is O(n’) and d-separation complete

:>




Ancestral Perspective

e Creating a simpler set of rules that directly correspond to
features in the CPAG

e Cyclic Maximal Ancestral Graph (CMAGQG)

o Edge between every distinct pair of vertices iff they
can't be d-separated by any subset of vertices

o Tail mark X-*Y iff there is a directed path from Xto Y in
G; otherwise, arrowhead mark X «*Y

o Every v-structure X » Z « Y where Z is not a descendant
of a common child of Xand Y in G is represented by a
(dashed) underline X > Z « Y (virtual v-structures)

P



Ancestral Perspective

e Mapping of elements in CET to ancestral counterpart

o Virtual adjacencies » edges

o Itineraries » paths

o Unshielded conductors » standard unshielded noncolliders
o Unshielded nonconductors » v-structures

o Unshielded imperfect nonconductors » virtual v-structures




Ancestral Perspective

e CMAG M has a u-structure, quadruple of distinct nodes (X, Z,
Z'Y)ifX»>Zand Z «Yarein M, Z is part of SCC(Z) and there
is an uncovered path (X, Z..Z',Y) in M where all intermediate
nodes are also in SCC(Z)

o Similar to a v-structure but central collider replaced by
uncovered path through SCC

o Not explicitly recorded in CMAG

e Triple of distinct nodes (X, Z,Y) is virtual collider triple iff (X, Z,
Y) is virtual v-structure or there is some Z' in SCC(Z) such that
either (X,Z,Z,Y)or (X,Z,Z,Y) is u-structure

P



Ancestral Perspective

e Restating CET in terms of CMAGs
o CMAGs M1 and M2 are Markov equivalent iff

m Same skeleton
m Same v-structures
m Same virtual collider triples

m If (A, B, C)isavirtual collider triple and (A, D, C) is
virtual v-structure,, B is an ancestor of D in M1 iff B
is an ancestor of D in M2

P



Markov Equivalence

Algorithm 1 Cyclic-Graph-to-CMAG
Input: directed cyclic graph G over nodes V
Output: CMAG M, SC(C's,
SCC « Get_StronglyConnComps(G)
part 1: CMAG rules (i) + (ii)
for all X « V do
Z < pag(X)
Z,..<ZnSCC(X)
Mgy &= LN T
addall arcs Z,,.,, —Z,,,. w{X} to M
add all undirected edges Z,., —Z,.,. W {X } to M
end for
part 2: CMAG rule (iii)
forall X ¢ V: SCC(X)|z2do
Z < pa(X)
for all non-adjacent pairs {Z,, Z; } < Z do
if{Z:,Z;} ¢ adjg(X) then
it X ¢ deg(chg(Z:)nehg(Z;) then
mark virtual v-structure {Z;, X, Z;) in M
end for
end for

Derive consistent CPAG
that uniquely defines
equivalence class of cyclic
directed graph without
d-separation tests via
intermediate CMAG
representation




Markov Equivalence

Algorithm 2 Graph-to-CPAG

Input: directed cyclic graph G over nodes V., e Derive consistent CPAG
Output: CPAG P, that uniquely defines
(M. SCC) « Cyclic-Graph-to-CMAG(G) equ[va/ence class of Cyc/[c

part 1: new-CET rules (i)-(1ii)
P « skeleton of M with all o—o edges
P « copy all (virtual) v-structures from M

directed graph without
d-separation tests via

forall Xo—o Zin P, X —Zin M, |SCC(Z)| > 2do intermediate CMAG
if 3(X.Z,Z'. Y} as u-structure in M then representation
orient X — Z in P {Lemma 2]}
end for e Glis Markov equivalent t
part 2: new-CET rule (iv) G2 iff CPAG (G-l) —

for all virtual v-structures (X, Z. Y} in PP do
for all not fully oriented edges Z »—= W in P do
if {X.W.Y') is virtual collider triple then
copy edge Z *—= W from M to P
end if
end for
end for

CPAG(G2)




Markov Equivalence

e O(N+Nd) to find SCC, loop over N vertices comparing d? parents
o O(Nd?

e |Initializing skeleton and virtual v-structures
o  O(Nd?

e Loop over O(Nd) edges and establish connectedness in O(Nd) steps
for u-structures

o O(N2d?)

e Loop over v-structures considering links to d other edges while
testing for connectedness

o  O(N2d?)

P



Markov Equivalence

e Overall time complexity is O(N?d®) or O(N°) worst case arbitrary
density

o Significant improvement over the previous O(N”)
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Evaluation
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e Scaling behavior of
original (magenta) and
new CPAG (blue/green) as
a function of graph size for
densities of 3.0, 5.0
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Evaluation

CPAG-from-Graph (d=3.0) : CPAG- lrom-Graph (d=5.0)
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Conclusion

e Faster and more efficient procedure to obtain CPAG from
arbitrary directed graph

o Used to establish Markov equivalence




Thanks!




